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Abstract

Planning Algorithms for Robots Operating in Vineyards
A dissertation presented for the degree of Doctor of Philosophy in

Electrical Engineering and Computer Science
By: Thomas C. Thayer

Committee chair: Stefano Carpin
University of California, Merced 2021

Contemporary vineyard management is in dire need of a way to make remote sens-
ing data useful for irrigation purposes on the fine-grain scale. A robot can be used
to adjust irrigation emitters within a vineyard, but first requires solving a difficult
optimization problem, where a path must be planned that maximizes the cumulative
adjustment of water emitters while the path’s total length is limited by the battery
life of the robot. This is formally called the Orienteering Problem, which is NP-hard.
The physical structure of a vineyard constrains movement within it, and the colossal
size of some vineyards means that special algorithms are needed to compute efficient
solutions. Furthermore, useful extensions to this problem provide additional benefit
for real-world vineyards. Solutions to the Team Orienteering Problem, which requires
coordinated paths built for multiple agents, can make irrigation management more
efficient using a team of robots. The Bi-Objective Orienteering Problem provides
robot paths that can perform an additional task while adjusting water emitters, such
as soil sampling for moisture content. These problems all assume deterministic move-
ment costs, whereas robots traversing agricultural settings can encounter less desirable
field conditions which reduce their speed. The Stochastic Orienteering Problem with
Chance Constraints can be used to account for this uncertainty in path planning and
provide a bound on the chance of failure. This problem is difficult to solve in large
instances such as those encountered with agricultural routing, and therefore ways to
speed up computation are needed.

This dissertation addresses each of these variations of the Orienteering Problem
within the context of vineyards. A special type of model is discussed called an Aisle
Graph which represents the structure of a typical vineyard. For the mentioned vari-
ations of the Orienteering Problem, heuristic path planners are created which take
advantage of this unique arrangement to provide highly economical paths for robots
very quickly. Each of the heuristic planners is analyzed on real-world problem simu-
lations constructed with datasets from commercial vineyards located in central Cal-
ifornia, and shown to be efficient at directing robots to adjust irrigation emitters in
fields containing tens of thousands of vines.
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Chapter 1

Introduction

1.1 Purpose

Agriculture is arguably one of the most important human activities, as it is used
to grow food and other products for people to consume. Through the ages agriculture
has evolved slowly compared to other industries, and this is true even in contempo-
rary times. Some farms are still using centuries-old techniques that are costly and
inefficient, however there is no better alternative or the alternative is too expensive.
Luckily, this is changing. Agriculture technology (colloquially known as AgTech) has
gained new interest from researchers at universities and private companies as the
demand for agricultural products continues to increase toward the industry’s capac-
ity. New devices, techniques, and systems are put to the test and implemented in
commercial operations frequently, creating new paradigms that are reaching even the
humblest of farmers.

Water use efficiency in agricultural purposes is becoming a very popular topic to
study. Droughts are a frequent occurrence in many parts of the world and can have
detrimental long-term effects on the yield and quality of crop output in the effected
areas, as well as inducing wider economic and civil issues. The ability to utilize water
more efficiently means that drought years are less devastating and wet years can
provide more water to replenish aquifers or dams, further decreasing the severity of
arid years. In the United States of America, the majority of freshwater used goes to
the agriculture industry, taking roughly 85% of the consumed supply[111].

The potential need for freshwater savings is particularly dramatic when examining
multi-year crops. Since perennial plants are more complex in their growth patterns
and nutrient requirements, it is difficult for farmers to precisely estimate the needs
of their fields, and so they tend to error on the side of caution to keep their plants
healthy. In terms of water, this means that growers will intentionally over-irrigate,
wasting precious resources in the hopes of keeping their operations sustainable. This
is especially true with some fruit orchards, where lack of watering in earlier years
has been shown to negatively effect the yields of future years [69]. In California,
where perennial crops and products account for over half ($11.8 billion in 2019) of
agricultural exports [1], over-watering can be especially burdensome. And because
these crops are a significant portion of California’s economy, a prolonged drought or
change in water resource policy can have drastic consequences for the state. Thus,
there is a pressing necessity for developing ways to boost the efficiency of farmland

1
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irrigation.
Special consideration is required when investigating the irrigation needs of wine

grapes. The eventual pressing and fermenting into wine means that these grapes
need to meet stringent specifications to ensure quality in the final product. Fruit size
and water content have a large impact on a number of these specifications, including
brix and flavonoid content, meaning that high moisture has a direct negative effect
on the character of the wine [75]. Because of this, vineyard managers need a special
watering scheme that provides the optimum amount of water to their grapevines,
preventing over-saturation of the fruits but also keeping the vines healthy. This
watering scheme, called deficit irrigation, emphasizes slightly under-watering plants,
potentially sacrificing plant vigor and overall yield but producing more economically
desirable grapes [35]. Still, the conceivable threat of harming or killing a vine by
accidentally over-stressing it with too little water, causing long-term economic loss,
prevents ranch managers from attempting to employ the optimal irrigation schedule.
Consequentially, vineyards are over-irrigated and quality is decreased.

There are two main factors that limit a farmer’s potential for properly and ef-
ficiently irrigating their vineyards. These are sensing the needs of the vines, and
delivering a precise amount of water. Generally, these factors are gauged at the block
level, an area that may be as modest as a few acres for small private vineyards, to
many hundreds of acres for the largest commercial wineries. Sensing plant water
stress is done indirectly by measuring local atmospheric conditions to calculate evap-
otranspiration and directly using stem water potential or leaf water potential [39].
These methods suffer from lack of scalability; local atmospheric conditions generalize
plant stress over many miles, and pressure chambers and bagging give readings use-
ful for specific plants only. Ideally, plant stress should be established on a per-plant
basis over the entire vineyard, meaning data should be both highly specific and cover
a large area. Some methods have emerged to do this, usually involving the use of
satellite and aerial imagery [58]. But even with high resolution data, the question
of how to make that data actionable still remains. The delivery of water to vines is
almost always done on the block level, where each plant receives roughly the same
amount of irrigation. Altering the method of water delivery to somehow be adjustable
on the plant level is a problem of enormous scale, which requires replacing the entire
irrigation infrastructure and developing a scheme to adjust it when needed. Hardware
has been developed to accomplish this in the form of the Portable Emitter Actuation
Device (PEAD) [57], which bundles individually adjustable irrigation emitters and
a tool to adjust them, however these require solving large logistical problems before
they can be put to use. Because plant stress can vary greatly from one vine in the
vineyard to the next, and because factors that effect water delivery to plant roots
also very from one vine to the next, this problem has yet to be solved and water use
efficiency has suffered.

The idea of informing crop nutrient dispersion using crop stress indicators is called
precision agriculture, and using water stress sensing to apprise irrigation is called
precision irrigation. While many well-established agriculture companies, new startup
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Figure 1.1: Concept art showing how RAPID will operate in the field.

ventures, and researchers are engaged in developing novel methods and technology
for sensing data in precision agriculture, there still exists a gap in making that data
actionable, especially when applying precision irrigation. However, some groups are
working on this. RAPID (Robot Assisted Precision Irrigation Delivery) is a collabo-
rative project from multiple universities with the objective of precisely adjusting the
water distribution of irrigation lines on a fine-grain per-plant basis using PEAD on
a robotic platform informed by an aerial imagery deep learning network [125]. The
hope is that this project will provide a way to close the control loop in vineyard
irrigation by providing an adjustable irrigation network and robot capable of making
low level adjustments. Using data gathered from remote sensing and direct sensing,
RAPID utilizes a processing system designed to decipher the overwhelming amount
of data generated into a map of plant water stress, which the co-robots will then
interpret into a plan to enact. With the system fully integrated, stress irrigation can
be precisely executed without any worry of yield loss or vine damage, thereby saving
water and increasing productivity.

There are some challenges to using robots in the vineyard setting, particularly
when it comes routing and navigation, and especially when considering the problem
of optimizing water usage. Because of the physical structure of vineyards, there are
limits to how a robot may travel within it. When applied to a goal, e.g. adjusting
emitters in irrigation lines, the nonuniform amount of adjustment required at each
point leads to a specialized combinatorial optimization problem where the motion
constraints limit the effectiveness of uninformed algorithms. Additionally, the vast
size of real-life vineyards means that a planner must be able to parse thousands of data
points when calculating an effective route. Finally, because of the organic and outdoor
nature of viticulture, circumstances are always changing, meaning prior knowledge
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may not be correct and predicting future conditions is dubious. These complications
make planning paths for robots in vineyards difficult but also interesting to study.

1.2 Overview of Contributions

The purpose of this dissertation is to address the challenges of efficient path plan-
ning for robots operating in structured agricultural environments, particularly vine-
yards. As the goal of routing a ground robot in vineyards is to improve the water use
efficiency of the field’s irrigation system, the algorithms presented herein are discussed
in manners relating to irrigation adjustment, soil moisture measurement, or potential
problems associated with field conditions. Regardless, they are also applicable to a
wide range of scenarios, for example warehouse robot navigation, and should not be
viewed as limited in use to the domain of agriculture. Still, the motivating factors
for this dissertation are rooted in improving agricultural efficiency, and therefore ex-
perimental assessments of the given methods’ veracity use vineyard based data for
verification when directly applicable.

There are four main contribution made by this dissertation and the related pub-
lications. First, optimal path planning within graphs structured like vineyards is
discussed, including multiple different types of deterministic orienteering problems
that involve collecting rewards over a graph within a predefined budget. Second, nu-
merous heuristic algorithms are presented, which are able to solve these path planning
problems on large-size graphs very quickly, necessary due to the scale of real-life vine-
yards on which these graphs are based. Third, an extension to stochastic orienteering
is discussed, and a set of heuristic algorithms are given which provide time-aware
policies for path planning in randomized environments. Fourth, ways produce poli-
cies for stochastic orienteering on large-size graphs and speed up computation are
presented, such that vineyard environments can be navigated for orienteering even
under uncertainty.

The rest of this dissertation is divided into nine chapters which discuss different as-
pects of efficient robotic routing. Chapter 2 presents an overview of related literature
associated with the specific types of problems discussed throughout. Chapter 3 exam-
ines single-agent orienteering, or efficient routing for reward collection with a budget,
over a new type of graph designed to mimic the structural limitations presented by
moving robots within vineyards. Two algorithms are presented which are capable
of outputting highly efficient paths that maximize the objective for this problem in
very little time, and are shown to be extremely effective at large scale. Chapter 4
extends one of these algorithms to the multi-agent case while also considering how
to coordinate all agents in a manner that avoids collisions. The multi-agent methods
are shown to be sufficient at routing large number of robots operating in vineyards all
at once. Variants of the single-agent routing algorithms which focus on maximizing
two reward functions are given in Chapter 5, and shown to be successful like their
single-objective counterparts. In Chapter 6, the concept of orienteering is re-tooled
to describe problems where travel times between points are random variables with
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known distributions. A non-adaptive algorithm providing policies that maximize re-
wards for this new problem is given and evaluated, however it lacks the ability to scale
for large problem sizes. Two adaptive improvements to this algorithm are given in
Chapter 7 and shown to greatly improve performance on these stochastic problems. A
link back to orienteering in vineyards is provided in Chapter 8, whereby a method of
reducing the size of paths produced for stochastic orienteering is used in conjunction
with the better of the two orienteering algorithms from Chapter 3. This is shown
to be highly effective at providing scalability to the stochastic orienteering method.
Chapter 9 further improves the scalability of stochastic orienteering by showing how
the Lagrangian method can replace the need for a linear programming solver when
finding policies and obtain solutions in less time with guaranteed bounds. Finally,
Chapter 10 provides some concluding remarks about the methods presented in this
dissertation and discusses a few avenues of related future research.



Chapter 2

Related Work

2.1 Robots in Agriculture

The use of robots in agriculture has grown in prevalence over the years. The rise
in use of AgTech and precision agriculture has cemented the adoption of automated
systems including robots within the industry as necessary components for commercial
and environmental success. Typical use cases range from information gathering and
remote sensing to automated fruit harvesting and fertilizer application. Additionally,
AgTech companies are an emerging niche within the startup world, fueled by recent
advances in robotic and computational technology. Led by research teams across the
world, agriculture robotics is a growing trend that will continue expanding. For a
summary on the opportunities and challenges of robots in agriculture, see [100]. For
a more comprehensive review on the subject of agricultural robotics, see [54, 107].

2.1.1 UAVs and Remote Sensing

Some of the earliest and most pragmatic uses of robots in the agriculture industry
has been for information gathering and remote sensing. This is due to the fact that
remote sensing provides a large benefit in the scalability of gathering information
on crop conditions throughout the growing season [136]. Spawned from the many
fruitful endeavors of agronomists and ecologists to utilize remote sensing technology,
roboticists have incorporated these technologies on their platforms to gather infor-
mation autonomously. One typical operation involves the collection of image data
from aircraft flights above farmland. Usually reserved for human-piloted planes and
orbital satellites, imaging over multiple spectra can be done using Unmanned Aerial
Vehicles (UAVs) [68].

One example of UAVs used as crop sensors is [133], where the authors used a
UAV to collect multi-spectral data and calculate the green area index for wheat and
rapeseed crops. The advantage of using UAVs for such data collection compared to
conventional methods is that they are less costly, can be flown more frequently, and
provide higher resolution image data. However, this last advantage is a double edged
sword, as the high resolution data is difficult stitch together and process. This is the
problem tackled by [86], where the authors create a single image mosaic map from
thousands of individual images of repetitive crop data taken from a low flying UAV.
Figure 2.1 shows an example of such a map. Because UAVs fly lower to the ground,
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Figure 2.1: An example of an aerial image mosaic of a vineyard. A UAV was flown
overhead in a lawnmower pattern to capture hundreds of images which were later
stitched together in post-processing. The original of this example is high resolution
such that individual grapevines can be distinguished.

they can cover much less ground than manned aircraft or satellites. In order to have a
larger footprint with UAVs, research like [13] has utilized teams of UAVs with smart
path planning. Others, like [3] use an onboard computer vision system to detect
objects of interest such as weeds and to make real-time decisions about where the
UAV should fly to next. As the capabilities of UAVs and remote sensing technology
continue to improve, these types of robots will become more commonplace out in the
field, and help provide farmers with new insights into their crop health and growth.

2.1.2 Applications of UGVs

While flying robots are useful for remote sensing applications, their use cases are
limited, and Unmanned Ground Vehicles (UGV) are much more practical for virtu-
ally every other operation and are much more capable at addressing the challenges
presented by the contemporary agriculture industry [135].

Perhaps the most obvious tasks that would require ground robots for automa-
tion are tasks that involve direct interaction with the plants and soil. Robotic fruit
harvesting is one such task, where manual fruit picking is used and could benefit
greatly from automation, especially for high-value high cost crops. [114] shows the
design and integration of a robot capable of harvesting apples without the need for
human intervention. In [138], the authors built a unique robot system for harvesting
kiwifruit, creating a novel end-effector to safely grab the fruit without harming it, and
employed deep neural networks with stereo imaging for fruit detection. However, the
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kiwi harvester had a success rate of only 51%, highlighting one of the main challenges
of robotic harvesting, which is designing a robust and adaptable arm. A study on
the viability of telescopic arms versus vacuum grippers for tree-fruit harvesting was
presented in [6], where the authors concluded that robots with simple low degree-
of-freedom telescoping arms which grab fruit and place them on a conveyor belt are
superior to other types of more complex harvesting robots in pear and peach orchards.
Overall, fruit harvesting is an important task that is actively being studied.

Besides fruit harvesting, UGVs are also necessary to properly estimate yield for
various types of crops. While it is common to assume this task can be performed by
UAVs, this is not the case. Indeed, aerial photographs are not very useful for yield
estimation since they contain high amounts of occlusion from tree/plant canopies and
are too low resolution to reliably detect fruits. Fewer obstructions and higher reso-
lution images are required to distinguish fruits hidden within plant leaves. Instead,
ground robots are used to capture images of fruit directly. For instance, [63] used a
ground robot with a low-cost camera to estimate the yield of sweet pepper plants. It
applied a region-based convolutional neural network to both detect fruit and estimate
its ripeness. Neural networks and machine learning algorithms are a common fruit
detection mechanism employed by many yield estimation techniques as fruits, such
as green apples, are not always easy to distinguish from foliage [12]. Many techniques
utilize other tools in addition to or in place of standard cameras. [82] utilizes a RGB-
D camera to estimate vineyard yield, which allows for not only grape cluster counting
but also for cluster size estimation, thereby allowing a farmer to predict metrics such
as average cluster weight and total tonnage yield. For some crops, such as almonds, it
is useful to gather data about the orchard canopy volume to give more accurate yield
estimates [127], however this requires the use of three-dimensional LiDAR, which
greatly increases the cost and computation required. Overall, ground robots are a
useful tool to predict crop yield outcomes and will likely become more prevalent as
yield estimates increase in accuracy.

There are plenty more tasks that UGVs can perform which are part of the neces-
sary farming operations for successful cultivation. For example, [27] describes a robot
that is capable of pruning grape vines, which combines computer vision to build a
three-dimension model of each vine and artificial intelligence that chooses which parts
of each vine to prune. Another application is in pesticide spraying, which is a recur-
ring task in nearly every growing operation. A remote-controlled robot that can apply
pesticide to highly specific targets was developed in [17], which is invaluable due to
its potential to drastically reduce pesticide usage with precision application. This
is an evolution of a system previously deployed by the same authors in [18], which
explored image processing algorithms to detect grapes and foliage with a robotic
sprayer, leading to a reduction of pesticide usage up to 30%. Aside from spraying
for pests, other robots have been developed that are capable of autonomously weed-
ing orchards and vineyards, such as in [103] where the robot can remove weeds that
are growing between vines and within rows without harming the vine trunks. Yet
another use of UGVs is shown in [81], which presents a robot that can directly sow
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Figure 2.2: A human and a UGV working side by side in a vineyard to measure
various indicators of health for the grapevines.

seeds into the ground for farmers. Finally, a vineyard monitoring system that utilizes
ground robots is presented in [102] (Figure 2.2 shows a similar robot system). This
system makes use of semantic image labeling to efficiently present information about
a vineyard’s status, such as plant vigor and presence of infestations, to the grower. As
evident from the wide array of applications available to UGVs, there is ample room
for inclusion of ground-based robots within the agriculture industry.

2.1.3 UGV routing in Vineyards and Orchards

UGVs, having numerous applications within the agriculture domain, naturally
require methods for planning while out in the field. There are many reasons for this,
such as the need to share the ground with human workers and machinery, the large
size of farms and limited battery life or fuel sources of robots. Simply navigating
in these environments can be tricky as well. The survey [2] outlines the challenge
of localization and mapping in agricultural settings and gives an overview of some
techniques specifically developed for use on farmland. For a brief overview of robot
path planning and routing algorithms used in agriculture, see the recent review [110].

In many cases, the operation a UGV is performing requires complete coverage of a
vineyard or orchard, and so the goal is to optimize variables such as non-working time
or distance traveled. One example is [23], where the UGV is a tractor performing one-
sided operations (spraying or mowing on only one side of the row being traversed).
The tractor must navigate each row between trees twice, with special attention payed
to direction and order so that full coverage in minimum distance is realized. A
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similar strategy is used in [105], where a ground robot takes photos of grape clusters
to estimate yield. However, here the goal is to capture close-up under-canopy photos
of the grape vines, and thus requires robust localization to prevent mis-identification
of vines. They use an Extended Kalman Filter to track vine locations as the UGV
navigates through the vineyard. Focusing on planning, a more interesting routing
problem is discussed in [143], where the robot must navigate inside of a greenhouse to
selectively spray pesticides on certain plants. The authors formulate a multi-objective
optimization problem, which is meant to minimize the route time, distance, and
rotation while servicing all plants within the robotic sprayer’s capacity. What makes
this problem interesting is the irregular arrangement of plants in the greenhouse,
which takes the form of rows that have openings in the middle. Each of these papers
discuss cases where the UGVs perform all their actions in a single traversal of the
environment.

In other cases, the UGVs need to make multiple traversals. Typically, some capac-
ity of the robot is limited, such that it requires recharging or refilling multiple times
before the operations are complete. Usually the limiting factor is battery life. [109]
places recharging stations within a vineyard, so that a robot performing monitoring
tasks can recharge without human intervention. The vineyards considered are steep
sloped, and therefore energy to travel to each recharging station must be accounted
for to prevent complete depletion of battery charge before reaching the station. There
can be other limited capacities that require replenishment. For example, the robot
in [72] must periodically refill a water tank and replenish its battery when either of
these get too low. The battery is depleted from movement through the vineyard, and
the water tank is depleted from watering select vines that are determined on the fly
to need more irrigation. Since the amount of water needed is not known beforehand,
this problem involves accounting for stochastic variables. Another interesting example
uses robots carrying fruit bins to and from human harvesters in orchards, minimizing
downtime for the pickers [144]. These bins are to be moved and emptied/replaced
once they are full, which requires coordination between multiple robots and proper
timing to ensure efficient movement.

2.2 The Orienteering Problem

The Orienteering Problem (OP) is a route optimization problem that involves
maximizing a reward function for the places visited by the route while keeping to
a constraint on the cost of traveling between each place. It is formally defined in
section 3.1, and a comprehensive survey of the OP, including its variants and solution
methods, can be found in [130, 60].

2.2.1 Route Optimization and TSP

The OP is a special type of route optimization problem. Therefore, it is worth
studying other closely related route optimization problems, especially the Traveling
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Figure 2.3: An example of a TSP along with its solution. Shown is a map of the
United States of America with 25 cities highlighted and the corresponding minimum
cost tour that travels to each of them in a circuit.

Salesman Problem (TSP) and the Vehicle Routing Problem (VRP).
Route optimization algorithms can take different forms depending on the criteria

or objective of the algorithm. Discretization of the state space and potential actions
for each state creates a graph which can be searched for the optimal answer. In
routing problems that only account for route length cost, algorithms such as Dijkstra’s
Algorithm [44] (which is shown to produce optimal results) or A* [64] (which is
heuristic based and also optimal when the right heuristic is chosen) are used. In
other cases, the goal of the agent is to find a route between multiple goal states
that minimizes the total cost of the route. One notable example is the TSP which
seeks to find the circuit or tour of minimum length between all vertices in a weighted
graph. TSP is known to be NP-hard and therefore computationally expensive to
solve for large instances [96]. Optimal solutions for smaller cases are usually found
with integer linear programming [41], including Branch-and-Bound or Branch-and-
Cut [95] methods, which are extensions to simple tree search algorithms like Depth-
first Search or Breadth-first Search. Due to the difficulty of solving NP-hard problems,
most choose heuristics methods to obtain approximate solutions. Generally, the more
objectives in a problem, the more difficult it becomes to find solutions, and heuristics
become favored.

The generalized version of the TSP is the VRP. The VRP seeks to optimize one
or more routes from a set of depots to locations defined as vertices on a graph with
edges between the vertices. The exact objective varies depending on the particular
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problem being solved, however, many applications have common goals. These include
minimizing the total transportation cost of the vehicles, minimizing the total number
of vehicles needed, minimizing variation in costs across all vehicles, maximizing reward
for visited locations, and more. For a comprehensive review on different variants of
the VRP, see [134]. Like the TSP, the VRP is NP-hard and numerous methods have
been developed to solve each variant. Exact methods typically rely on Branch-and-
Bound, Branch-and-Cut, and Set-Covering-Based algorithms. See [124] for details
on how these work in the context of a few types of VRPs. Aside from optimal
solutions, approximation algorithms and heuristics exist for the VRP and its common
derivatives. One such approximation algorithm is presented in [10], which obtains a
fraction of 1/(3 log2 n) the optimal reward for the VRP with Time-Windows, an
important variant of the VPR that restricts when rewards can be collected from
vertices. A well known heuristic method is presented in [99], which also solves the
VRP with Time-Windows, as well as the Capacitated VRP, the Multi-Depot VRP,
and the Open VRP by using the adaptive large neighborhood search framework,
providing a number of modifications to a set of routes a keeping those that improve
performance. A number of OP heuristic methods are based on similar frameworks
such as variable neighborhood search, upon which the adaptive large neighborhood
search is based.

2.2.2 OP and solution methods

The OP is another route optimization problem, often described in conjunction
with the TSP and VRP. First formally introduced in [126], the OP attempts to
maximize a reward function for visited vertices subject to a given budget over traveled
edges. Here, each vertex has an associated reward, and costs are defined over each edge
between two vertices. Rewards can only be collected once but vertices can be visited
more than once if necessary (for example, if the graph is incomplete). Commonly, the
OP is rooted, meaning that one or both the starting and ending vertices are fixed,
however the unrooted version where no vertices are fixed is also studied. There is a
plethora of OP variants, including but not limited to variations with time windows,
multiple reward functions, time-dependent travel costs and rewards, etc. as well as
solution methods, which are surveyed in detail in [130, 60].

One aspect of the OP that makes it an interesting problem to study is that it
is NP-hard. This was proven in [59] by reducing the problem to the Generalized
TSP, which contains the TSP as a special case. Many exact solution methods take
the form of integer linear programs, which are usually formulated similarly to those
solving the TSP or VRP. In fact, it is common to use Miller-Tucker-Zemlin constraints
for eliminating subtours [92] on each of these problems, as they are both efficient and
easy to implement [43]. In [53], the authors solved the OP using a branch-and-cut
algorithm, where they introduce a several families of inequalities and families of cuts
that work to find the optimal solution relatively quickly. The downside of using
exact solvers for the OP is that they require run time exponential in the size of the



CHAPTER 2. RELATED WORK 13

Figure 2.4: An example of a OP on the same graph as in Figure 2.3. Each city has
a reward value of 1, with the start and end vertex set to the same city. Here, the
budget is limited and thus the tour can only visit a subset of the available 25 cities.

problem. Thus, the crux of these OP solvers is the algorithmic complexity, which
limits practical problem sizes to graphs with less than 1000 vertices.

The inherent complexity of the OP means that exact solution methods are not
ideal for solving large problems. Thus, approximation algorithms are important in the
development of practical solution methods. In [22], the authors show that the OP is
also APX-hard, meaning that there is a constant factor c > 1 such that approximating
the OP to within c is also NP-hard. The authors presented a 4-approximation algo-
rithm for the rooted version, however that was quickly improved to a 3-approximation
in [10]. Currently, the best known approximation algorithm for the rooted OP gives
a (2 + ε)-approximation solution with a run time of nO(1/ε2), where n is the number
of vertices [36]. There exists a (1 + ε)-approximation scheme for the specific case
of fully connected planar graphs [37], however this special criteria makes the scope
of applicability limited and not useful for the purposes of this work. The unrooted
version of the OP was shown to be related to the k-TSP in [7], thus allowing the
use numerous approximation schemes for both problems. In [56], a 3-approximation
algorithm with polylogarithmic run time was presented. This was later improved to
a (2 + ε)-approximation in [36]. Accordingly, approximation algorithms for the OP
are useful for obtaining solutions quicker than using exact methods on moderately
sized problems.
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2.2.3 Heuristics for the OP

While exact and approximate solution methods for the OP exist, using them takes
lots of time. This is due to the hardness of the problem causing intractable growth in
the solution space, meaning that solving a single large instance or multiple instances
takes lots of computational power. Because of this, numerous heuristic algorithms
with low time-complexity have been proposed in literature which provide very good
solutions at the expense of no guarantees for bounded results.

General purpose heuristics (that is, heuristics that work on a variety of OPs with-
out special requirements) often rely on assumptions made about the metric space
to inform the search process. One example is the Center-of-Gravity heuristic pre-
sented in [59], which assumes euclidean distances between vertices. This can be
useful when graphs are fully connected and lack other types of structure, however it
ignores the possibility of obstacles or edges who’s lengths are not equal to the dis-
tance between the two surrounding vertices. This makes using heuristics with these
types of assumptions difficult for real-life problems unless the problems are simplified
to fit those assumptions. Other general purpose heuristics instead rely on iterative
or Monte Carlo methods to find good solutions, but suffer from having too many
parameters that greatly effect results and run time. The Four-Phase Heuristic in
[101] is one such algorithm, which takes 5 parameters, modifying things like when
phases are activated or when stopping criteria is reached, with varying effectiveness
on the end solution and processing time. Typically, good results require more itera-
tions and stricter stopping criteria, leading to long run times. Another well known
heuristic which may need a large number of iterations is the S-algorithm [126]. This
is due to the stochastic nature of the algorithm, where routes are created by inserting
vertices using a weighted random sample according to reward-over-distance measure-
ment. The more random routes are created, the more likely it is that one of them will
be optimal or close to it. However, like most other iterative approaches, the number
of iterations needed grows as the size of the problem grows. Thus, these heuristics
can stretch beyond the capabilities of exact and approximation schemes, but not too
much further (> 10, 000 vertices) due to lack of scalability.

In some domains, such as agriculture, OP graphs may contain tens of thousands of
vertices, and therefore general purpose heuristics with long run times are not useful.
Here, it is necessary to utilize domain-specific heuristics to obtain meaningful solu-
tions. This fact is highlighted in [121, 115], which show heuristic methods developed
to work on aisle graphs (also called Irrigation Graphs in the former) that will provide
quick solutions to problems with graphs containing upwards of 100, 000 vertices. In
practice, these domain-specific heuristics offer the best balance between reward col-
lection and computation time compared to other algorithms, however they come at
the expense of generality (they only work on aisle graphs) and do not provide any
sort of guarantees.
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2.3 The Team Orienteering Problem

One important variation of the OP is the Team Orienteering Problem (TOP),
which has wide applicability to many real-life environments. In the TOP, each agent
has a defined budget independent from the other agents and accrues cost from travers-
ing edges separately. Rewards are only collected once from each vertex, regardless of
how many agents visit it. The goal remains the same, to maximize the total collective
reward. As mentioned earlier, most variations of the OP are NP-hard and APX-hard,
including the TOP and its sub-variants. Therefore, this problem is at least as difficult
as the OP, and the complexity in number of possible routes grows even faster than
the OP because of the team of agents. As with the OP and other route optimization
problems, the TOP can be formulated as rooted or unrooted, but the rooted case is
more common as it is more practical for a team of agents - be they people, robots,
vehicles, etc - to all begin from a single base location. A formal definition of the TOP
is supplied in section 4.1.

2.3.1 TOP Solution Methods

Although the first work to mention the TOP by name was [34], the TOP was first
studied in [29], where it was called the Multiple Tour Maximum Collection Problem
and was shown to be NP-hard. Solving the TOP optimally requires methods similar
to those used for the single agent OP, as the OP is evidently a special case of the TOP.
Like before, exact solution methods commonly employ integer linear programming,
usually relying on the same Miller-Tucker-Zemlin constraints for eliminating subtours
[92], though these constraints are needed for each individual agent. One of the first
optimal solvers is given in [30], which adopts a set-partitioning formulation that uses
column generation and constrain branching to efficiently search for a solution. Here,
the version of the problem solved requires all agents to start and end at the same
vertex, but allows them to have different budgets. A Branch-and-Price algorithm is
given in [28] which also decoupled the depot vertex so the routes were allowed to
start and end at different vertices (though they had to be the same for every agent).
Both of these formulations were limited in the size of problems they could handle,
with the authors testing up to 100 and 102, respectively. A more recent approach
was developed in [76], which applied a branch-and-price technique to optimally solve
a number of previously non-optimized problems with up to 102 vertices. Around the
same time, [47] gave an integer linear program formulation with a number of variables
polynomial in the number of vertices which used a cutting planes technique to solve
the TOP, and were able to optimally solve a few more previously unsolved benchmark
problems with up to 100 vertices. However, some benchmarks for the TOP go up to
500 vertices [60]. Evidently, the TOP is much more difficult than the OP and optimal
solution methods are more limited in the size of problems they can solve.

Due to the intrinsic difficulty of the TOP, exact solvers suffer from runtime com-
plexity issues. Unfortunately, the same properties that make the TOP difficult to
solve exactly also make it difficult to approximate. After an extensive literature re-



CHAPTER 2. RELATED WORK 16

view, only one approximation scheme was found to exist. First proposed in [137] for
the TOP and later expanded to the Generalized TOP in [140], the authors consider
the case where each visitation of a vertex by agents subject to a submodular function,
such that more agents servicing a vertex provides diminishing returns. The algorithm

achieves a (1− (1/e)
1

2+ε )-approximation, where ε is a given constant 0 < ε ≤ 1. This
being the only known approximation scheme, the lack of available methods hints at
the intrinsic difficulty of efficiently planning multiple routes at once.

2.3.2 Heuristics for the TOP

Lacking quicker-than-optimal approximation algorithms for the TOP means that
much of the focus for obtaining good solutions comes in the domain of heuristics.
Plenty of heuristics have been developed for the TOP [130, 60], and most fit into
the category of general case heuristics, which are meant to be useful in many circum-
stances. Some are built upon randomization procedures, such as Simulated Annealing
[87] and Ant Colony Optimization [74], which build and modify tours by stochasti-
cally choosing the next vertex in a path and where the adjustments are made until
improvements are no longer seen. These techniques have the advantage of making
immediate improvements in the beginning but decay in advancement speed quickly.
Often times, they get stuck in a local optimum and fail to find better solutions. An-
other variety of heuristic used is the multi-phase meta-heuristic, which involves the
conjoining of multiple simple heuristics into a coherent procedure that evolves tours
iteratively. Techniques built upon this idea usually rely on the same set of heuristics
to construct and update agent paths, such as insert, remove, replace, 2-opt (k-opt),
and swap. Depending on the order in which these heuristics are performed and the
hyper-parameters used, different results are obtained. Guided Local Search (GLS) in
[128] falls into this category, as does Skewed Variable Neighborhood Search in [129],
and while they were designed to give good solutions quickly, they lack the scalability
required for large problem sizes and are rather inefficient. Overall, the TOP is well
studied and there are plenty of heuristics to choose from when it comes to the general
case TOP, however many of these are still limited in scalability.

It is worth mentioning that there are not many heuristic algorithms that are built
to solve the TOP in specific cases. Most work has been done on general algorithms
that will work on any graph, usually with the requirement of euclidean metric space,
but few on specialized types of graphs or graphs in different metric spaces. The
development of heuristics limited to unique cases has potential advantages, as they
can utilize extra information that is encoded implicitly in the graphs that would
otherwise be overlooked. This can result in solutions closer to optimum, quicker run
times on larger graphs, or both. Thus, it is necessary to explore these options instead
of relying on indistinct and potentially ineffectual general heuristics. One example
is a heuristic presented in [14], which is a learnheuristic that incorporates machine
learning to provide estimations of travel time between vertices on problems containing
up to 150 vertices. This is important because travel time is dependent on the order
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of visitation, as in this case drones need to follow defined laws of motion. There are
many instances like this where either motion constraints or problem size make solving
them impractical or impossible with more general methods.

2.3.3 Multi-Robot Coordination

When considering the TOP it is often necessary to consider interactions between
the robots as well. This is related to the multi-robot motion coordination problem,
where constraints limit the availability of vertices or paths between vertices to one
robot at a time. A typical approach to handling this type of constraint is to use
a space/time composition to resolve conflicts and schedule robots such that they
do not interfere along shared routes [97]. In fact, multi-robot path planning with
coordination constraints has been proven to be NP-complete even on planar graphs
by [141]. Additionally, in [9] it was shown that two-dimensional grid graphs, which are
a common form of discretization in motion planning problems, retain NP-hardness.
There exists, however, some exact and heuristic methods solving this problem. [142]
gave an optimal solution method based on integer linear programming and was able
to provide additional heuristics to improve the computational performance of this
method while giving up only a small amount of optimality loss. Still, the intractability
of this type of problem means that it remains tough to solve, and incorporating multi-
robot coordination to the TOP is equally difficult.

2.4 Multi-Objective Orienteering

Often times, the (T)OP is not sufficient to plan for all the requirements of the
system. In many cases, a more appropriate representation of the problem is the
Multi-Objective Orienteering Problem (MOOP), which needs to account for multiple
objective functions, typically as a set of extra rewards or costs defined for each ver-
tex/edge. A subset of the MOOP is the Bi-Objective Orienteering Problem (BOOP),
which restricts the number of objective functions to two, or one additional reward
function. In this context, an objective function is taken to mean a function which is
maximized or minimized. Therefore, the BOOP formalizes a problem where an agent
must compute a route that collects two separate rewards and maximize both. The
BOOP is described in detail in [112], and is shown to be NP-hard as an extension of
the classic OP. A more formal definition for the BOOP is given in section 5.1.

2.4.1 MOOP Solution Methods

Multi-objective combinatorial optimization problems have been studied for a long
time. Discussion has centered on creation of a Pareto frontier, which defines the
boundary set that obtains maximum values for each objective when making accept-
able trade-offs [93]. Such a set is necessary, as there is often no unique solution to a
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multi-objective problem that fits all criteria. For example, in a two objective prob-
lem, maximizing for one objective only may not generate sufficiently large values for
the other objective. Instead, a Pareto frontier is used to explore the space between
both objectives. Because a large portion of the solution space must be explored to
return a Pareto frontier, multi-objective combinatorial optimization problems are in
general more difficult to solve than their single objective counterparts. In order to
produce a Pareto optimal solution within reasonable time, similar but different tech-
niques are used than in single-objective solvers. For example, [98] uses a generalized
branch-and-bound framework that makes comparisons of bound sets instead of nu-
merical values, allowing for the selection of Pareto sets at each iteration, in order to
solve bi-objective integer programming problems. The authors also apply this algo-
rithm to the bi-objective TOP with time windows, and show it is effective at solving
orienteering-type multi-objective problems quicker than other methods. However, be-
ing integer program based, this method is limited to relatively small problem sizes.
Some work has been done in the bi-objective optimization domain regarding approx-
imation schemes, though it is sparse. [52] is one of the few found after a thorough
literature review of the subject. In it, the authors give two approximation methods
which generate ε-approximation efficient sets of the Pareto frontiers by solving lexi-
cographic subproblems at each iteration with ε-constraints. These methods are based
on modifications to two different types of solvers, one exact algorithm for bi-objective
combinatorial optimization problems and one approximation algorithm. They then
compare results using a bi-objective version of the TSP with profits.

2.4.2 MOOP Heuristic Methods

There are plenty of heuristic methods developed for the MOOP and BOOP, mostly
as modifications to existing OP heuristic solvers. Commonly used methods are meta
heuristics of various types, including local and variable neighborhood search algo-
rithms, evolutionary algorithms, and ant/bee colony algorithms. Often times, the
motivation for developing these heuristics is for specific applications, such as tourism
or work scheduling, and many design choices made reflect this.

Variable neighborhood search methods are one of the more common types of
heuristics used. One of the algorithms described in [112] is of this type (solving the
BOOP), and integrates a path relinking procedure that combines previously found
solutions to create additional efficient solutions and develop a Pareto frontier. In
[48], the TOP is solved with soft constraints, where agents are allowed to violate
their budget but with an incurred penalty. Here, a biased-randomized search is used,
where the search space is directed non-uniformly toward new solutions, turning the
deterministic variable neighborhood search into a probabilistic approach. Another
method, using the greedy randomized adaptive search procedure with iterative local
search, is given in [104] that solves the BOOP with an additional budget constraint.
This problem assumes each vertex has a fee associated to it, and the total fees from
vertices visited must not violate the extra budget, which makes for an interesting and
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unique problem. Finally, a BOOP with time windows is solved in [90], giving a set of
non-dominated solutions much like a Pareto set which is used as a starting point at
each iteration to thoroughly explore the Pareto frontier.

Another type of approach used frequently in VRP and OP heuristics is the evo-
lutionary algorithm. There is no exception for the multi-objective variants. For
example, [26] uses a dynamic evolutionary method for the team VRP that generates
a proportionally distributed set of routes with relatively equitable lengths and num-
bers of visited vertices, all while collecting multiple objectives. The same group of
authors also contributed [25] solving an online version of the bi-objective VRP, where
new vertices are randomly added to the problem as the vehicle traverses its route.
The algorithm used here is similar to that used in their multi-objective approach.
Regarding orienteering, [15] introduced a hybrid approach for the team MOOP that
combines local search strategies with evolutionary path crossover and mutation pro-
cedures to generate efficient solutions in a Pareto set. Another approach, this time
for the team MOOP with time windows, was given in [66] which combined constraint
programming and an evolutionary algorithm with decomposition to generate many
objective vectors that are combined to produce better solutions.

Cousins of the evolutionary algorithm, the artificial ant colony and bee colony
approaches also have widespread use in MOOP and BOOP heuristics. The other
algorithm described in [112] is of the ant colony type, and makes use of the same
path relinking procedure within the ant colony to develop the Pareto frontier. [38]
uses ant colony optimization to generate solutions for the MOOP with time windows.
It does this by decomposing the problem into single-objective sub-problems using
scalar weighting, and allowing the ant colony to find efficient paths for each weight
to create a set of usable solutions. [91] introduces two approaches to obtain solutions
for the time-dependent MOOP, one an ant colony approach using insertion-based
local search for generating new paths, and the other a memetic approach (a type of
evolutionary heuristic). Lastly, an artificial bee colony algorithm was given in [89],
which was designed for the BOOP. It uses agents or “bees” with different jobs to
conduct a form of swarm intelligence and find non-dominated Pareto solutions to
the problem. Overall, these insect inspired algorithms provide unique and capable
solutions to multi-objective vehicle routing problems such as the MOOP and BOOP.

2.5 Constrained Markov Decision Processes

One common problem with standard route optimization problems is that they
only consider the case where outcomes are deterministic. For example, Dijkstra’s
Algorithm [44] can find the shortest path between vertices in a graph, however each
edge is assumed to have a deterministic length. If that assumption is removed, then
the optimal solution is no longer a path but a policy that dictates what route to take
based on previously incurred costs. Accordingly, real world environments contain
elements of randomness that are impossible to account for in route planners that
only find solutions to deterministic problems. When accounting for stochasticity in
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route planning, the Markov Decision Process (MDP) is a useful tool. The MDP
provides a model and decision making framework for handling problems where an
agent must account for randomness in outcomes when presented with a set of choices.

2.5.1 MDPs and Extensions

One of the first discussions on MDPs as they are currently know was in [16]. The
MDP derives its name from and is an extension of Markov Chains. In addition to
states and uncertain transitions between states, MDPs also contain rewards for arriv-
ing at states and actions an agent can take to influence transitions to future states.
The goal of an MDP is to find a policy, or action for each state, that influences state
transitions such that the overall reward is maximized. [16] introduced what is now
called Value Iteration as a solution method that converges to the optimal policy. This
is a dynamic programming method that iteratively updates the value function of tak-
ing each action in every state until the value no longer changes (or reaches a suitable
stopping criteria). Then, a policy is derived from the value function. [65] proposed
a slightly different but still optimal method called Policy Iteration, which instead
derives a policy at each iteration and is updated until there are no more changes to
the policy. Both of these are dynamic programming solutions to MDPs which must
at each iteration sweep over the entire state space and perform calculations for every
action in each state. Because of this, MDPs are said to suffer from the “curse of
dimensionality” which tends to make large problems computationally intractable due
to the volume of states and actions that need to be explored. This difficulty exists
in linear programming methods for solving MDPs as well. In fact, evidence points to
dynamic programming methods being more computationally efficient than linear pro-
gramming [79]. Therefore, Value Iteration and Policy Iteration are still the dominate
choices when it comes to finding optimal policies.

MDPs are well suited to decision making problems with discrete stochastic control.
However some common extensions allow the framework to be more applicable to a
broader class of problems. One of the most useful extentions is the Constrained MDP
(CMDP). CMDPs contain everything MDPs have, but additionally have objective
(cost) functions that give extra costs for visiting a state or taking an action. A
given policy is required to meet defined bounds on the extra objective functions
to be valid. Thus, the optimal policy for a typical CMDP is one that maximizes
the reward function while obeying the bounds on each additional cost function. In
depth information on CMDPs can be found in the definitive source [4]. The CMDP
has been researched nearly as long as the ordinary MDP, and one of the first to
present a solution method was [42], which provided a linear programming approach
that uses occupation measures of each state/action pair as decision variables. This
approach has been extended numerous times, and its most commonly used forms
are the expected average cost for finite and infinite CMDPs [4]. In these forms,
the computed policy maximizes the reward function and keeps the cost functions
bounded to the given constraints in expectation. Another well known method to
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computing a CMDP policy is the Lagrangian approach. This was introduced by [21]
and shown to produce an optimal policy for the average cost case finite state space
form in [113]. The disadvantage to the Lagrangian approach is that that it does not
intuitively extend beyond a single constraint, however it has been studied (see [5]
for an example). There are interesting variations on CMDPs that use different types
of constraint criteria. For example, [73] develops a Variance-Constrained MDP that
aims to bound the variance of the reward function for the resulting policy. In [24],
the Risk-Constrained MDP was developed to bound the Conditional Value-at-Risk
of the optimized function using tail values of probability.

Regardless of the type of constraint criteria used, finding policies on CMDPs
with large problem sizes is still a computationally expensive task, with many prac-
tical problems being intractable. Therefore, heuristic and learning methods are very
popular. [84] applied the technique of Monte Carlo Tree Search to solve very large
CMDPs based on a multi-objective variant of the Atari game Pong. Monte Carlo Tree
Search is advantageous because it allows for rapid exploration of the state space while
also exploiting previously found good policies. The authors take it a step further and
combine this with the UCT algorithm [78] to create a cost constrained version that
converges to the optimal stochastic action. Another use of the Monte Carlo Tree
Search technique is presented in [8], where the authors use it to find policies for the
Chance-Constrained MDP, and showed its capability to find policies for extremely
large state spaces (1013) in only a few minutes. Despite the success of randomized
searches for CMDPs, more principled approaches to solving large problem instances
are still desirable. One in particular is given in [51], which clusters the state space into
“macro states” to create a hierarchical CMDP. Each macro state has its own policy
generated under specific conditions, and the policies are merged together to create
a single policy for the entire state space. This has the advantage of splitting large
CMDPs into smaller problems which are easier to solve and take less computation
time.

2.5.2 Problems Solved using CMDPs

CMDPs are useful for tackling a myriad of different problems, despite being com-
putationally limited in the size of state space that can be considered. Because policies
are designed to allow agents some level of autonomous control, CMDPs have found
widespread adoption in robotics with safety or performance constraints. For example,
[33] presents the the Rapid Multirobot Deployment problem, in which a set of robots
is tasks with reaching multiple goals within a pre-assigned time limit. Safety of the
robots is also considered, and thus a CMDP is used to minimize robot risk while
constraining the amount of time needed to perform the task. This problem was later
extended to a stochastic version in [40] with a robotic swarm whose objective is to
position at least one robot at each target site, under the assumption that some robots
may fail. [106] discusses a similar problem where a team of robots needs to attain a
set of goals while obeying multiple types of constraints. This is formulated as a type
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of VRP which is solved using a CMDP policy to control which robots perform certain
tasks and how to coordinate tasks so that they do not violate constraints. Another
use of CMDPs for robotic teams is shown in [77], where multiple solar powered UAVs
are used as access points in a wireless network. A CMDP is evaluated in the con-
text of network dynamics using Deep Reinforcement Learning to create a policy that
maximizes long term network capacity while preserving energy sustainability of the
UAVs. Along similar lines but without autonomous vehicles, [139] uses a CMDP to
formulate a device to device communication mode selection problem. A cellular user
requires a minimum data rate while the network must enforce a peer to peer deadline
constraint. The authors find policy that optimally controls network modes using the
Lagrangian technique for CMDPs. The problem of risk mitigation for driverless cars
has also been studied, using Chance-Constrained Partial Observable MDPs in [67].
Here the authors use a specialized forward search heuristic called RAO* [108] com-
bined with continuous maneuver modeling using probabilistic flow tubes to remove
the limitations of discrete state and action spaces when creating policies. The RAO*
algorithm creates a search tree in belief space prunes risky behaviors to keep the
search reasonable. This is in contrast to how a Monte Carlo Search Tree on the same
problem type [85] typically behaves. Finally, Multi-Objective planners have also been
developed which utilize CMDPs to model very complex problems, as evidenced by
[50] which uses Linear Temporal Logic to semantically determine and complete mul-
tiple subgoals within satisfaction probabilities. Overall, constrained formed of MDPs
have proven extremely useful for multiple types of problems and they clearly have an
important place in any planning toolbox.

2.6 The Stochastic Orienteering Problem

The OP, as it is usually studied, is a deterministic problem. However, many real
world situations that are useful to model as OPs are, in fact, stochastic in nature.
For instance, one might consider a tourist visiting different attractions of a city in
a day. The time they have is limited and they want to visit some attractions more
than others, so they need to optimize their route to get the most enjoyment out
of their day. However, travel time between attractions is stochastic due to traffic,
time to experience each attraction is stochastic due to lines and sojourn duration,
and the reward for visiting attractions is stochastic because the tourist may enjoy it
more or less than expected. To effectively model this type of scenario requires the
scrutiny of the problem with randomness considered. Thus the Stochastic OP (SOP)
is conceived. A formal definition for the SOP, as well as its chance constrained sibling,
is given in section 6.1.

2.6.1 Solution approaches for the SOP

While the OP has been studied for a long time and significant research has been
devoted to it, the SOP is much less well studied. First introduced in [31], the authors
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examined the case with uncertainty in both the cost to traverse an edge (stochastic
travel time) and the cost to visit a vertex (stochastic service time). The solutions
they presented were either heuristics for the general case or exact algorithms that are
only applicable to certain types of graph topologies. Unfortunately, the SOP is very
difficult to solve and designing algorithms to solve the general case problem exactly
has proven elusive. Like its parent problem, the OP, the SOP is NP-hard and APX-
hard. The first approximation methods designed for some versions of the problem
were given in [61]. For the case of stochastic travel and service times, the authors give
two types of approximation algorithms, one for adaptive (policy driven) solutions and
one for non-adaptive solutions. They show the existence of an adaptivity gap, with
the non-adaptive solution obtaining at least Ω(1/ log logB) of the optimal adaptive
reward, where B is the budget of the given problem, with the adaptive approach
obtaining aO(log logB)-approximation. Also shown is a non-adaptiveO(log n logB)-
approximation, with n as the number of vertices, for the version of the problem
where vertex rewards are stochastic as well. In [62] the same authors extended their
approaches to directed graphs but were not able to improve on the metrics. However,
the related literature [11] was able to improve on the adaptivity gap, proving a lower
bound of Ω(

√
log logB). This bound improves on the approximation bound provided

earlier, but the authors were not able to present an algorithm that achieves it.
Like with the OP, heuristic methods are useful when quick solutions are required

or when problem sizes make the use of approximation algorithms intractable. As
mentioned earlier, [31] gave a heuristic for the SOP that is a modification to the
popular Variable Neighborhood Search algorithm for the deterministic OP. The mod-
ification takes in a function that determines the overall cost of a computed route by
summing the arrival time distributions for each vertex to obtain a single distribution
and then uses the mean of that as the total cost. [49] presents two solutions to the
SOP, one method solving a sample average approximation version with mixed inte-
ger programming, and one method using heuristics. The mixed integer programming
method only works for small instances, and requires optimizing for a tour and the
amount of reward not collected, which they call recourse, by the tour. The heuristic
technique constructs stochastically a number of solutions using a score measure based
on reward recourse and estimated edge costs, then improves on the solutions with a
few local search techniques and chooses the best route as a solution. These heuristics
are not adaptive, however, so routes produced do not change to maximize rewards as
the path realizes costs different from those that were estimated. [45] presents three
heuristics, one that is not adaptive and two that are. The adaptive ones differ in that
one updates the edge costs to realized costs online, while the other determines a dy-
namic policy beforehand. The advantage of these methods is shown in the difference
of reward for each level of adaptivity.
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2.6.2 The SOP with Chance Constraints

One aspect of stochastic problems that is often over-looked when solving the SOP
is the chance of failure. The solution methods presented earlier all seek to maximize
the expected reward gathered for the computed path or policy, however none consider
the risk associated with the given solution. These solutions usually have an expected
failure rate of approximately 50%, and therefore should be considered risky, especially
for real world problems where failure can be catastrophic. This is why the SOP with
Chance Constraints (SOPCC) was created, to solve real world problems while also
mitigating risk.

One of the first works to study the SOPCC was [83], which looked at a chance
constrained version of the Dynamic SOP, a generalization of the SOPCC where edge
costs vary across time. The authors formulate a few ways to approximate the com-
pletion probability of an individual path and use these techniques to develop a local
search heuristic algorithm that incorporates the completion probability as part of the
utility metric. In [131] a mixed integer linear program is given which solves the prob-
lem using a sample average approximation and linearizing the constraint. This gives a
decent deterministic approximation for the solution to a SOPCC however the results
do not have an approximation bound. The sum of work from [83] and [131] resulted
in [132], which was able to extend the mixed integer linear program with sample av-
erage approximation to the Dynamic SOPCC and compare the performance with the
local search heuristic on problems up to 63 vertices and 40 samples in size. Another
variation on the SOPCC was studied in [71], called the Team Surviving Orienteers
Problem, which considered edges to have survival probabilities instead of costs. A
team of agents is deployed to collect maximum reward while ensuring that at least one
agent survives within a probability constraint. The authors gave a greedy algorithm
with an approximation guarantee within a factor 1 − e−ps/λ of the optimum, where
ps is the per-robot probability of survival, and 1/λ ≤ 1 is an approximation factor
of an oracle routine for the OP. Unfortunately, the SOPCC is a rather sparsely stud-
ied problem and a thorough literature review did not reveal many more interesting
variants or solution methods.



Chapter 3

Single Robot Orienteering in
Vineyards

In this chapter, the concept of orienteering in vineyards is discussed and heuristic
algorithms are developed to solve these types of problems. The work shown here was
originally presented in [121].

3.1 OP Background

In this section, the OP is formulated and two solution methods for the general
case problem are given, one based on integer linear programming and one randomized
heuristic method, which are later used as benchmarks for performance comparison.

3.1.1 Problem Definition

For simplicity and completeness, we first define a path. Let G = (V,E) be an
undirected graph containing a set of vertices v ∈ V and a set of edges e ∈ E connecting
the vertices. The edge ei,j = E(vi, vj) connects vertex vi to vj, and there is only one
such edge that does so (if more than one edge exists for this junction, the edge with
higher cost can safely be discarded). A path P in G is an ordered set of vertices that
are connected sequentially by valid edges. The path starts at some vertex and visits a
number of vertices until reaching the last in the set, P(i) ∈ V where 1 ≤ i ≤ |P|. This
also implies a specific set of edges which the path traverses, where the edge connecting
P(i) with the next vertex in the sequence is denoted as Pe(i) = E(P(i),P(i+ 1)).

The OP, discussed in section 2.2, will now be described in detail. A reward function
r : V → R≥0 associates each vertex vi ∈ V in G with a reward ri = R(vi), and a
cost function c : E → R≥0 associates each edge ei,j ∈ E in G with a deterministic
cost ci,j = C(ei,j) = C(vi, vj). Given are a start vertex vs ∈ V , a goal vertex vg ∈ V ,
and a budget B ∈ R≥0. The OP asks to find a path P that starts at vs and ends at
vg, which maximizes the sum of collected rewards and has a cumulative cost no more
than B. The reward of the path R(P) is the sum of rewards for all uniquely visited
vertices. That is, each vertex visited by the path can contribute its reward only once.
This is important in problems where G is not fully connected, as it is possible to
build paths on G that necessarily visit some vertices more than once. The cost of the
path C(P) is the sum of costs for all traversed edges, where an edge traversed more
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than once is counted each time. Again, this is important in cases where G is not fully
connected.

The version of the problem described here specifies both the starting vertex vs and
the goal vertex vg, and thus is the rooted OP. In many circumstances, vs and vg are
coincident such that the resulting path P begins and ends at the same place. This is
usually called a “tour” in literature. In the following, the term “tour” refers to any
path in G where vs = vg and the term “path” refers to any path in G including tours.
Regardless of the type of path specified, the OP remains NP-hard [59]. Moreover,
without loss of generality, it can be assumed that the graph G is complete. If this
is not the case, additional edges can be supplied with cost equal to shortest path
between the vertices they connect.

3.1.2 Linear Programming Formulation

As mentioned earlier the OP can be formulated as an integer linear program which
can then be solved to produce an optimal solution. Here, one version of this formu-
lation derived from [130] is shown and will later be used as a benchmark comparison
method. The notation from above is used and extended. There are two types of
decision variables used, xi,j describing the inclusion of edge ei,j in the path (1 if it is
included in P and 0 otherwise), and ui describing the position of vertex vi in P such
that P(ui − 1) = vi.

max
∑
vi∈V

∑
vj∈V

rjxi,j (3.1)

s.t.
∑
vi∈V

∑
vj∈V

ci,jxi,j ≤ B (3.2)

∑
vi∈V

xi,k =
∑
vj∈V

xk,j ≤ 1 ∀vk ∈ V (3.3)

2 ≤ ui ≤ |V | ∀vi ∈ V \{vs} (3.4)

ui − uj + 1 ≤ (|V | − 1)(1− xi,j) ∀vi, vj ∈ V \{vs} (3.5)∑
vj∈V \{vs}

xvs,j =
∑

vi∈V \{vg}

xi,vg = 1 (3.6)

The linear program can be understood as follows: Equation 3.1 is the objective
function, stating that the total reward for each vertex in the path is maximized. Equa-
tion 3.2 is the budget constraint, enforcing the sum of costs for all edges in the path
to be less than B. The constraint in Equation 3.3 requires that each edge be in the
path no more than once (note that when G is a complete graph, an optimal solution
path will not need to traverse any edge multiple times). The constraints Equation 3.4
and Equation 3.5 are the Miller-Tucker-Zemlin subtour elimination constraints [92]
ensuring a single continuous path. Lastly, Equation 3.6 requires the path start at vs
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and end at vg. In problems where vs and vg are not specified (a.k.a. unrooted ori-
enteering), this constraint can be safely disregarded. After the return of the integer
linear program solver, the path is extracted from the inclusion of edges given by xi,j
with the sequence of vertices specified by ui.

3.1.3 S-Algorithm Heuristic

One of the most effective and commonly used general purpose heuristics solving
the OP is the S-Algorithm [126]. The S-Algorithm is a stochastic method that uses
a Monte Carlo approach to finding a good solution for the OP. A number of paths
respecting the budget are generated very quickly, and of them the one with the highest
reward is returned as the solution. The algorithm builds each path iteratively, starting
from vs and adding new vertices until there is no more residual budget beyond the
amount needed to go to vg. Assuming the last vertex added to the path is P(i), the
next vertex is chosen randomly from V \P using a weighted distribution according to
a “desirability” metric. Desirability is defined as

A(vj) =

{
rj + α[B − C(P)− C(P(i), vj)− C(P(i), vg)] · n(vj)

C(P(i), vj)

}p
(3.7)

where C(P(i), v) is the cost of traveling from the i-th vertex in P to v, α is a weight
factor parameter, p is a power factor parameter, and n(vj) is a “nearness” measure

defined by n(vj) =
∑

v∈V
r(v)

C(v,vj)
. In essence, A(j) returns large values for vertices

with high reward that are near to the current vertex and would leave more residual
budget if included in the path. The probability that vj is the next vertex included in
the path is calculated as

Pr(vj|P) =
A(vj)∑

v∈V \P A(v)
(3.8)

Vertices that have higher desirability are therefore more likely to be included as the
next vertex in P . Once the residual budget is too small to include any additional
vertices besides the goal vertex, vg is included in P and the path terminates.

The reward performance of the S-Algorithm varies depending on the values for
each parameter. The most critical of these parameters is the number of different paths
generated, as a greater number means a greater likelihood of finding the optimal path.
The algorithmic performance of the S-Algorithm is also dependent on the number of
different paths generated, as well as the number of vertices in G, and the number of
vertices added to each path. The number of vertices in each path is a random number,
and it is difficult to determine an expected value for this number using formal analysis.
The computational complexity can be written as O(n · |V |2l), where n is the number
of Monte Carlo trials (paths) and l is the number of iterations until the budget B is
fully spent for each trial.
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3.2 Orienteering on Aisle Graphs

While the general case of the OP is known to be difficult to solve, little work has
been done determining the hardness of the OP in nonstandard graphs. It may be
possible, through clever organization constructing the nodes and edges of a graph,
that the OP on a particular graph is trivial or easy to compute. Therefore, it is
necessary to prove that any constructed graph on which the OP will be applied does
not make the problem impalpable. This section considers graphs resembling the
structural layout of vineyards called Aisle Graphs (AGs, also called Irrigation Graphs
in [121]).

3.2.1 Bipartite Planar Graphs of Degree 3

First, Bipartite Planar Graphs of Degree 3 must be defined before AGs can be
discussed. A graph G = (V,E) is said to be BP3 if it is bipartite, planar, and has
degree of at most 3. Bipartite means that the graph can be divided into two disjoint
sets of vertices A ⊂ V and B ⊂ V such that all edges connect vertices in A with
vertices in B. Planar means that the graph can be drawn on a 2-dimensional surface
in such a way that none of the edges intersect, and are only allowed to for junctions
at vertices. A graph will have a degree of at most 3 when there does not exist any
vertex in the graph with more than 3 edges connected to it. On BP3 graphs, the
Hamilton Circuit problem, which asks to build a tour that goes through each vertex
exactly once, has been proven to be NP-complete [70]. The Hamilton Circuit problem
can be reduced to the decision TSP, which asks if there exists a tour of cost no more
than a given budget B, by making all edge costs 1 and setting B = |V |. Only if there
exists a Hamilton Circuit can the answer to the decision TSP be yes, and therefore
the TSP on BP3 must also be NP-complete.

The OP requires cost and reward functions over the graph to be defined, and the
definition given earlier is used. The Constant Cost OP is a similar to the ordinary
OP except all edges share the same cost (often a unit value of 1). The Constant Cost
BP3 OP (CCBP3OP) is similarly defined, where C(e) = k for every edge e ∈ E and
k is a constant. Then, the objective of the CCBP3OP is find a path of cost at most
B from vs to vg that maximizes the sum collected rewards. Theorem Theorem 3.2.1,
taken from [121], establishes that this problem is NP-hard. Because the constant
cost version is NP-hard, so is the unconstrained cost variant, OP on BP3 Problem
(BP3OP).

Theorem 3.2.1. The CCB3OP is NP-hard.

Proof. Let G = (V,E), C, B be an instance of the decision TSP on a BP3 graph, and
make all costs natural numbers such that for all e ∈ E, C(e) → N. Then, a graph
G′ = (V ′, E ′) = G with a reward function R(v) = 1∀v ∈ V , edges e = (vi, vj) ∈ E
with a cost function C(e) > 0 can be augmented with p− 1 vertices having rewards
of R(v) = 0 inserted into V ′ and p edges between vi and vj with costs C(e) = 1,
and a total cost B. This graph is planar with a maximum degree of 3, and can
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Figure 3.1: The construction of a BP3 from a planar graph of degree 3.

be easily changed to bipartite by introducing a new vertex with 0 reward and two
new edges around it with 0 cost in any area of the graph that violates criteria for
a bipartite graph, therefore fulfilling all BP3 requirements (see Figure 3.1 for this
transformation). The solution to the CCBP3OP will be equal to B only if the answer
to the decision TSP problem on the same graph is yes, and therefore the problem is
NP-hard as well.

3.2.2 Aisle Graphs

Expanding on BP3 graphs, AGs, which are applicable to vineyards, can be de-
scribed. These are designed to capture the motion constraints of vineyards and other
arrangements of aisles such as warehouses. In particular, vineyards have predefined
areas which any vehicle traversing them must use as roads. In a graph representation,
these are the edges. There are two types, the inner edges which cross through the
vineyard and are arranged in an aisle-like row structure (hence the name), and the
outer edges which connect adjacent rows on both ends. Along each row are stopping
points which become the vertices of the graph, connected to other stopping points by
an edge on both sides. If the point is located on the outside of the row, the vertex
serves as a junction between two outer edges and a single inner edge. Thus this type
of arrangement builds a BP3 graph.

Now an AG can be defined using the following set of rules. They are BP3 graphs
written as AG(w, l) = (V,E), where w is the number of rows or width of the aisle
structure and l is the number of points/vertices in each row or its length. Each vertex
is given as vi,j ∈ V where 1 ≤ i ≤ w and 1 ≤ j ≤ l, and the set of edges E follows a
number of rules:

• Each vertex vi,j where 1 < j < l has exactly 2 edges, joined to vi,j−1 and vi,j+1

• Each vertex vi,1 where 1 < i < w has exactly 3 edges, joined to vi−1,1, vi+1,1,
and vi,2
• Each vertex vi,n where 1 < i < w has exactly 3 edges, joined to vi−1,n, vi+1,n,

and vi,n−1

• One edge connects v1,1 and v2,1
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Figure 3.2: The Grid-like structure of the AG. Note the only edges that connect rows
to each other exist on the outskirts of the graph.

• One edge connects vw,1 and vw−1,1

• One edge connects v1,l and v2,l

• One edge connects vw,l and vw−1,l

An example of the structure of an AG is shown in Figure 3.2. As a graph, it is
conceivable to extend the description to include costs and rewards. The cost function
C gives positive, real cost to each edge such that c : E → R≥0 and the reward function
R gives positive, real cost to each vertex such that r : V → R≥0. With this extension,
it is possible to define two special versions of the OP on AGs:

Constant Cost Aisle Graph Orienteering Problem (CCAGOP):
Given a graph G(V,E) = AG(w, l) with constant cost function C(e) = k;
∀e ∈ E and reward function R, vertices within the graph vs, vg ∈ V , and
a constant B, find a path P ⊂ V with cost no more than B that begins
at vs and ends at vg which maximizes the cumulative reward of visited
vertices.

Aisle Graph Orienteering Problem (AGOP): Given a graphG(V,E) =
AG(w, l) with cost function C and reward function R, vertices within the
graph vs, vg ∈ V , and a constant B, find a path P ⊂ V with cost no more
than B that begins at vs and ends at vg which maximizes the cumulative
reward of visited vertices.

These versions of the OP are both NP-hard, as they are special cases of the
CCBP3OP and the BP3OP, respectively. Note that in the former [121], these were
named the Irrigation Graph Constant Cost OP and the Irrigation Graph Orienteering
Problem, however the names are changed here to reflect their applicability to more
diverse situations (see [115]).
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3.3 AGOP Heuristic Algorithms

Heuristics are meant to accelerate computation of an answer to a problem without
sacrificing too much optimality. However, most general case heuristics for the OP were
not designed to handle graphs with many thousands of vertices. Since an AG based
on a real-life vineyard may be such a graph, heuristics that can handle this size are
necessary. For the following algorithms, the start and goal vertices are the same and
the path produced is a tour. Both of the algorithms are taken directly from [121].

3.3.1 Greedy Row

The Greedy Row (GR) Heuristic was designed to take advantage of the fact that
AGs are neatly divided into rows. The algorithm greedily selects a subset of rows to
be traversed as part of the tour using a computed heuristic based on the potential
reward to collect and the amount of budget collecting it would use. As a tour is
computed, the algorithm tracks the remaining budget to ensure enough remains for
travel to the goal vertex from the current position. The pseudo-code for the GR
heuristic algorithm is given in Algorithm 3.1.

Algorithm 3.1 Greedy Row Heuristic

Input: AG(w, l), R, C, B, vs, vg
Output: P
1: P = {vs}
2: for i← 1 to w: Ri ←

∑l
j=1R(i, j)

3: for i← 1 to w: feasiblei ← True
4: while any(feasible) = True do
5: for i← 1 to w do
6: if feasible(i,P) 6= True then
7: feasiblei ← False
8: for all feasiblei do
9: R′i ← Ri/C(P(end), i)

10: best← arg maxR′i
11: to P append path from P(end) to best row
12: append all vertices in best row to P
13: feasiblebest ← False
14: to P append path from P(end) to vg
15: return P

GR works as follows. First, the tour P is initialized (line 1). Next, the total
reward for each row ri is computed by summing the rewards for all vertices in that
row (line 2). Then every row is marked as feasible, which means that the row has not
yet been visited and that there is enough budget to travel from the current vertex
P(end), to and through the row, and to the goal vertex (line 3). A loop is entered
where the tour is built (line 4). Each row is checked for feasibility and marked if not
feasible (lines 5-7), and then the heuristic is computed for each row (lines 8-9). The
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heuristic is the cumulative reward collected for traversing a row divided by the cost
to travel to (up or down the outer edges from P(end)) and across (through the aisle)
the row. Then, the row with the highest heuristic value is chosen (line 10) and added
to the tour (lines 11-12). The feasibility for this row is then negated so that it will
not be considered in future iterations (line 13). This process continues until all rows
are marked as not feasible, and the path from the current vertex to the ending vertex
is added to the path (line 14).

Overall, this algorithm produces a tour that is guaranteed terminate at the goal
vertex because of the feasibility checks. Therefore, the tour produced is always valid,
beginning and ending at vs = vg and always has an overall cost of less than B. It will
terminate after at most B/l = k iterations of the main loop, due to the fact that the
tour cost will increase at least l units until there are no more feasible rows, and k ≤ w.
Each iteration of the loop has a complexity of O(w) since every row is examined.
giving the algorithm an overall complexity of O(wl + w2). On a square block where
w = l, the complexity becomes O(w2), meaning the algorithm is quadratic on the
number of rows in the graph or linear on the number of vertices |V |.

3.3.2 Greedy Partial-Row

Using rows as a basis for determining a robot path through an AG is a great
starting point for an algorithm because it takes advantage of the graph structure to
build efficient tours. The approach, however, lacks awareness of the fact that vertex
rewards can be highly localized. It is completely possible that some vertices in a row
have high reward values while others in the same row have low reward values. These
may be segregated or mixed depending on the characteristics of the problem being
solved. For instance, in vineyards each individual plant has unique requirements and
soil types can vary spatially. The Greedy Partial-Row (GPR) heuristic was designed
to account for this observation by allowing the construction of tours that have the
ability to partially traverse rows. The pseudo-code for this heuristic algorithm is
given in Algorithm 3.2.

GPR works as follows. First, the tour P is initialized (line 1). Next, the cumulative
reward for visiting each vertex is calculated and each vertex is marked as feasible
(lines 2-5). A vertex may be visited from the right side of the graph (starting from
vi,l), giving a cumulative reward R(i, j) =

∑l
n=j R(i, n), or from the left side of the

graph (starting from vi,1), giving a cumulative reward L(i, j) =
∑j

n=1R(i, n). Note
that the cumulative reward is the sum of reward values for all vertices in a row
leading to the vertex in question from the appropriate side. Then, the main loop of
the algorithm is entered, which runs until all vertices are marked not feasible (line 6).
For GPR, a feasible vertex is one that can be reached from the current vertex P(end)
with enough budget left over to return to vg, closing the tour. Inside the loop, the
first thing done is checking if any vertex is not feasible (lines 7-9). This must be
done because every iteration the budget changes. Next, heuristics R

′
i,j and L

′
i,j are

computed for all feasible vertices (lines 10-12). The heuristics are the cumulative



CHAPTER 3. SINGLE ROBOT ORIENTEERING IN VINEYARDS 33

Algorithm 3.2 Greedy Partial-Row Heuristic

Input: AG(w, l), R, C, B, vs, vg
Output: P
1: P = {vs}
2: for all vi,j ∈ V do

3: Ri,j ←
∑l

n=j R(i, n)

4: Li,j ←
∑j

n=1R(i, n)
5: feasiblei,j ← True
6: while any(feasible) = True do
7: for all vi,j ∈ V do
8: if feasible(i, j,P) 6= True then
9: feasiblei,j ← False

10: for all feasiblei,j do
11: R′i,j ← Ri,j/C(P(end), vi,j , vi,l)
12: L′i,j ← Li,j/C(P(end), vi,j , vi,1)
13: for i← 1 to w do
14: if feasible(i,P) 6= True then
15: feasiblei ← False
16: for all feasiblei do
17: R′i,1 ← Ri,1/C(P(end), vi,1)
18: L′i,l ← Ri,l/C(P(end), vi,l)
19: if P(end)j = l then
20: best← arg maxR′i,1, R

′
i,j

21: side = l
22: else
23: best← arg maxL′i,l, L

′
i,j

24: side = 1
25: to P append path from P(end) to best
26: if P(end)j 6= 1 or l then
27: to P append path from P(end) to vi,side
28: feasiblebest ← False
29: update R(i, j) and L(i, j) for i = besti
30: to P append path from P(end) to vg
31: return P
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reward for each vertex, divided by the cumulative cost to travel to them from either
side and then backtrack to exit the row out to the side it was entered from. This
is done because the distance between the outside vertex of a row and an inside one
is covered twice when a row is partially traversed. Feasibility and heuristic values
for full-rows are then calculated in the same manner described for the GR algorithm
(lines 16-18). Row heuristics are needed because their computation is fundamentally
different since there is no backtracking needed when traversing an entire row. Finally,
the loop checks which side of the vineyard the current vertex is on (line 19) and finds
the vertex or row with the maximum heuristic value for that side (lines 20 and 23).
If a vertex is chosen, the path to that vertex and back to the outside of the row is
added to the tour. If a row is chosen, the path to that row and across it to the other
side is added to the tour (lines 25-27). The feasibility for all vertices in the newly
included path is negated so that these vertices are not considered in future iterations
of the loop, and cumulative costs are updated as well (lines 28-29). Lastly, when the
main loop has exited, the path from the current position to vg is added to the tour
(line 30).

Like GR, the GPR heuristic algorithm guarantees that the tour will terminate at
the correct vertex and the overall used budget will be less than or equal to B. This
is because it always checks whether there is enough budget left over to go to the vg
before completing a move. The complexity of GPR is similar to GR, however each
iteration of the main loop needs to reevaluate heuristic values for every vertex in the
graph, meaning the loop has a complexity of O(wl), giving the overall algorithm a
complexity of O(wl + kwl) = O(w2l). In the case of a square IG, the complexity is
O(w3), or cubed on the number of rows in the graph.

3.4 Real-World Data Experimentation

To evaluate the efficiency of the algorithms presented in the previous section,
an AG was created to represent a real-life vineyard on which the GR and GPR
heuristics could be tested. Data was collected in the vineyard to generate reward
values representative of the water need for each vine, thereby producing a reward
function useful for solving the OP on the constructed graph. GR and GPR were
tested against an integer linear program solver and the S-Algorithm for solving the
OP. This section describes these experiments, as they were originally discussed in
[121].

3.4.1 Vineyard AG and Data Sampling

The AG used in this set of experiments was modeled after a commercial vineyard
located near Merced, California. This vineyard consisted of w = 240 rows with
l = 500 grapevines in each row. Each vine is separated by a distance of about 5 feet 6
inches (1.68 meters) and each row is separated by a distance of about 10 feet 6 inches
(3.20 meters) for a plot size of roughly 160 acres (64.7 hectare). This translated to a
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Figure 3.3: Locations shown on a map where soil moisture content was measured in
a vineyard. The particular vineyard examined was not rectangular, however for the
purposes of this study it was assumed to be.

graph with the same dimensions, and assuming there to be one vertex for every vine,
containing 120, 000 vertices.

The main goal of the RAPID project is to use an autonomous robot to adjust
irrigation to each vine on an individual basis, and the ensuing OP should have a
reward function defining necessary irrigation adjustment at every vertex. Accordingly,
this adjustment was inferred by comparing local soil moisture measurements with
target values, giving a reward function of R(v) = |M −m(v)| where M is the target
moisture value for the vineyard and m(v) is the measured moisture value at vertex
v. This function is the absolute difference between the actual amount of water in
the soil and the desired level of water in the soil, therefore making the reward a
number that shows how under-watered or over-watered a vine is. Here, M is assumed
to be a given constant, however in some problems this might not be the case, as
some plants may require different target soil moisture values. The measured moisture
values m(v) were extracted from a set of sample locations within the vineyard, shown
in Figure 3.3, using a Hydrosense HS2P probe manufactured by Campbell Scientific.
Sample locations were probed manually within a 2 hour window on a day during
the summer growing season, and each location was probed multiple times with the
corresponding moisture values averaged. In order to get a value for every vertex in the
graph, these samples were interpolated linearly for vertices in between and nearest
neighbor was used for vertices that could not be interpolated (which sit between a
sample location and the outside of the graph). An example of a reward map created
for this particular vineyard is shown in Figure 3.4.

The OP also requires a cost function on the AG. Since vines are spaced equally
within rows, the movement cost between them is constant. The chosen robotic plat-
form, a Clearpath Husky, with an average top speed of 3.3 feet per second (1m/s),
can cover the distance between each vine in 1.68 seconds. The distance between rows
is also constant and nearly twice as long, therefore taking 3.2 seconds to traverse
each gap. The cost function for the AGOP can be defined in terms of either time
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Figure 3.4: The reward map showing the distribution of vertex rewards within the
vineyard. Red indicates an area of high reward and blue indicates an area of low
reward.

or distance hence either set of values can be used. The budget B should also be
defined accordingly. To simplify calculations and representations, the experimental
comparisons made in this section normalize edge cost to 1 for both types of edges,
turning the problem into a CCAGOP. This does not effect the overall results and the
methods presented in section 3.3 can be used on both the CCAGOP and the AGOP.

Lastly, the version of the OP being solved in each experiment is rooted, therefore
requiring a start and end vertex. For this particular problem, the solution must be a
tour, hence vs = vg. In each experiment, the root is located in the lower left corner
of the vineyard as seen from the aerial view in Figure 3.3.

3.4.2 Method Comparisons

To begin, the first set of experiments performed compared all four methods: the
optimal integer linear program, the S-Algorithm, the GR heuristic, and the GPR
heuristic. For the optimal method, the solver chosen to compute the solution was the
SCIP Optimization Suite [88]. Because of the computational limitations of integer
linear programming, the problem size was reduced to an AG with 8 rows and 12
vertices per row, for a total of 96 vertices. This was the largest size graph it was
capable of solving the OP for within reasonable time for the experiments performed.
In this case, the S-Algorithm was given 3000 trials before returning a solution, and
all other parameters were set equal to those suggested in [126]. For each method,
the budget was varied to show the capabilities of each across different circumstances.
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Figure 3.5: Results of each AGOP solution method on the 8× 12 graph, showing the
amount of reward collected when varying the budget across a range of values.

Results of this first set of experiments is shown in Figure 3.5.
The results show that each of the non-optimal methods is able to compute solu-

tions relatively close to the optimum, suggesting their efficiency in budget utilization.
This also hints that the use of approximation algorithms for this type of graph is
impractical as the heuristics presented easily overcome the guaranteed (2 + ε) bound
without requiring the affiliated time complexity (see section 2.2 for the related dis-
cussion). Through the range of budgets tested, all of the heuristic approaches stay
relatively close to each other in terms of reward collected. At a budget of 10, the
GPR algorithm matches the optimum, suggesting economical use of small amounts
of budget. Each of the algorithms reaches the maximum reward collection, starting
with the integer linear program and S-Algorithm at a budget of 110, followed by GPR
at 120 and GR at 130.

Figure 3.6 shows the paths produced by each of the AGOP solvers for the case
with a budget of 50. The figure exhibits how the results of each algorithm differs.
The optimum path contains two fully traversed rows and two partially traversed rows.
A similar behavior is shown by GPR, however one of the partial-rows was incorrect.
This observation demonstrates that GPR produces highly effective solutions. GR,
on the other hand, was not designed to accommodate these and therefore suffered
in overall reward collected even though the full-rows it added to the path were the
same ones used in the optimal path. The S-Algorithm displays the ability to take
partial-rows as part of its path, however many of the vertices visited (including both
partial-rows and full-rows) were not the same as in the optimal path.

The second set of experiments performed compared the three heuristic methods
against each other without the integer linear program method. For this set of exper-
iments, the size of the AG was changed to 60 rows with 60 vertices per row (60× 60)
for a total of 3600 vertices. The full-sized graph matching the size of the vineyard
was again not used because the S-Algorithm could not compute a solution on such
a large graph in sufficient time. Additionally, the number of Monte Carlo trials the
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Figure 3.6: A comparison between the paths created by each of the solution methods
on an 8 × 12 AG with B = 50. In this case, the starting vertex is the bottom left,
v1,1).

S-Algorithm was given was reduced to 500 for the same reason. Other parameters
stayed the same. Results for this second set of experiments are shown in Figure 3.7.
These experiments show a clear performance gap between each method, with GPR
gathering the most reward within the given problems budget. The gap between GPR
and GR is significant, showcasing how useful the ability to traverse partial rows is.
The gap between GPR and the S-Algorthm is less pronounced, and would likely be
smaller if the S-Algorithm were allowed more trials to find a better solution. However
increasing the number of trial would not be a fair comparison, as the S-Algorithm
requires significantly more time to produce a solution because its computational com-
plexity depends on the number of trials is is allowed to compute.

The third and final set of experiments performed compared only GPR and GR on
the full-sized 240× 500 graph with 120, 000 vertices. Again, only these two methods
were used on the full-sized AG because only they were capable of finding solutions
on them in reasonable time (for perspective, the S-Algorithm would not find a single
solution after 1 week of computation). The results of these experiments are shown
in Figure 3.8. From Figure 3.8a, it is clear that GPR performs better than GR on
this size of graph as well. Figure 3.8b shows how much residual budget is leftover
after completing a tour, across the same range of budgets. The residual budget shows
how wasteful an algorithm is, and this makes it clear that GR is extremely wasteful
with its budget, hence why it is less efficient at collecting rewards. This makes sense,
as GR is unable to utilize any amount of leftover budget smaller than the cost of
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Figure 3.7: Results of the three heuristic AGOP solution methods on a 60×60 graph,
showing the amount of reward collected when varying the budget across a range of
values.

traversing a full-row twice, whereas GPR can use the leftover to partially traverse a
row. Overall, these factors demonstrate that the GPR heuristic algorithm is superior
for use on AGs.

3.5 Conclusion

In this chapter a version of the OP was studied where routing was required on a
special class of graphs that are arranged in an aisle format. This emerges as a problem
for use on robots deployed for precision irrigation where motions are constrained by
the rows of a vineyard. The problem was proven to remain NP-hard on this specific
type of graph and two heuristics, GR and GPR, were presented to provide good
solutions on very large graph sizes. These were compared against an optimal solution
using an integer linear program formulation and a commonly used heuristic called
the S-Algorithm on graphs much smaller than necessary for the domain of precision
agriculture. Of them, the GPR heuristic performs nearly as well as the optimal
solution and is able to quickly compute routes on very large graphs consisting of over
100, 000 vertices. This shows that domain specific heuristics are very efficient and
very practical for specific use cases such as the one presented in Chapter 1.
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(a) (b)

Figure 3.8: (a) Results of the GPR and GR heuristic methods on a 240× 500 graph,
showing the amount of reward collected when varying the budget across a range of
values. The y-axis shows normalized reward values, or collected reward divided by the
total reward for all vertices in the graph. (b) A plot showing the unused or residual
budget after completing a tour for the GPR and GR heuristics.



Chapter 4

Multi-Robot Orienteering in
Vineyards

This chapter extends the problem of orienteering in vineyards to the use case with
a team of robots working together. Heuristic algorithms are developed, based on work
originally presented in [120, 123].

4.1 TOP Background

In this section, the TOP is formulated and two solution methods for the general
case problem are given, one based on integer linear programming and one heuristic
method. The heuristic method, GLS, is later used as a benchmark for performance
comparison against the methods presented later in this chapter.

4.1.1 Problem Definition

The TOP is defined similarly to the OP, with the key difference of utilizing multiple
agents to collect rewards. Each agent a follows its own path Pa ⊂ V in the given
graph G(V,E), visiting some ordered subset of vertices Pa(i) = v ∈ V and edges
Pe,a(i) = e ∈ E, where 1 ≤ i ≤ |P|. For the version of the TOP focused on here, the
start vertex vs and goal vertex vg are the same for each agent, i.e. Pa(1) = vs∀a and
Pa(|Pa|) = vg, though generally this is not necessary. Indeed, it is common to have
multiple start/goal locations to act as “depots” for one or more agents. It is also
assumed that the reward and cost functions for each agent are identical, such that
every agent receives the same amount of reward for visiting a vertex ri = R(vi) and
incurs the same amount of cost for traversing an edge ci,j = C(ei,j). In some versions
of the problem, this is not the case, as these have agents that are non-homogeneous.
While useful for modeling complex problems, this generalization is not used here.
Similarly, a general case TOP will have a budget Ba for each agent which may or
may not be the same, whereas here the problem is defined with a given budget B
that is the same for all agents (each agent still has its own separate budget). Thus,
this describes the case where all agents involved in the TOP are homogeneous.

Given a graph G(V,E) with a reward function on each vertex r : V → R≥0, a cost
function on each edge c : V → R≥0, a start vertex vs ∈ V , a goal vertex vg ∈ V , a
budget B ∈ R≥0, and a set of agents A, the TOP asks to find |A| paths Pa that start

41
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at vs and end at vg, each having a cumulative cost no more than B, that maximizes
the sum of collected rewards across all paths. As in the single agent OP, a vertex
can only contribute its reward once. If any vertex is visited more than once, whether
in a single path or in multiple paths, its reward is added only on the first visit and
all other visits obtain 0 reward. Likewise, an edge contributes to the total cost of
an agent’s path every time that agent traverses that edge, regardless of how many
times that edge has been crossed by any agent. These facts are important when
considering graphs that are not complete, however any graph for which a TOP exists
as characterized here can be made complete by introducing edges of cost equal to the
shortest path between the vertices they connect. Finally, because the OP is a special
case of the TOP (where |A| = 1), the TOP is obviously NP-hard as well.

4.1.2 TOP Linear Programming

Like the OP, the TOP can be formulated as an integer linear program which can
then be solved to produce an optimal solution. The version of this formulation shown
here is taken from [130], rewritten with the notation used in this dissertation. There
are three types of decision variables used in the team problem, xi,j,a describing the
usage of edge ei,j in a path by agent a (1 if it is a part of Pa and 0 otherwise), ui,a
indicating the position of vertex vi in path Pa (such that Pa(ui − 1) = vi), and yi,a
specifying if the reward for vertex vi is collected by Pa (1 if so and 0 otherwise).

max
∑
a∈A

∑
vi∈V

riyi,a (4.1)

s.t.
∑
vi∈V

∑
vj∈V

ci,jxi,j,a ≤ B ∀a ∈ A (4.2)

∑
vi∈V

xi,k,a =
∑
vj∈V

xk,j,a = yk,a ∀k ∈ V ;∀a ∈ A (4.3)

∑
a∈A

yk,a ≤ 1 ∀k ∈ V \{vs, vg} (4.4)

2 ≤ uk,a ≤ |V | ∀vk ∈ V \{vs};∀a ∈ A (4.5)

ui,a − uj,a + 1 ≤ (|V | − 1)(1− xi,j,a) ∀vi, vj ∈ V \{vs}; ∀a ∈ A (4.6)∑
a∈A

∑
vj∈V \{vs}

xvs,j,a =
∑
a∈A

∑
vi∈V \{vg}

xi,vg ,a = |A| (4.7)

The linear program for the TOP is very similar to the one for the OP given in
section 3.1. It can be understood as follows: Equation 4.1 is the objective function,
stating that the total reward collected across all agents for each vertex in the resulting
paths is maximized. Equation 4.2 is the budget constraint, enforcing that every agent
has a bounded path cost less than the budget, i.e.

∑|Pa|−1
i=1 C(Pe,a(i)) ≤ B. Constraint

Equation 4.4 requires that each vertex aside from vs and vg is only visited once (this
assumes a complete graph). The constraint in Equation 4.3 requires that each edge
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can be included in some agent’s path only once (again, this is assuming the use of a
complete graph). The two Miller-Tucker-Zemlin subtour elimination constraints are
given by Equation 4.5 and Equation 4.6, which certify that each agent has a single
continuous path. Finally, Equation 4.7 requires every agent’s path start at vs and
end at vg. In the unrooted TOP, this last constraint can be removed. When the
solution of the integer linear program is returned, the set of paths can be extracted
from the use of edges given by xi,j,a with the sequence of vertices specified by ui,a for
each agent.

4.1.3 Guided Local Search Heuristic

The TOP, being NP-hard, necessarily requires heuristic methods to find solutions
to problems with a large number of agents and on graphs with a large number of
vertices. One of the most common varieties of heuristic used is the multi-phase meta-
heuristic, which makes use of many types of path improvement heuristics combining
them into a single procedural algorithm for the TOP. The GLS meta-heuristic, given
in [128], is one of these algorithms. Here, GLS is briefly described to be used later as
a performance benchmark, and was chosen because it is easily extendable from the
general case TOP to the case of AG. It works on graphs that are fully connected as
well as graphs that are not, befitting of AG (though without loss of generality an AG
can be made fully connected by supplementing shortest path edges).

GLS begins in a construction phase, creating an initial set of |A| paths starting
at the start vertex vs and ending at the goal vertex vg. Each of these paths Pa is
connected to only one other vertex (which is unique for each path) that is far from
both vs and vg. Cheapest insertion is performed on each tour until no more insertions
can be made to increase the number of vertices visited before starting the main loop
of the algorithm. The main loop continues until a suitable solution is found or until a
max number of iterations has occurred. A suitable solution is one which can no longer
be improved for the defined parameters, and this is selected as the best solution that
has already been “disturbed”, which is a process that removes a fixed percentage of
vertices from each path to allow opportunity for a better solution to be found. At
each iteration, if the current solution is the best one found, then it is saved and then
disturbed. Likewise, if it is not the best one found, then it can still be disturbed if
some criteria is met.

Inside of the main loop is another loop that uses a number of local search heuristics
to improve the current solution: “swap” trades vertices in one agent’s path for vertices
in another, “TSP” performs a 2-opt edge swap on individual paths to decrease total
cost, “move” takes a group of vertices from one agent’s path and moves them to
another agent’s path, “insert” adds vertices that are not visited by any agent to a
path, and “replace” swaps a visited vertex in a path for an unvisited one. Inside of
the “replace” and “TSP” heuristics, the algorithm uses guided local searches (hence
the name) to improve on their performance.

GLS requires numerous parameters as inputs that should be tuned for good per-
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formance, some of which do not intuitively increase reward collection. Additionally,
GLS is rather unsuited for large problem sizes of more than 1, 000 vertices (though
this is true for most TOP heuristic methods). The complexity of GLS is difficult to
analyze due to how the parameters interact, and the authors of [128] do not attempt
to, however the best estimate from [123] is O(B · |V |2log2(|A| · |V |)) where B is the
budget, |V | is the number of vertices in the graph, and |A| is the number of agents.
Note the linear dependency on B.

4.2 Team Orienteering on Aisle Graphs

Much like section 3.2, this section focuses on developing insights for solving the
TOP on AGs. As before, little or no work has been done using this type of graph
structure in the TOP. The insights presented were originally developed in [120].

4.2.1 Team Coordination of Robots

In the single agent OP, it is not necessary to coordinate movement as the are no
other agents to coordinate with. In the multi-agent TOP, the question arises whether
or not all paths chosen by the solver can be traversed concurrently by the agents. It
is a typical assumption that every agent will begin traversing its path at the same
time (though this is not always the case, and must be specified), thus it is necessary
to ensure that no conflicts arise. These conflicts are emergent from the particular
problem being solved, most commonly being the inability to share edges, and should
be embedded in the problem’s graph. An intuitive way to do this is to discourage
usage of shared edges by changing the cost of an edge to∞ after it has been included
in one agent’s path. However this can be very inefficient, because it completely locks
out other agents from using that edge. In a fully connected graph, this should not be
of any concern, since the optimal solution would not utilize any edge more than once.
Most real world problems, such as vineyard orienteering, do not have fully connected
graphs and the graphs are only made to be in preprocessing. The composite edges
are paths of minimal cost connecting two vertices which will necessarily avoid the
infinite cost edges. In these cases, edges with infinite cost are extremely limiting
because they force agents to take roundabout paths rather than taking a direct route.
With enough edges of infinite cost, some vertices may become entirely unreachable.
Therefore, a more advanced technique is required for obtaining good solutions on
team cooperation problems.

To counter the problems presented by making edges traversed by other agents
have costs equal to ∞, it is possible to limit when edges have infinite costs. To do
this, the cost function should be augmented to be dependent on spent time. Here,
“time” refers to cost, considering that they are functionally equivalent when using
homogeneous agents as mentioned in section 4.1. The times during which an edge is
used should be kept track of using a new boolean function T0,1(e, t) → {0, 1} which
returns 1 if the edge e is in use at time t and 0 if it is not. Here, time t is the
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accumulated cost since the beginning of a path. The new cost function is given as a
piece-wise linear function:

T (e, t) =

{
∞ if T0,1(e, t) = 1

C(e) otherwise
(4.8)

Now the total cost of a path should be defined according to the new cost function:

T (P , t0) = T (Pe(1), t0) +

|P|−1∑
i=2

T (Pe(i), T (P(1, i− 1), t0) + t0) (4.9)

The new cost function assumes an agent begins traversing the path P at time t0.
Note that the total cost of a path is a cumulative function, which must evaluate T0,1

for every edge in the path at the current time. With the assumption that all agents
start traversing their paths at t0 = 0, notation is simplified, e.g. T (P) ≡ T (P , 0).

4.2.2 AG Movement Restrictions

Having defined how agents must coordinate movement over a graph, it is now pos-
sible to specify this behavior on AGs. Since AGs are often modeled after real world
environments, such as vineyards or warehouses, the limitations placed on robot move-
ment are physical and easily demonstrated. For example, in Figure 4.1 a Clearpath
Husky robot is shown facing the rows of a vineyard. This illustrates the small amount
of space within each row of a vineyard for maneuvering. In a scenario where two or
more robots are navigating the same row at the same time and must cross each other’s
path, it is entirely possible or perhaps very likely that they will collide. This event
can be calamitous and cause catastrophic failure of either or both robots. Therefore it
is imperative that this situation is avoided at all costs (justifying the use of occupied
edge costs of ∞). To successfully avoid collisions, robots should avoid entering into
rows that are already occupied by other robots. Or, more specifically, robots should
avoid traversing portions of rows in which another robot is operating or about to
operate. This makes it critical for each robot to know every other robot’s planned
path, to avoid crossing paths.

While the insides of rows may be tight, the outer columns usually are not. Indeed,
Figure 4.1 shows this is true for vineyards. In vineyards, the outer columns separate
individual vineyard blocks from each other or from other structures, and are typically
built large enough to accommodate multiple tractors, trucks, or worker vehicles. Thus
the movement constraint limiting only a single robot does not apply. Multiple robots
can safely pass each other in these outer parts of the vineyard without chance of
collision (assuming properly working obstacle avoidance). This low risk environment
on the outskirts of rows usually also exists in other structures of similar arrangement,
such as warehouses, and can be thought of as a general property of AGs.

These two very different constraints for the driveability of robots on AGs mean
that special care must be taken to define the appropriate cost functions on these
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Figure 4.1: A Clearpath Husky robot next to a vineyard located in Central California.
The distance between rows is clearly visible and demonstrates how little room there
is for maneuverability of multiple robots.

graphs. The set of edges can be split into two subsets, the set of outer edges Eo ⊂ E
and the set of row edges Er ⊂ E. Outer edges are not limiting in the sense of multi-
robot restrictions, so the cost function of these edges remains the same t = C(e) for
all e ∈ Eo. Notice here that t is used instead of c as in section 3.1. Row edges do
have restrictions, so the cost function of these edges changes to that described earlier
this section, i.e. t = T (e, t0) for all e ∈ Er. Now it is possible to define two special
versions of the TOP on AGs:

Constant Cost Aisle Graph Team Orienteering Problem (CCAGTOP):
Given a graph G(V,E) = AG(w, l) with constant cost function C(e) = k;
∀e ∈ Eo ⊂ E, piece-wise cost function T (e, t0); ∀e ∈ Er ⊂ E, reward
function R, vertices within the graph vs, vg ∈ V , and constants B, t0, find
a path P ⊂ V starting at time t0 with cost no more than B that begins
at vs and ends at vg which maximizes the cumulative reward of visited
vertices.

Aisle Graph Team Orienteering Problem (AGTOP): Given a graph
G(V,E) = AG(w, l) with cost function C(e); ∀e ∈ Eo ⊂ E, piece-wise cost
function T (e, t0); ∀e ∈ Er ⊂ E, reward function R, vertices within the
graph vs, vg ∈ V , and constants B, t0, find a path P ⊂ V starting at
time t0 with cost no more than B that begins at vs and ends at vg which
maximizes the cumulative reward of visited vertices.
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In the former [120, 123], the AGTOP was known as the IGTOP. These are team
versions of the CCAGOP and AGOP, respectively, and thus are both NP-hard, since
the CCAGOP and AGOP are special cases of these problems with only a single agent.

4.3 Extending GPR to the AGTOP

The vast size of real-life vineyards mean that a single battery powered robot may
not be able to cover much ground by itself. Instead, a team of robots may be needed
to provide adequate coverage of the vineyard. Again, heuristics that can be scaled
to tackle problems of large size are needed. The low complexity and effective results
displayed by the GPR heuristic algorithm in Chapter 3 for a single agent motivate
its extension into the domain of multi-agent heuristics. The following algorithms for
solving the AGTOP, taken from [120, 123], are all based on GPR. As before, the start
and goal vertices are the same and the path produced is a tour.

4.3.1 Vineyard Sectioning

A straightforward and uncomplicated method of solving the AGTOP and building
paths for multiple agents on a single AG is to use a divide-and-conquer approach.
This involves splitting the graph into multiple parts and solving the AGOP on each.
Therefore, for a set of agents A, the AG is split into |A| sections and GPR is run on
each section. A simple algorithm that does this while trying to normalize the potential
collected reward for each agent, called Vineyard Sectioning (VS), is presented in
Algorithm 4.3.

Algorithm 4.3 Vineyard Sectioning

Input: AG(w, l), R, C, B, vs, vg, |A|
Output: P1 . . .P|A|
1: RAG =

∑
v∈V R(v)

2: i = 0
3: for a to |A| do
4: k = i
5: y = 0
6: while y/RAG < B/|A| do
7: i = i+ 1
8: y = y +

∑l
j=1R(i, j)

9: Ra(i, j) = R(i, j); ∀i = 1 . . . w, j = 1 . . . l
10: for 0 < z < k and i < z ≤ w do
11: Ra(z, j) = 0 for j = 1 . . . l
12: Pa ← GPR(AG(w, l), Ra, C, B, vs, vg)
13: return P1 . . .P|A|

VS works as follows: First, the total reward of all vertices in the graph is computed
(line 1). Next, a variable i, which holds the index number of the current row that the
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algorithm is working on, is initialized (line 2). Then, the main loop of the algorithm
begins, which iterates over all the agents that need a path (line 3). A temporary
variable k is set to hold the index number of the row that begins the current section
of the graph (line 4). Then, a loop iteratively adds rows to the current section, which
ends at row i, until the reward of the section is roughly equal to the total reward of
the AG divided by the number of agents (lines 6-8). If the budget is not the same for
each agent, then the section should hold a proportional amount of reward to better
utilize the budgets of each agent. Next, a temporary reward function is made from
the original that has zero reward for all vertices in rows outside of the current section
between rows k and i (lines 9-11). Finally, GPR is run on this temporary graph and
a path is created for the current agent (line 12).

At the end of VS, there will be |A| paths built as tours, none of which can cause
collisions between the agents. This is because all the sections of the vineyard are
disjoint, and GPR will never build a path containing a row of an AG with zero
reward, so there will never be any overlapping sections. The rows visited by one
agent will never be visited by another agent. The complexity of this algorithm is
O(|A| · w2l) because GPR is run for each agent once.

4.3.2 Series GPR

Another method of extending GPR to the multi-agent case is to run many in-
stances of GPR in succession to produce multiple paths. This approach, called Series
GPR (SGPR), has the advantage of allowing every agent to consider the entirety of
the AG without restricting its movement to only a subsection of the graph. It works
by running a modified version of GPR |A| times in succession, setting the reward value
for vertices visited in previous runs to zero before constructing the next path, mean-
ing each new path will attempt to explore previously unexplored high value areas.
However, GPR must be modified to prevent potential collisions that arise when mul-
tiple agents travel within the same row at the same time, as mentioned in section 4.2.
This modification allows the agent to wait at a location until the row is opened and
no threat of collision occurs. SGPR is presented in algorithm Algorithm 4.4 and the
modified GPR with Avoidance (GPRA), is presented in algorithm Algorithm 4.5.

Algorithm 4.4 Series GPR

Input: AG(w, l), R, C, B, vs, vg
Output: P1 . . .P|A|, TM
1: initialize TM
2: for |A| agents do
3: Pa, CM← GPRA(AG(w, l), R, C, B, vs, vg, TM)
4: for all v ∈ Pa do
5: R(v) = 0
6: return P1 . . .P|A|, TM
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Algorithm 4.5 GPR with Avoidance

Input: AG(w, l), R, C, B, vs, vg, TM
Output: P
1: P ← ∅
2: twait = 0
3: Compute cumulative rewards from left Li,j and right Ri,j
4: while P(end) 6= vg do
5: Reset TM to input
6: Set vertex feasibility feasiblei,j ← True for all vertices
7: P = {vs}
8: while any(feasible) = True do
9: Compute heuristics of full-row and partial-row for current side

10: Compute times for crossing edges in each full-row tfr and partial-row tpr
11: Find best full-row bestfr without time conflicts in TM(tfr)
12: Find best partial-row bestpr without time conflicts in TM(tpr)
13: if bestfr 6= ∅ or bestpr 6= ∅ then
14: if feasible(bestfr) = False and feasible(bestpr) = False then
15: Mark as not feasible
16: if R(bestfr) >= R(bestpr) and feasible(bestfr) = True then
17: Append bestfr to P
18: Add vertices in bestfr to TM(tfr)
19: Mark bestfr as not feasible
20: else if feasible(bestfr) = True then
21: Append bestpr to P
22: Add vertices in bestpr to TM(tpr)
23: Mark bestpr as not feasible
24: else
25: Tell agent to wait waittime
26: Tell agent to wait twait
27: if exists path from P(end) to vg without confilct in TM then
28: Add vertices and times to TM(T (P))
29: Append path to P
30: return P, TM
31: else
32: twait = twait + waittime
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SGPR works as follows. First, a time map TM that holds the vertices at which
each robot might be at any given time is initiallized (line 1). Then, a loop that
iterates for each agent is entered (line 2). GPRA is run for the current agent using
the most recent time map and reward function, and outputs a collision-free path for
the agent plus the time map augmented with new vertices and times (line 3). Next,
all visited vertices have their rewards set to zero in the reward function and the loop
iterates for the next agent (lines 4-5).

GPRA works similarly to GPR but with a few modifications. The entire algorithm
is wrapped in a while loop that checks if a valid path is completed (line 4). A path
is valid if it ends at the goal vertex vg within the budget B. Inside the main loop,
the time that each vertex will be visited is computed in addition to the full-row and
partial-row heuristics (lines 9-10). The best full-row and partial-row without time
conflicts are checked for feasibility and, if feasible, the better of the two is chosen for
inclusion in P (lines 11-23). Note that if the heuristic values are equal, the full-row
will be added to the path. All newly visited vertices and times are added to TM and
marked not feasible (lines 17-19, 21-23). If no full-rows or partial-rows without time
conflicts exist, then the agent is told to wait one time unit (line 25), where waittime
is a given constant. Once there are no more feasible vertices, the route to the goal
vertex vg is then appended to the path after having waited an appropriate amount
twait (lines 26-29). If a time conflict occurs when building this last portion of the path,
from P(end) to vg, then extra wait time twait is need for the end, and the path must
be rebuilt with that contingency (lines 31-32). Eventually, the algorithm returns a
valid path P and time map TM which is used to build more paths (line 30).

Since GPRA is an augmented version of GPR, it still provides the same guarantees
of terminating at the correct vertex and ending within the budget. However, it also
provides conflict avoidance functionality, taking into account where other agents are
at all times. GPRA has a computational complexity of O(w2l), therefore giving
SGPR an overall complexity of O(|A| · w2l).

4.3.3 Parallel GPR

The final and most complex method of extending GPR to work with multiple
agents is the Parallel GPR (PGPR) algorithm. Like SGPR, all agents are allowed
to explore the whole graph, and collisions are avoided using a time map. However,
instead of building paths one after the other in serial, all paths are constructed to-
gether in parallel. This allows agents to maximize their efficiency by considering
heuristics of rows and partial rows for every agent before adding one to an agent’s
path. Pseudo-code for PGPR is shown in algorithm 4.6.

PGPR works as follows. First, cumulative rewards from both sides for each vertex
are computed (line 2). Then, a loop begins which tracks if every path is valid (line 4).
If the all paths reach the goal vertex within B, the algorithm returns the set of
paths and the updated time map (lines 36-37). However, if one of the paths is not
valid, then the invalid path is forced to save more time for the end so it has room
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Algorithm 4.6 Parallel GPR

Input: AG(w, l), R, C, B, vs, vg, TM
Output: P1 . . .P|A|, TM
1: Pa ← ∅ for i = 1 . . . |A|
2: Compute cumulative rewards from left Li,j and right Ri,j
3: tawait = 0 for a = 1 . . . |A|
4: while any Pa(end) 6= vg do
5: Reset TM and vertex feasibility, initialize BL = ∅
6: Pa ← vs for i = 1 . . . |A|
7: while any(feasible) = True do
8: Clear CL
9: for a = 1 . . . |A| do

10: Compute heuristics of agent a of full-row and partial-row for current side
11: Compute times for agent a to cross edges in each full-row tfr and partial-row

tpr
12: for all full-rows not in TM do
13: Find best full-row bestfr not in BL for agent a
14: Add bestfr to CL
15: for all partial-rows not in TM do
16: Find best partial-row bestpr not in BL for agent a
17: Add bestpr to CL
18: if nothing added to CL for agent a then
19: Tell agent a to wait waittime
20: while CL 6= ∅ do
21: Search CL for candidate with highest heuristic value best
22: if feasible(best) = True then
23: Append best to Pa
24: Add vertices and times to TM(T (Pa))
25: Mark best as not feasible
26: else
27: Add best to BL
28: Mark vertices in BL for all agents as not feasible
29: for all a = 1 . . . |A| do
30: tell agent a to wait tawait
31: if exists path from Pa(end) to vg without conflict in TM then
32: Add vertices and times to TM(T (Pa))
33: Append path to Pa
34: else
35: tawait = tawait + waittime
36: if Pa(end) = vg forall a = 1 . . . |A| then
37: return P1 . . .P|A|, TM
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in its budget to wait for an opening valid path to vg (line 30,35) and all paths are
recomputed by restarting the main loop. Inside this loop, the time map TM is
reset at each iteration, all vertices are marked as feasible, an empty blacklist BL is
initialized, and all paths are cleared (lines 5-6). Next, another loop starts and runs
until there are no more feasible vertices in the graph (line 7). Here, feasibility means
that any one of the agents can visit the vertex with enough leftover budget to get to
vg. Inside the inner loop, a list of candidate routes is kept, which holds all full-rows
and partial-rows that are in consideration for adding to a path next, and this list
is cleared at the beginning of every iteration (line 8). For each agent, full-row and
partial row heuristics are computed along with visiting times, then the best full-row
and partial-row without time conflicts are added to the list of candidates (lines 10-17).
If an agent has no candidates, then that agent is told to wait waittime (lines 18-19).
Next, the list of candidates is iterated over, such that the candidate route with the
greatest heuristic value is added to the appropriate path, updating the time map and
vertex feasibility, until no more candidates are left (lines 20-27). If any candidate
routes conflict with each other, then the lesser candidates will not be feasible and its
vertices will be added to BL for that agent (line 27). Any vertex that is blacklisted
from all agents is marked as not feasible (line 28). After all vertices in the graph
are marked as not feasible, the route from the current vertex of each path to vg is
appended, as long as these routes do not have conflicts (lines 29-35).

This algorithm completes valid paths for every agent, and does so while avoiding
collisions. It works similarly to SGPR, but instead the loop that handles multiple
agents is moved from the outside of the main loop to the inside. Thus, the complexity
does not change; PGPR works in O(|A| · w2l) time.

4.4 Experimental Comparison

The algorithms presented in the preceding sections were compared on AGs created
using a real-life vineyard as a graph model with soil moisture data used to compute
reward for each vertex. section 3.4 explains the vineyard and data set used. By
running each of the AGTOP methods on this model, a fair evaluation of the efficiency
of each was constructed. Variables considered consisted of the size of the graph which
was reduced in size to allow the use of the GLS method, the budget of each agent,
and the number agents acting as a team.

4.4.1 Team GPR Methods Versus GLS

For the first set of tests, the three AGTOP algorithms (VS, SGPR, and PGPR)
were studied in relation to the GLS meta-heuristic method discussed in section 4.1.
For these tests, the AG was scaled down to a size of w = 12 rows with l = 25 vertices
per row, for a total of 300 vertices. This was done because of the computational
constraints of using GLS on larger graphs. Through all the tests done, no collisions
occurred between the paths for any agent. While expected from the AGTOP methods,
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Figure 4.2: The fraction of available reward collected by a number of agents for a
given fixed budget on a 12× 25 graph. Note there are some overlapping lines where
values are the same between multiple algorithms.

this is a somewhat unexpected result for GLS, as it does not contain any in-built
coordination between agents to prevent occupying edges simultaneously. However, it
should be stressed that VS, SGPR, and PGPR are all guaranteed to produce collision-
free solutions, while GLS is not.

Figure 4.2 displays the combined fraction of total reward collected for all agents
as the number of agents is changed for a specific budget. The reward displayed is a
fraction of the total available rewards in the graph for all vertices, therefore a value of
1 means that all vertices were visited and all rewards collected. As mentioned earlier,
every agent has an equal amount of budget allocated to it, so the budget displayed
is equivalent to B × |A|. The results show that less agents with larger budgets are
more effective than more agents with proportionally smaller budgets. This is expected
because with less agents less coordination is necessary and each can be more impactful
for its apportioned budget. In practice, however, this can be infeasible because it is
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Figure 4.3: Budget vs fraction of total reward collected for 1 agent on a 12×25 graph.
Note that the lines for Sectioning, Series, and Parallel are completely overlapping.

technically not viable to deploy fewer robots with the autonomy of more robots. The
results of the various tests show that each of the AGTOP specific methods perform
better than GLS in most cases, with the exception of diminutive budgets where GLS
is an equal performer.

When the problem is reduced to the single agent case, Figure 4.3 shows that for
each of the AGTOP algorithms, the collected reward is equivalent. This makes sense
because all of these algorithms reduce to the original GPR algorithm Algorithm 3.2
when there is only one agent. All of the looping done to handle each agent is reduced
to a single run, and there is no worry of possible collisions. In this case, it can be
seen that VS, SGPR, and PGPR greatly outperform GLS for larger budgets.

Figure 4.4 shows the case where 6 agents are considered while the budget is varied.
Figure 4.4a displays the overall reward for a given budget with each of the methods.
At some budgets, each of the tested methods becomes the top performer in terms
of reward collected, however generally PGPR is the dominant solver and VS is the
inferior. Regardless, through most of the tested budgets excluding larger budgets,
each of the algorithms collect a similar amount of reward. Examining only AGTOP
methods, there is a maximum gap between VS and PGPR of 13.52% when B = 325.
When GLS is considered, the largest gap is 47.25% between GLS and PGPR when
B = 375. Figure 4.4b shows the amount of leftover (unused) budget after collecting
a certain fraction of the reward. This is useful to highlight inefficiencies for each
algorithm that are not apparent from looking at reward results alone. Residual budget
emerges when agents need to end their paths at vg and do not have enough budget to
visit a new unvisited vertex. An optimal algorithm will have minimal residual as the
fraction of total reward collected increases, with small spikes where graph structure
prevents efficient use of budget, and a maximum reward at 1 where residual budget
increases towards infinity. SGPR, PGPR, and GLS all have low residuals suggesting
they coordinate agents efficiently, however GLS does not reach as high of a maximum
reward as the other two. It is clear that VS does not coordinate agents adequately,
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(a) (b)

Figure 4.4: Results on a 12 × 25 graph with 6 agents for various budgets. (a) The
reward for each budget tested. (b) The residual budget left over at the end of each
path.

as there is a lot of unused budget that is not spent gathering additional rewards.
The results of reward collection per number of agents and budget, combined with the
residual plot suggest that VS, SGPR, and PGPR are at least as economical as GLS,
meanwhile the next set of tests shows they are not limited to graphs of this size and
can scale up to more vertices.

4.4.2 VS, SGPR, and PGPR

The second set of tests compared the AGTOP algorithms to on the full-sized
graph of w = 240 rows with l = 500 vertices per row, for a total of 120, 000 vertices.
The same tests were performed, varying the number of agents and available budget.
As before, none of the built paths had any overlapping use of edges so no collisions
could occur between agents, since the methods were built to avoid this.

Figure 4.5 shows how the number of agents working on an AG impacts the amount
of reward collected for a given budget. As before, more agents with proportionally
smaller budgets generally collect less reward, because they cannot coordinate as ef-
ficiently as fewer agents. Similarly to the smaller test cases, SGPR and PGPR are
almost equivalent for much of the tested number of agents, with PGPR performing
slightly better, and VS is noticeably less productive.

Figure 4.6 exhibits the overall efficiency of the methods with a large quantity of
agents. Figure 4.6a shows the reward of each method for a given budget with |A| = 50.
For any input budget, SGPR and PGPR are nearly equivalent, with PGPR doing
slightly better overall while VS lags behind in reward collection. With B = 150, 000,
PGPR accumulates 95.7% of the rewards, SGPR obtains 94.5%, and VS gathers
87.7% of the total available rewards. These results are similar with any number of
agents (tested with 1 to 100 agents), however the gap between the methods converge
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Figure 4.5: The fraction of available reward collected by a number of agents for a
given fixed budget on a full-sized 240× 500 graph. Note there are some overlapping
lines where values are the same between multiple algorithms.
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(a) (b)

Figure 4.6: Results on a 240× 500 graph with 50 agents for various budgets. (a) The
reward for each budget tested. (b) The residual budget left over at the end of each
path.

to nothing as |A| approaches 1. The residual budget for the same tests are shown
in Figure 4.6b and conveys an interesting result, showing that SGPR has the least
unused budget throughout all tested budgets with PGPR having slightly more. This
is because PGPR is able to coordinate each agent more effectively than SGPR and
ends up in situations where no more vertices can be visited by any agent. Regarding
VS, a large portion of its budget is wasted after a certain point. This is likely due
to the compartmentalized usage of agents, where each agent can only visit a certain
section of the graph. Because of the way the graph is sectioned off proportionally
according to available rewards, some sections can be larger than others. When an
agent in one of the smaller sections collects all the rewards available, it is stuck
doing nothing and thus wastes the rest of its allocated budget, while other agents do
not have enough budget to finish collecting available rewards in their sections. This
proves that VS is rather wasteful and less efficacious than SGPR and PGPR, which
are almost identical in performance on large AGs.

Finally, each of the three AGTOP methods were subjected to more tests on the
same size AGs with different underlying vineyard moisture data for the reward func-
tions. The results of these tests exhibit comparable results, with the relative effec-
tiveness of each method remaining the same. Some tests were also done in [123] on
AGs representing another vineyard in central California of size 275×214, with results
averaged over 10 different moisture maps, and the outcomes are consistent with those
described here.
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4.5 Conclusion

In this chapter the TOP was studied on the special class of graphs where vertices
are arranged in a set of rows or aisles. The problem is NP-hard on these graphs
just like its single agent sibling the OP. Additionally, a robot coordination problem
emerges when robots operation in environments structured like these graphs are not
able to pass each other within rows without risk of collision. Three heuristic methods
were developed specifically for team orienteering on these types of graphs - VS, SGPR,
and PGPR - which build paths for each robot agent specifically evading collision.
These were then compared to GLS, a general case heuristic method for the TOP
that was not purposefully designed for AGs and does not have collision evasion.
Tested using soil moisture data for rewards on a graph designed around a real-life
vineyard, the three specially developed methods were proven to be more robust and
better performers than GLS. These methods were capable of handling AGs containing
hundreds of thousands of vertices and problems containing 100 agents, showing their
practicality for the specific use case of precision agriculture.



Chapter 5

Bi-Objective Orienteering in
Vineyards

Previous chapters looked at solution methods for single-objective orienteering on
graphs with aisle-like row structure. A two objective (bi-objective) extension of the
OP is examined in this chapter, with a focus on finding solutions on AGs. The work
presented here was originally introduced in [122].

5.1 BOOP Background

Orienteering for two objectives, in a problem called the BOOP, is discussed in this
section. Bi-objective orienteering is a sub-type of the MOOP, which itself is a type of
generalized OP. Here, the BOOP is formalized for routing on general types of graphs
and then the problem on AGs is briefly described.

There are two main sub-types of the BOOP, dual maximization and objective
constraint, both of which share a number of common characteristics. As in the
single-objective OP, the BOOP is given an undirected graph G(V,E) with a cost
function c : E → R≥0 defined over its edges. Assuming a given budget B, a path P
can be build over the graph that starts at some vertex vs and ends at a goal location
vg whereby the total cost of the path is less than or equal to the budget C(P) ≤ B.
However, unlike the OP, the BOOP has two reward functions defined for its vertices,
r1 : V → R≥0 and r2 : V → R≥0. Like in the OP, both sets of rewards can be collected
only once (R1(v) and R2(v) are both collected simultaneously when v is visited), and
visiting a vertex multiple times does not grant more reward. These reward functions
may be correlated, uncorrelated, anti-correlated, or some mixture of those. However
they are defined, the BOOP asks to find a path visiting a subset of the vertices V
which fulfills some goal over the two reward functions, the optimum of which is found
somewhere on the Pareto frontier of solutions. The goal of the problem depends on
the end user’s preference and therefore can be different depending on various criteria.

5.1.1 Dual Maximization BOOP

The Dual Maximization BOOP (DMBOOP) seeks to maximize results for both
objectives. The aim of the DMBOOP is to determine a path P of cost C(P) ≤ B
that maximally collects both sets of rewards for each vertex visited, i.e. R1(P) and

59
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R2(P). If the second reward function is set to 0 for all vertices, then the problem
becomes the OP, proving the the DMBOOP is a multi-objective extention of the OP
and is therefore NP-hard. For the case of AGs, the problem does not change, and
thus the AG version can be defined as follows:

Aisle Graph Dual Maximization Bi-Objective Orienteering Prob-
lem (AGDMBOOP): Given a graph G(V,E) = AG(w, l) with cost
function C and two reward functions R1, R2, vertices within the graph
vs, vg ∈ V , and a constant B, find a path P ⊂ V with cost no more than
B that begins at vs and ends at vg which independently maximizes the
cumulative of both reward functions R1(P) and R2(P) for visited vertices.

In general, such a requirement to maximize both reward functions is impossible
since it is often the case that the reward functions are independent and uncorrelated.
When dealing with dual maximization problems, or any multi-objective optimization
problem that has no clear predilection towards one objective in particular, there are
a few common approaches to resolving solutions. Creation of a Pareto frontier (see
[93]) is the most comprehensive method, which involves finding a set of solutions
with slightly different outcomes which allow the end user to choose an appropriate
solution. In orienteering this means finding multiple paths through the graph, a
process that may be extremely time consuming given that even finding one optimal
path for a single objective is NP-hard. Other methods seek to find efficient solutions
by characterizing the relationship between the reward functions such that decision
variables are chosen based on how positively they impact both reward functions.

One frequently used scheme is blending both objective functions into a single
weighted function, such as with linear combination. This typically works in practice,
however it is difficult to qualify how well it works without first solving the problem
across multiple weighting parameters effectively creating a pseudo-Pareto frontier. To
solve the BOOP using weighted linear combination, one can update the reward for
each vertex to reflect a new reward function:

R(v) = αR1(v) + (1− α)R2(v) (5.1)

where α is a weighting parameter between 0 an 1. This can be especially useful be-
cause it is flexible enough to use with any orienteering solution method, including
those exhibited in Chapter 3 and Chapter 4. However, linear combination has one
major drawback associated with it; the sum of reward functions is physically meaning-
less. This is because the reward functions may represent different real world concepts.
If they represented the same thing, then there would be no need for separate reward
functions. This makes it challenging to chose the right value of α for an adequate
mixing, hence why evaluating for multiple weight values is necessary.

5.1.2 Objective Constraint BOOP

The Objective Constraint BOOP (OCBOOP) seeks to meet a lower bound on
one objective while maximizing the other. The aim of the OCBOOP is to determine
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a path P of cost C(P) ≤ B that maximally collects rewards for the first reward
function R1(P) while meeting or exceeding a lower bound on a the second reward
function R2(P) ≥ rmin. This problem is also NP-hard, given that it is simply an
extension of the OP with an additional constraint, which can be made back into the
OP by making rmin = 0. There are no special considerations for solving this problem
on AGs, and thus the AG version can be defined as follows:

Aisle Graph Objective Constraint Bi-Objective Orienteering Prob-
lem (AGOCBOOP): Given a graph G(V,E) = AG(w, l) with cost
function C and two reward functions R1, R2, vertices within the graph
vs, vg ∈ V , and a constant B, find a path P ⊂ V with cost no more than
B that begins at vs and ends at vg which maximizes cumulatively the first
reward function R1(P) and satisfies a lower bound on the cumulative sum
of the second reward function R2(P) ≥ rmin for visited vertices.

Unlike with dual maximization orienteering, solving the OCBOOP does not re-
quire a subjective method for evaluating or combining the reward functions. This is
because only one reward function is optimized; the other is merely constrained to a
certain minimum value. This makes the objective constraint version a preferential
type of BOOP to an end user, since the reward function has a distinct physical in-
terpretation. To this end, an integer linear program can easily be written to find an
optimal solution to the OCBOOP, by adding in the additional constraint on R2 to the
formulation given in section 3.1, however heuristic methods are less easily modified
for this purpose.

5.2 Extending GPR to the BOOP

When it comes to solving BOOPs on problems modeled after precision agriculture
in vineyards, the large size of the resulting AGs requires the use of heuristics. There-
fore the GPR heuristic given in section 3.3 was again extended, this time to solve
either the AGDMBOOP or the AGOCBOOP. These methods were first presented in
[122].

5.2.1 Dual Maximization Methods

The methods presented in this subsection solve the AGDMBOOP. They are meta-
methods, which can incorporate any method used to solve AGOPs including generalize
heuristics such as the S-Algorithm, however for problems of large sizes, only GPR is
practical to use. They work by attempting to balance the two objectives through
assigning a weighting value to each objective, which is used to allocate resources
according to some “importance” given by the user. For each method given, this
weighing parameter is α, which can take any value from 0 to 1. This is the only
tuning parameter used for this class of algorithms; all other inputs are intrinsic to
the problem.
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Heuristic/Heuristic

A very simple way to utilize a heuristic algorithm built for single-objective ori-
enteering to solve bi-objective problems is to run the heuristic twice, allocating a
proportion of the budget to collecting R1 rewards and using the rest of the budget
to collect R2 rewards. The Heuristic/Heuristic method solves the BOOP by doing
exactly this, taking a parameter α used to determine the fraction the overall budget
to allocate to the collection of each reward, i.e. B1 = αB and B2 = (1 − α)B. By
running GPR in succession to collect each set of rewards, a single path can be per-
formed by combining the two paths sequentially. The Heuristic/Heuristic method is
displayed in Algorithm 5.7.

Algorithm 5.7 Dual Maximization Heuristic/Heuristic

Input: AG(w, l), R1, R2, C, B, vs, vg, α
Output: P
1: P1 ← GPR(AG(w, l), R1, C, αB, vs, vg)
2: Remove end of P1 until last traversed full-row or partial-row
3: for all vi ∈ P1 do
4: R1(vi)← 0
5: R2(vi)← 0
6: P2 ← GPR(AG(w, l), R2 C, (1− α)B, P1(end), vg)
7: P = P1 ∪ P2

8: return P

First, GPR is run to collect rewards on R1 using the budget allocated αB (line 1)
to build P1. In this first run, both sets of rewards are collected simultaneously as P1

passes each vertex, however GPR builds P1 agnostic of R2. Next, the end of P1 is
removed, such that it stops at the vertex on the left or right side column where the
final full-row or partial-row chosen to be included in the path exits (line 2). Then,
for all visited vertices in P1, both reward functions are given values of 0 (lines 3-l5).
This is to ensure that the second run of GPR does not attempt to revisit any vertices
and collect their rewards again. Afterward, GPR is run a second time, specifically to
collect R2 rewards while being agnostic of but still collecting R1 rewards using the
leftover budget (1− α)B (line 6). Here, P2 starts at the last vertex in the first path
built P1(end). This allows a seamless transition so that the two paths can be joined
sequentially into one path P .

Algorithm 5.7 is comprised of two executions of the GPR heuristic, and therefore
inherits is computational complexity, O(w2l). If any other AGOP solver were used,
then it would inherit the complexity of that algorithm instead.

Heuristic/Knapsack

The next method, Heuristic/Knapsack, works by building and initial tour and
augmenting it for extra rewards. As before, the parameter α allocates a proportion of
the overall budget B to creating an initial tour with the GPR heuristic, focusing on
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gathering R1 rewards, then the leftover budget (1 − α)B is used to extend portions
of the path or add new partial rows to it for gathering R2 rewards. The 01-knapsack
algorithm is used to choose these extensions and new partial rows. Pseudo-code for
the Heuristic/Knapsack method is outlined in Algorithm 5.8.

Algorithm 5.8 Heuristic/Knapsack

Input: AG(w, l), R1, R2, C, B, vs, vg, α
Output: P
1: P ← GPR(AG(w, l), R1, C, αB, vs, vg)
2: for all vi ∈ P do
3: R2(vi)← 0
4: KL ← ∅
5: for all vi ∈ V where R2(vi) > 0 do
6: Find minimal cost insertion of vi to P and add to KL
7: while True do
8: CL ←01-knapsack(B − C(P), KL, R2)
9: for i← 1 . . . |CL| do

10: for j ← i+ 1 . . . |CL| do
11: if CL(i), CL(j) overlap and |CL(i)| > |CL(j)| then
12: R2(i)← R2(i) +R2(j), R2(j)← 0
13: Remove CL(j) from KL
14: else if CL(i), CL(j) overlap and |CL(i)| < |CL(j)| then
15: R2(j)← R2(j) +R2(i), R2(i)← 0
16: Remove CL(i) from KL
17: Break
18: if KL did not change then
19: Break
20: for i← 1 . . . |CL| do
21: Insert CL(i) into P

Initially, a path P is built over the AG using GPR seeking to maximize R1 rewards
with a proportion α of the total budget (line 1). All vertices which P visits then have
their R2 rewards set to 0, as these locations do not need to be visited again (lines 2-3).
Next, for every vertex with R2 rewards on the graph, the minimal cost insertion to the
path is computed and stored in a list KL (lines 4-6). These insertions are detours to
new vertices and back which make P longer but do not modify any other aspect of the
path. Next, the main loop begins which chooses a subset CL of KL that maximizes
the collected R2 rewards for the leftover budget B − C(P) (lines 7-19). The chosen
detours are then inserted into P giving the path to be returned. Note that if some
budget remains then GPR can be run again as in Algorithm 5.7 to utilize the rest for
finding R1 or R2 rewards by extending the path to some more vertices.

The main loop, where detours are chosen, deserves more explanation. The set of
possible detours KL, along with their insertion costs and R2 rewards, are synthesized
into a 01-knapsack problem, which chooses the most profitable subset of detours CL
for the remaining budget B−C(P) (line 8). Any chosen detours that are overlapping
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occur in the same row, and thus can be combined into a single detour (lines 11-
17). This combination simply means removing the shorter overlapping detours from
consideration and adding their rewards to the longer one, as the longer one necessarily
visits the same vertices and thus actually collects those rewards as well. If overlaps
are found, the 01-knapsack solver is rerun to find a more efficient solution, whereas
if none are found the main loop terminates (lines 18-19).

The computational complexity of this algorithm isO(w2l+αB·wl+(1−α)B·w2l2).
The first term comes from using GPR to create an initial path, the second is from
finding minimal cost insertions to the path (max length of P times the number of
possible locations for R2), and the last is from repeatedly using dynamic programming
to solve the 01-knapsack problem up to wl times. Considering the possibility of α = 0,
the worst case complexity reduces to O(B · w2l2). Finally, it should be noted that
because collection of R2 rewards is done by inserting detours to the initial path, it
makes little sense to have α ≤ 0.5 because the detours will overwhelm the initial path.
Therefore, reward functions that are more preferential to maximize should be set as
R1 for this algorithm and α ≤ 0.5 should not be used.

Weighted Addition

The next approach to maximize two reward functions at once on an AG is to
combine them into a single reward function over which GPR is run. This method,
called Weighted Addition, assigns a weight to each reward function that allows an
end user to manipulate the balance of collecting one reward versus the other with
a single parameter α. To keep the new reward function from being biased towards
one of the two original functions (excluding the weight parameter), the rewards are
normalized for each vertex. The new reward function used as input into GPR is given
as:

R(v) = α · R1(v)∑
vi∈V R1(vi)

+ (1− α) · R2(v)∑
vi∈V R2(vi)

∀v ∈ V (5.2)

This new reward function is similar to the expected information gain function in
[32], where two separate functions are normalized and combined as a weighted sum.
Due to the lack of a concrete physical interpretation to underpin a particular desired
quantitative outcome, the weight parameter α must be carefully selected. As the new
combined reward function is used directly by GPR when building a path, the worst
case computational complexity for using the weighted addition is the same as using
GPR, O(w2l).

5.2.2 Objective Constraint Methods

The methods presented in this subsection solve the AGOCBOOP. Like the AGDM-
BOOP methods, they are also meta-methods that can make use of AGOP solvers
other than GPR, but here are presented as using GPR for practicality reasons. Since
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objective constraint orienteering attempts to build paths that meet a minimum re-
quirement for the R2 reward function, the only required user definable parameter is
rmin.

Heuristic/Heuristic

Like the AGDMBOOP, a very simple way to solving the AGOCBOOP is to uti-
lize a heuristic algorithm to build a path twice in a row, first until it satisfies the
constraint and then again until the rest of the budget is consumed. This prioritizes
collecting R2 rewards until rmin is reached, and then focus is switched to collecting
R1 rewards. Because each objective function is assumed to be independent, and all
possible rewards are positive in AGOP problems, achieving R2(P) ≥ rmin first means
that the constraint will continue to be satisfied as long as the first part of P does
not change. This method works similarly to that described in section 5.2.1, except
the first run of GPR terminates immediately upon fulfilling the minimum bound
constraint. Algorithm 5.9 shows how this method is implemented.

This method is essentially the same as Algorithm 3.2, with the only changes
revolving around the two different reward functions. The cumulative sums from
either side of the graph must be computed for each (lines 2-7), and they need to be
updated after every iteration (line 39). The status of the constraint is checked before
calculating the next full-row or partial-row to add to the path so that the appropriate
reward function is used (lines 13-18, 23-28). Overall, the complexity of this algorithm
is the same as GPR, i.e. O(w2l).

Bisection GPR

Running a heuristic twice in a row to collect two different sets of rewards works,
however if one reward only needs to reach a minimum constrained value, then the pos-
sibility exists that the other reward is not optimally maximized. With this realization,
it may not be necessary to satisfy the constraint immediately and it can instead be
reached over the course of maximizing the other reward. It may be possible to satisfy
the lower bound while devoting only a small proportion of resources to it, however
the amount needed is difficult to anticipate. One method of finding the right balance
of resources is to use a bisection search, running on any of the methods presented in
subsection 5.2.1 and dynamically adjusting the parameter α. This approach is called
Bisection GPR and is presented in Algorithm 5.10.

The Bisection GPR method can be used with any of the methods that solve the
DMBOOP problem, Heuristic/Heuristic, Heuristic/Knapsack, or Weighted Addition.
These methods all take a parameter α which is used to adjust the relative importance
of the two reward functions, such that changing α will result in collecting more of
one reward, depending on which direction it is changed in. This is the principle that
Bisection GPR works on, calling the chosen DMBOOP method multiple times in a
loop until a stopping criteria is met (lines 3-4). In each iteration, α is updated to be
larger if rmin is not satisfied (lines 5-11), or smaller if rmin is satisfied (lines 12-14).



CHAPTER 5. BI-OBJECTIVE ORIENTEERING IN VINEYARDS 66

Algorithm 5.9 Objective Constraint Heuristic/Heuristic

Input: AG(w, l), R1, R2, C, B, vs, vg
Output: P
1: P = {vs}
2: for all vi,j ∈ V do

3: R1,i,j ←
∑l

n=j R1(i, n)

4: L1,i,j ←
∑j

n=1R1(i, n)

5: R2,i,j ←
∑l

n=j R2(i, n)

6: L2,i,j ←
∑j

n=1R2(i, n)
7: feasiblei,j ← True
8: while any(feasible) = True do
9: for all vi,j ∈ V do

10: if feasible(i, j,P) 6= True then
11: feasiblei,j ← False
12: for all feasiblei,j do
13: if R2(P) < rmin then
14: R′i,j ← R2,i,j/C(P(end), vi,j , vi,n)
15: L′i,j ← L2,i,j/C(P(end), vi,j , vi,1)
16: else
17: R′i,j ← R1,i,j/C(P(end), vi,j , vi,n)
18: L′i,j ← L1,i,j/C(P(end), vi,j , vi,1)
19: for i← 1 to w do
20: if feasible(i,P) 6= True then
21: feasiblei ← False
22: for all feasiblei do
23: if R2(P) < rmin then
24: R′i,1 ← R2,i,1/C(P(end), vi,1)
25: L′i,n ← R2,i,n/C(P(end), vi,n)
26: else
27: R′i,1 ← R1,i,1/C(P(end), vi,1)
28: L′i,n ← R1,i,n/C(P(end), vi,n)
29: if P(end)j = l then
30: best← arg maxR′i,1, R

′
i,j

31: side = l
32: else
33: best← arg maxL′i,l, L

′
i,j

34: side = 1
35: to P append path from P(end) to best
36: if P(end)j 6= 1 or l then
37: to P append path from P(end) to vi,side
38: feasiblebest ← False
39: update R(1, i, j), L(1, i, j), R(2, i, j) and L(2, i, j) for i = besti
40: to P append path from P(end) to vg
41: return P
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Algorithm 5.10 Bisection GPR

Input: AG(w, l), R1, R2, C, B, vs, vg
Output: P
1: αh = 1; αl = 0; α = 0.5
2: P = ∅
3: while αh − αl > ε do
4: Pnext ← AGDMBOOP-GPR(AG(w, l), R1, R2, C, B, vs, vg, α)
5: if R2(Pnext) ≥ rmin and R1(Pnext) > R1(P) then
6: P = Pnext
7: αl = α
8: α = (α+ αh)/2
9: else if R2 ≥ rmin then

10: αl = α
11: α = (α+ αh)/2
12: else
13: αh = α
14: α = (α+ αl)/2
15: return return P

The stopping criteria for the main loop is shown here as ε, the minimal allowed
change in α, however it could also be a minimal change in one of the reward values or
receiving the same P two iterations in a row. Eventually, this causes Algorithm 5.10
to terminate, which gives a computational complexity of O(X · log(1/ε)), where X is
the complexity of the bi-objective GPR method used within.

5.3 Experimental Evaluation

As with the AGOP and AGTOP, assessments were made of the methods pre-
sented in section 5.2 using a real-life vineyard on which robotics problems could be
simulated. For the bi-objective problems, two reward functions had to be defined,
with the first one representing the irrigation rewards given for a robot adjusting irri-
gation emitters at each vine like the experiments in section 4.4 and section 5.3. The
second reward function was made to represent the benefit of collecting additional soil
moisture samples using a robot with an onboard probe, much like the one shown in
Figure 5.1. Results shown in this section were originally showcased in [122].

5.3.1 Vineyard AG with Two Rewards

The algorithms given in section 5.2 were assessed using a number of different sim-
ulations built using data collected from a commercial vineyard located near Madera,
California. The vineyard on which the tests were performed has w = 275 rows and
l = 214 vines per row for a total of 58, 850 vines. Rows were spaced 8 feet (2.43 meters)
apart and vines were spaced 6 feet (1.83 meters) apart, giving a plot size of roughly
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Figure 5.1: A prototype robot built with the Clearpath Husky platform and equipped
with a linear actuator mounted soil moisture probe connected to a data logger.
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64 acres (25.9 hectare). Soil moisture values were sampled manually across this vine-
yard at 72 uniformly spaced locations. The instrument used was a Hydrosense HS2P
manufactured by Campbell Scientific, which is capable of GPS logging and taking
multiple measurements at every location. In total 9 different data sets were collected,
and for each sample locations were probed within a 3 hour window during a single
summer day to produce an accurate snapshot of soil conditions. Figure 5.2 shows an
aerial view of sample locations of the vineyard.

Kriging, a Gaussian Process interpolation procedure (see [94]), was used to obtain
a continuous map of soil moisture values as well as estimation variance values for
every vine location in the vineyard. These were used to create the reward functions
necessary for the AGBOOP problems. The absolute value of the desired soil mois-
ture value M minus the measured interpolated values m(v) gave one set of rewards,
R1(v) = |M − m(v)|, and the variance values were directly used for the other set
of rewards, R2(v) = σ2(v). In this case, R1 represented the irrigation rewards for
adjusting irrigation emitters at each vertex, and R2 represented the sampling rewards
for taking an additional soil moisture sample. An interesting property of variance
calculated by Kriging of uniformly spaced samples is that the variance values are also
uniformly spaced. Because of this, some vertices were randomly given R2(v) = 0 and
noise was added to the remaining vertices to discourage uniformity. An example of
heat maps displaying both types of rewards is given in Figure 5.3.

A range of 13 different budgets B were tested along with various values for α
and rmin to thoroughly test each algorithm on each data set. The results shown are
averages for all data sets across a single value of B and α or rmin. This was done to
eliminate fluctuations due to reward disparities and clearly exhibit the results without
bias for any single simulation or data set.

5.3.2 Dual Maximization

The three methods outlined for solving the AGDMBOOP - Heuristic/Heuristic,
Heuristic/Knapsack, and Weighted Addition - were run on the test AG with different
data sets while varying the total budget B and user parameter α. The results of these
tests can be seen in Figure 5.4 and Figure 5.5. All of the reward values are normalized
such that a value of 1 on the y-axis coincides with collecting 100% of the rewards for
the corresponding reward function. For comparison, GPR from section 3.3 is shown as
well, which was always provided with the full budget and does not change depending
on α. This was done to provide results of collecting both rewards using a solver that
only considers R1 irrigation rewards when building an output path and is agnostic
of R2 sampling rewards. α ≤ 0.5 was not tested because it is functionally similar to
switching R1 and R2 rewards and testing with 1 ≥ α ≥ 0.5.

With the variation of α, a trend emerges in the irrigation reward R1 results of
each method, shown by Figure 5.4. For values of α close to 1, all methods collect
nearly identical irrigation rewards and follows closely the results of the standard GPR
algorithm. This is because each each method is based on GPR, and at α = 1 they are
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Figure 5.2: Locations where soil moisture data was collected in a vineyard outside of
Madera, California.
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(a) (b)

Figure 5.3: (a) Irrigation rewards R1 and (b) Sampling rewards R2 for every vertex in
the graph. Note that irrigation rewards are available at every vertex while sampling
rewards are available at a limited number of vertices. Large dots are used for enhanced
visual depiction of the locations, and white space or lack of a dot signifies a location
where R2(v) = 0.
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Figure 5.4: Irrigation rewards R1 collected using each of the proposed AGDMBOOP
methods with different values of parameter α.
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Figure 5.5: Sampling rewards R2 collected using each of the proposed AGDMBOOP
methods with different values of parameter α.
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reduced to exactly the same algorithm. Intuitively, the opposite is true, where the
closer to α = 0 the methods diverge from each other. Particularly, the differences are
seen easily when α = 0.5, where GPR collects the most irrigation rewards through
all budgets tested, Heuristic/Knapsack collects the least through the majority of
tested budget, and Weighted Addition is tied with Heuristic/Heuristic initially but
eventually wins.

There is a much different trend in the results of each method regarding changes
of α effecting the sampling reward R2 results, shown by Figure 5.5. There is a clear
disparity between all methods at every value of α tested, with a large separation
between GPR which is agnostic to sample rewards and the other algorithms which are
not. Even when α = 0.9, the difference is significant and much more sampling rewards
are collected, whereas smaller values of α just increase the gap. When α ≥ 0.8, the
best method at collecting sampling rewards seems to be Heuristic/Knapsack but only
at larger budgets. When α decreases, Weighted Addition eventually becomes the
most effective for the entire range of tested budgets. The Heuristic/Heuristic method
always collects more than GPR, but almost always less than every other method.

Evidently, when α ≥ 0.9, representative of placing a large importance on collecting
R1 rewards, the Heuristic/Knapsack method is best because it collects a substantial
amount of R2 rewards while also nearly matching GPR’s performance on R1 rewards.
Moreover, as α gets smaller and R2 rewards become more important, Weighted Ad-
dition becomes the preferred choice.

5.3.3 Objective Constraint

The AGOCBOOP methods - Heuristic/Heuristic and Bisection GPR using each of
the AGDMBOOP algorithms - were run on the test AG with different datasets while
varying the total budget B. Performance was considered while constraining rmin to
be 50% of all R2 rewards, and therefore any output path collecting less than that was
considered a failure thus receiving 0 rewards for both R1 and R2. Figure 5.6 shows
tests where the sampling rewards were set as R2 and constrained, while Figure 5.7
shows tests where irrigation rewards were set as R2 and constrained.

In the case of maximizing irrigation rewards while constraining sampling rewards,
the performance of each proposed method is similar. GPR, which does not attempt
to collect sampling rewards and does so passively, fails for half of the budgets to
meet rmin, and therefore is shown in Figure 5.6 as having collected zero rewards.
The Bisection method using Heuristic/Knapsack (green) did not satisfy the mini-
mum sampling reward requirement on the two smallest budgets, while the rest of
the AGOCBOOP did not satisfy the constraint on only the smallest budget. With
larger budgets, the Bisection method using either Heuristic/Heuristic (red), Heuris-
tic/Knapsack (green), or Weighted Addition (blue) had similar performance, however
with lower-range budgets the Heuristic/Knapsack Bisection search performed worse
than the others. Bisection using Heuristic/Heuristic seems to be the top overall per-
former because it met the minimum bound in all tests while collecting the most or
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(a) (b)

Figure 5.6: (a) Irrigation rewards R1 and (b) sampling rewards R2 for the Heuris-
tic/Heuristic and Bisection AGOCBOOP methods, where rmin = 0.5 ·

∑
v∈V R2(v).

Legend: Magenta is Heuristic/Heuristic, red is Heuristic/Heuristic Bisection, green
is Heuristic/Knapsack Bisection, blue is Weighted Addition, and black is GPR.

nearly the most irrigation rewards.
In the case of maximizing sampling rewards while constraining irrigation re-

wards, the results differ appreciably. Each of the methods misses the constraint with
smaller budgets, however Bisection with Heuristic/Knapsack (green) and Bisection
with Heuristic/Heuristic (red) took longer to meet rmin. Regarding the maximization
of sampling rewards, results vary with Heuristic/Heuristic (magenta) working best
at lower budgets, but then switches places with Heuristic/Heuristic Bisection (red)
and eventually Heuristic/Knapsack Bisection (green). Interestingly, Bisection with
Weighted Addition (blue) performed exactly the same as GPR (black), suggesting
that the method does not work well with trying to maximize the sparsely distributed
sampling rewards.

5.4 Conclusion

This chapter studied the BOOP where two reward functions were considered in
orienteering on AGs. Because of the nature of multi-objective optimization, it was
possible to define two sub-types of the BOOP, one attempting to maximize both
objectives at once, and attempting to meet a minimum constraint on one objective
while maximizing the other. Three methods were developed to solve the AGDM-
BOOP - Heuristic/Heuristic which runs two instances of GPR in succession, Heuris-
tic/Knapsack which runs GPR to form an initial path then finds ways to augment
it using the 01-knapsack problem, and Weighted Addition which combines the two
reward functions into a single function. Two methods were developed to solve the
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(a) (b)

Figure 5.7: (a) Irrigation rewards R2 and (b) sampling rewards R1 for the Heuris-
tic/Heuristic and Bisection AGOCBOOP methods, where rmin = 0.5 ·

∑
v∈V R2(v).

Legend: Magenta is Heuristic/Heuristic, red is Heuristic/Heuristic Bisection, green
is Heuristic/Knapsack Bisection, blue is Weighted Addition, and black is GPR. Note
that lines for Weighed Addition and GPR are overlapping.

AGOCBOOP - Another Heuristic/Heuristic method which runs GPR until the con-
straint is satisfied and switches to maximization, and the Bisection GPR method
which uses any AGDMBOOP method to dynamically search for the best input pa-
rameter that meets the constraint and maximizes the other reward. These methods
were tested on a robotics problem concerning precision irrigation adjustment and soil
moisture sampling within a real-world vineyard. Overall, the Weighted Addition ap-
proach seems to work best for the AGDMBOOP, while the Bisection method using
Heuristic/Heuristic generally performed best on the AGOCBOOP.



Chapter 6

Stochastic Orienteering with
Chance Constraints

The OP and its variants as formulated in previous chapters all rely on the assump-
tion of deterministic values for the costs of edges. However, as discussed in section 2.6,
problems based upon real-world situations are very much stochastic in nature. This
chapter explores a method to solve the SOPCC using CMDPs and discusses some of
its improvements. Work here was initially presented in [116, 117].

6.1 SOPCC Background

Orienteering, as defined earlier in section 3.1 assumes the cost function for edges
is deterministic, i.e. c : E → R≥0. For a given complete graph G(V,E), a path P over
G will have a total cost C(P) which is the sum of all costs for each traversal of an
edge. Because the cost function is deterministic, every potential path on G will have
a deterministic cost. Therefore, it can be determined with certainty whether or not
a path P violates a budget constraint B. In the deterministic OP, this fact means
that the problem’s solution (if it has one) is also deterministic (but not necessarily
unique). To understand how this is relevant to the SOP, first the concept of a path
policy must be explained. Then, the SOP and SOPCC can be defined.

6.1.1 Path Policy

Let P be a path in G and let v1 = P(1), v1 = P(1), . . . , v|P| = P(|P|) be the
sequence of all |P| vertices along P . For a path that lead from vs to vg, this means
that v1 = vs and v|P| = vg. For vi ∈ P , the set of vertices following vi in the path
can be given as S(vi) = {vi+1, vi+2, . . . , v|P|}. For convenience, the last vertex in the
path follows the definition S(v|P|) = ∅. Given a path P , a path policy π is a function
defined over P ×R+ → P such that for each vj ∈ P and each t ∈ R+, the path policy
is prescribed as π(vj, t) ∈ S(vj). In essence, for every t, π(vj, t) maps vj onto one of
the following vertices along the path.

For a simple path policy, defining a deterministic path along a predetermined
sequence of vertices, the policy is simply given as π(vj = P(j), t) → P(j + 1) for all
t and 1 ≤ j < |P| − 1, and π(v|P|, t) = ∅ for all t. This means that any arbitrary
path in G can be defined as a path policy. Therefore, the solution to the OP can be

77
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v1 v2 v3 v4 v5

Figure 6.1: In a hypothetical path of 5 vertices, a path policy without shortcuts will
lead it sequentially from v1 to v2, v3, v4 and finally v5. However, if the path policy
were allowed shortcuts, say at v2, then the sequence of vertices visited may change.
In particular, v3, v4, or both v3 and v4 may be skipped by an agent following a policy
that tells it to do so, thus arriving at v5 having visited fewer vertices.

given as a path policy as well. However, a path policy need not follow strictly the
exact same ordering of vertices from a given path. In fact, as defined here a path
policy can map a vertex in the path vj to any successor vertex S(vj), depending on
the given t. The reason to introduce path policies this way is to formalize the idea
of taking a shortcut along a path solving an instance of the OP with random travel
times along the edges. Assuming an agent starts moving along the path at time t = 0,
the path policy introduces a formal way to skip some vertices along the way based on
the current time and position. In particular, if the objective is to reach the last vertex
before the temporal deadline B, a path policy π can be defined to skip vertices when
the time t is approaching B (see Figure 6.1). Thus, a path policy allows an agent to
take into account the stochastic of edge traversal when moving across a graph visiting
vertices, and therefore is useful to define for the SOP.

6.1.2 The Stochastic Orienteering Problem

Let G, vs, vg, R, and B be defined as before. For every edge e ∈ E, let fe be
a probability density function (PDF) with positive support and finite expectation.
Every time an edge ei,j is traversed, the incurred cost is not constant, but instead is
a random variable ci,j whose PDF is fe. For a path P = {v1, . . . , v|P|} and a path
policy π, an agent starts at time t = 0 in vertex v1 and moves to vi = π(v1, 0) arriving
at time ti where ti is a random variable with PDF fv1,vi . Once in vi, the agent moves
to vj = π(vi, ti) arriving at time ti + tj, where tj a random variable with PDF fvi,vj .
The process continues until the agent arrives at the last vertex of the path v|P|. In
this case both the cost to complete the path and the reward collected along the path
are random variables. In particular, the cost indicated by C(P , π), is the random
variable of the cost associated with completing path P following policy π, and the
reward indicated by R(P , π) is the random variable of the reward associated with
with completing P following π. Now the SOP can be defined and is given as:

Stochastic Orienteering Problem (SOP): Given a graph G(V,E)
with stochastic cost function C, PDFs for the cost of each edge fe, a
reward function R, vertices within the graph vs, vg ∈ V , and a constant
B, find a path P ⊂ V beginning at vs and ending at vg and policy π
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which, for an agent following π, accrues an expected cost no more than B
and maximizes the expected cumulative reward of visited vertices.

Notice here that the SOP requires maximizing the expected cumulative reward
of the path maxE[R(P , π)] while also limiting the expected total cost of the path
E[C(P , π)] ≤ B. For a given path and path policy it is always E[R(P , π)] ≤ R(P)
because π can only skip vertices along the path and is thus constrained to being able
to visit the same vertices. Considering that a SOP with all edges having zero variance
PDFs is equivalent to the deterministic OP, the OP is evidently a special case of the
SOP, and therefore the latter is NP-hard.

6.1.3 The Stochastic Orienteering Problem with Chance Con-
straints

The SOP as introduced seems useful for orienteering in environments where travel
costs between vertices are stochastic, but it is not ideal for real-world problems. This
is because solutions to the SOP only adhere to the budget constraint in expectation,
meaning that it is very likely for the realized traversal cost of the path and policy
to be greater than the budget. Violating the budget is a very undesirable situation,
however, as this is often a restriction set by some physical constraint, such as fuel
usage or time deadlines. Therefore, it makes sense to redefine the problem such that
the probability of violating the budget constraint B is bounded by a pre-assigned
constant 0 ≤ Pf ≤ 1. This is the SOPCC, and it is formally defined as:

Stochastic Orienteering Problem with Chance Constraints (SOPCC):
Given a graph G(V,E) with stochastic cost function C, PDFs for the cost
of each edge fe, a reward function R, vertices within the graph vs, vg ∈ V ,
and constants B,Pf , find a path P ⊂ V beginning at vs and ending at vg
and policy π which, for an agent following π, accrues a total cost greater
than B with probability no more than Pf , and maximizes the expected
cumulative reward of visited vertices.

For a given failure probability Pf , the SOP asks to determine a path P and a
path policy π that maximizes the expected sum of rewards E[R(P , π)] such that
Pr[C(P , π) > B] ≤ Pf . As before, when the PDF for each edge has zero variance,
the problem is equivalent to the deterministic version of the OP as long as Pf < 1
(when Pf = 1, the budget may be violated).

6.2 A Markovian Approach to Stochastic Orien-

teering

A common tool for constructing policies in stochastic decision making problems is
the MDP and its derivatives. This section presents work from [116] focusing on finding
path policies by constructing a special form of MDP and CMDP for the SOPCC.
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6.2.1 MDPs for the SOP

For the time being, assume that a path P in G has been given. An agent moving
along a path P = {v1, . . . , v|P|} and following a path policy π moves from vertex
to vertex, and whenever it is positioned at vertex v ∈ P it can move to any of the
subsequent vertices found in the set S(v). The time it takes to make this transition is
characterized by the pdf associated with the edge it will traverse next. This naturally
leads to a formalism based on the MDP over a suitably defined augmented state space.
In the following, it is assumed that the reader is familiar with MDPs; [19] is referred
for a comprehensive introduction. A finite MDP is given asM = {S,A,Pr, R} where
S is the set of states, A is the set of actions, Pr is the transition kernel, and R is the
reward function associated with every state/action pair. Note that the notation for
the reward function is the same as that used for the orienteering reward function in
earlier chapters, and while they are separate concepts, the former is indeed derived
from the latter. For the SOP defined in section 6.1, the MDP can be defined as
follows:

• The state space is S = V × T, where V is the set of vertices in the path P and
T is a suitable time discretization with step ∆. More precisely, T is a collection
of successive time intervals where the k-th interval is tk = [k∆, (k + 1)∆),
assuming that t0 ∈ T is the first one. An important question is how many
intervals should there be in T, and this will be answered later. The composite
state (vi, tk) represents the fact that the agent arrived at vertex vi during the
time interval associated with tk. In the following, for brevity, time tk is used
for the whole interval.

• The action set for each state (v, t) is S(v), i.e., the set of vertices following v
along path P . Note that the action set for (v, t) does not depend on t.

• The transition kernel Pr is the probability that the next state is (vj, tk), as-
suming that action a is executed from state (v, ti). This is usually indicated as
Pr((v, ti), a, (vj, tk)). Action a is an action in S(v), i.e., a vertex vj following
v along the path indicates that the agent will move from v to vj. Therefore
the transition probability is 0 for all states (vi, t) with i 6= j. For states of the
type (vj, tk) with k ≤ i, the probability is also 0 because the agent can not go
back in time. For the remaining vertices (vj, tk) with k > i, the probability is
computed as

Pr((v, ti), vj, (vj, tk)) =

∫ (ti+1)∆

ti∆

[F (∆(tk + 1)− ξ)− F (∆tk − ξ)]dξ (6.1)

where F is the cumulative function of the pdf f associated with the edge from
v to vj. For a given pdf, this integral can be computed numerically, off-line.

• The reward function R associated to the state/action pair ((vi, t), vj) is R(vi),
i.e., the reward associated with the vertex vi in G.
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The cumulative reward function used to determine the policy is critical to the def-
inition of an MDP, and therefore should be expounded. In this case a non-discounted
reward is used, and to ensure that the overall reward remains bounded, two special
states, the failure state sf and the absorbing (or loop) state sl, are added. The failure
state also answers the formerly raised question of how many elements there should
be in the discretized time set T. Specifically, for a chosen discretization step ∆ the
number of intervals in T will be N = dB

∆
e. The addition of sf is used to represent the

condition where the elapsed time is higher than the temporal budget B. The tran-
sition kernel Pr is accordingly extended so that for each vertex vi, Pr((vi, tk), vj, sf )
is the probability that vj is not reached before exceeding B. The action set of the
failure state sf consists of a single action al leading to sl with probability 1, while
the action set of sl consists of a single action, al, looping to itself with probability 1.
The reward associated with these new state action pairs is R(sf , al) = R(sl, al) = 0,
i.e., once entered those states do not accrue any more reward. Finally, for all states
of the type (v|P|, ti) (recall that v|P| is the last vertex along the path), an action al
leading to sl with probability 1 is added. Figure Figure 6.2 illustrates the structure
of this MDP.

The structure of this MDP is similar to that presented in [45, 106]. By introducing
suitable failure and loop states, it is possible to carefully design control policies that
account for the possibility of failure. In this case, the failure probability is the prob-
ability of not reaching the last vertex along the path within the temporal deadline
B, or equivalently, the probability of landing in sf when following a policy. As usual,
a policy for the MDP is a function π : S → A mapping states into actions, and in
the proposed structure a policy for the MDP is indeed a path policy for the path P .
With the proposed MDP structure, the probability of reaching sl under any policy
π for the MDP is 1. Therefore, the following non-discounted reward function for a
policy π and start state (v0, t0) can be considered:

E[R(P , π)] = R(π) = E

[
∞∑
t=1

R(Xt, π(Xt))

]
(6.2)

where Xi is the random variable for the state at time t and the expectation is taken
with respect to the probability distribution induced by π. This expectation exists
and is finite because the state sl will be reached with probability 1 within a finite
number of transitions and no more rewards will be collected from there onward.

6.2.2 CMDPs for the SOPCC

The MDP formulation focuses on a single objective function and is not suited to
solving the SOPCC, where the goal is to maximize the expected collected rewards
while making sure within a certain probability that the last vertex is reached within
the budget. To achieve this goal, it is necessary to introduce a CMDP based approach,
utilizing a model with more than one objective function where the policy aims at
maximizing one of the objective functions while ensuring bounds in expectation for
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Figure 6.2: States in the MDP can be described as arranged on a grid with vertices
(rows) and arrival times (columns). Arrows are depicted for some of the transitions
with non zero probability. From a state (for example (v1, t0)) it is possible to go to
any of the following vertices, and when moving towards a vertex (say v2), the time
of arrival can in principle be any of the times ti > t0 because of the random nature
of the edge travel time. The event of reaching a vertex after the temporal deadline
B has passed is modeled as a transition towards the failure state sf . Note that once
the state reaches the last vertex in the path v|P|, a deterministic transition is made
to the loop state sl where no more rewards are accrued.
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the others [4]. More precisely, a new cost function D(s, a) is introduced for every
state/action pair d : S × A → R+ that is 0 everywhere except for (sf , al) where
it is 1. A CMDP defined this way, denoted by CM = {S,A,Pr, R,D, Pf , β}, can
be solved through the following linear program, where the optimization variable ρ is
defined over the set of state/action pairs S×A, with β as a function that is 1 for the
start state (v1, t0) and 0 everywhere else:

max
ρ

∑
(x,a)∈S×A

ρ(x, a)r(x, a) (6.3)

s.t.
∑

(x,a)∈S×A

ρ(x, a)D(x, a) ≤ Pf (6.4)

∑
y∈S

∑
a∈S(y)

ρ(y, a)(δx(y)− Payx) = β(x) ∀x ∈ S \ {sl} (6.5)

ρ(x, a) ≥ 0 ∀(x, a) ∈ S × A (6.6)

The linear program has a solution if and only if a policy π can be found that
satisfies the constraint on the cost, and is uniquely defined by the solution vector ρ.
The reader is referred to [40, 45, 106] for a detailed discussion about this approach.
Theorem 6.2.1 shows that the above linear program indeed defines a policy satisfying
the constraint on the failure probability Pf and is a minor adaptation of what was
presented in [45]. Before stating the theorem it is useful to recall that the optimization
variables ρ(x, a) are so-called occupation measures and correspond to the following:

ρ(x, a) =
∞∑
t=1

Pr[Xt = x,At = a]

where Xt is the random variable for the state at time t and At is the random variable
for the action at time t.

Theorem 6.2.1. If the linear program admits a solution, then the associated policy
π fails to reach the last state v|P| within budget B with probability at most Pf .

Proof. With reference to Figure 6.2, consider any path that starts from (v1, t0) and at
a certain point enters sf . Because costD is zero everywhere, except in the state/action
pair (sf , al) and that in sf just the action al can be taken, the constraint can be written
as

ρ(sf , al) =
∞∑
t=1

Pr[Xt = sf ] ≤ Pf

and that is the probability of ever entering the failure state, i.e., the probability of
exceeding the temporal deadline B.

The formulation based on a CMDP leads to the following algorithm to solve an
instance of the SOP introduced in section 6.1:
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Algorithm 6.11 Solve SOPCC

Input: G(V,E), R, C, B, vs, vg, Pf
Output: P, π
1: Z(e) = E[C(e)]∀e
2: P ← OP-solver(G(V,E), R, Z, B, vs, vg)
3: CM = {P × T,S(v)∀v ∈ P,Pr, R,D, Pf , β(vs) = 1}
4: π, ρ← CMDP-solver(CM)
5: return P, π

First, a new cost function for the edges is set up based on the expected value
of every edge (line 1), so that the deterministic orienteering solver can be used to
create an initial path (line 2). This is then used to set up and solve the CMDP CM
as outlined above (lines 3-4). The quality of the solution of this proposed algorithm
is dependent on the method used to solve the deterministic OP. For small problem
instances one could obtain an exact solution using the standard mixed integer linear
program to solve the OP (see section 3.1), and for larger problem instances a heuristic
or an approximation method may be used. There are a number of problems with this
approach, mainly the inefficient discretization of time in T and the lack of adaptivity
with the vertices in P . Accordingly, these are addressed in Chapter 7.

6.3 Complexity and Heuristics

The approach of adapting a deterministic orienteering path into a stochastic orien-
teering policy utilizing shortcuts to constrain failure probability faces a quick growth
in computation time as the problem size increases. As the state space grows, the
number of possible state-action pairs grows super-linearly and computation time be-
comes intractable. The approach proposed in this chapter makes use of a CMDP,
which can be solved using a linear program and thus has a known computational
complexity dependent on the number of state/action pairs |S × A|. For the method
described in section 6.2, this number is equal to

|T| · |P|(|P| − 1)

2
+ 2 = O(|T| · |P|2) (6.7)

the number of time intervals for each vertex times the number of possible transitions
in P (including shortcuts) plus the transitions to and from sl. Since |P| determines
how many possible transitions there are, this intuitively means that the computation
time to solve the CMDP depends on two main factors, |P| and the chosen number
of time intervals in T. The natural methods to decrease the number of state/action
pairs and therefore the computation time are to reduce the number of time intervals
for each vertex and to reduce the length of the path |P|. Doing one or both of these
would likely have a very negative effect on the quality of the final solution, and are
thus not preferred.
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Figure 6.3: Connectivity from vertex vi when ks = 3.

There is another way to keep the CMDP computation time in check, without
reducing the number of states. It is to limit number of state/action pairs given
to the CMDP, which in turn limits the number of decision variables and therefore
computation time. In section 6.1 the path policy was devised such that, at any given
vertex vi ∈ P , the set of possible actions S(vi) allowed for visiting any subsequent
vertex vi+1, vi+2, . . . , v|P|. As such, the total number of actions for all vertices is
|P|(|P|−1)

2
. To reduce the number of state/action pairs, instead of allowing the set of

actions jumping to any subsequent vertex from vi, only a size ks subset of these actions
is allowed, denoted as A(vi) ⊂ S(vi). Thus there will be only ks(|P| − ks) + ks(ks−1)

2

actions for all vertices, which will significantly reduce the CMDP size if ks << |P|.
The new number of state/action pairs will be

|T| ·
[
ks(|P| − ks) +

ks(ks − 1)

2

]
+ 2 = O(|T| · ks|P|) (6.8)

Accordingly, the reduction in decision variables will also reduce the expected reward
for a computed policy.

How the subset of S(vi) is chosen will have a large effect on the expected reward
of the resulting policy. A simple method of choosing A(vi) is to keep actions leading
to the next ks vertices, so A(vi) = vi+1, . . . , vi+ks . With some combinations of paths
and failure probabilities, this can lead to scenarios where there is no feasible solution.
This is because an agent following a policy may be in a state where failure will occur
because there is not enough budget left to travel to v|P|. A way to mitigate these
scenarios is to keep the next ks − 1 vertices and also v|P| in A(vi), so that a shortcut
to the end vertex can be taken when failure is imminent. An example of this vertex
connectivity is shown in Figure Figure 6.3.

In an effort to reduce the loss in expected reward when eliminating potential
shortcuts, the following heuristic was developed to determine the best shortcuts to
keep at vi:

H(vi, vj) =
R(Pj,|P|)
E[cvi,vj ]

(6.9)

where Pj,|P| is a sub-path of P starting at vj and ending at v|P|. Recall that R and
C are the reward and cost functions for a given path and cvi,vj is a random variable
for the cost to travel directly from vi to vj. This heuristic function weighs potential
future reward against the expected cost for taking a given shortcut. The idea with
this is that parts of P can be safely skipped if they add little to the cumulative reward
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and the cost for skipping them is small, thus the likelihood that a policy would skip
them is large. Using the heuristic function, the set of actions A(vi) consists of the
vertices vj; i < j < |P| with the ks − 1 largest values of H(vi, vj) and v|P|.

Algorithm 6.12 Solve SOPCC with Heuristics

Input: G(V,E), R, C, B, vs, vg, Pf , k, s
Output: PT , πnew
1: Z(e) = E[C(e)]∀e
2: P ← OP-solver(G(V,E), R, Z, B, vs, vg)
3: for all vi ∈ P do
4: for all vj ∈ P do
5: H(vi, vj) = R(Pj,|P|)/E[cvi,vj ]
6: In S(vi) keep only ks − 1 actions with highest H and vg
7: CM = {P × T,S(v)∀v ∈ P,Pr, R,D, Pf , β(vs) = 1}
8: π, ρ← CMDP-solver(CM)
9: return P, π

Algorithm 6.12 shows pseudo-code making use of this heuristic. After the initial
path is found (line 2) the heuristic value of actions for each vertex going to every
other vertex is evaluated (lines 3-6). Of each action at a particular vertex vi, only the
top ks − 1 actions are kept in S(vi) as well as the action leading to the goal vertex
(6). This reduced action set S for all vertices is then used to create the CMDP and
a viable policy is found if one exists (lines 7-8).

6.4 Performance on Randomized Graphs

This section presents an overview of results obtained solving the SOPCC using
the method described in this chapter. Synthetic SOPCC problems were designed
to compare and contrast how changing the probability of failure and the number of
shortcuts changes the expected reward collected by a policy.

6.4.1 Simulation Setup

Vertices of the graph G are obtained sampling the unit square with a uniform
distribution, and edges are added to make a complete graph. Each vertex is associ-
ated with a constant reward randomly sampled from a uniform distribution over the
interval [0, 1]. The stochastic travel time between vertices is obtained as follows. Let
di,j be the Euclidean distance between vi and vj, and 0 < α < 1. Then, the travel
distance along edge (vi, vj) is

αdi,j + E
(

1

(1− α)di,j

)
(6.10)

where E(λ) is a random sample obtained from an exponential distribution with pa-
rameter λ. As per the properties of the exponential distribution, it follows that the
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expected cost of the random variable associated with edge (vi, vj) is di,j and the
variance is ((1− α)di,j)

2.
The method presented in this chapter utilizes an existing deterministic orienteering

algorithm to compute the initial path. In every test displayed here, the S-algorithm
heuristic described in [126] is used due to its relative speed and robustness. It is
possible to use an exact solver based on a mixed integer program formulation, however
this often takes longer than solving the CMDP and is impractical for the adaptive
path method, which would repeatedly call the solver. Regardless, the output is a
path P whose expected length is smaller than or equal to B. It is worth recalling,
however, that if one were to follow all vertices in the path without using a path policy
π, the temporal deadline B would be often missed, and for the setup described this
happens roughly half the time.

The initial orienteering path P remains fixed for a given set of parameters across
the methods introduced in this chapter so that a fair comparison can be made. The
fraction of collected reward is E[R(P,π)]

R(P)
, or the expected reward collected by the policy

divided by the total reward collected over the deterministic orienteering path. After-
ward, the path is discarded, a new graph G is generated, and the processes is repeated
until the methods have been compared over 10 instances. The results computed using
a particular set of parameters are averaged for all paths.

6.4.2 Varying Time and Length of P
Algorithm 6.11, using the shortcut heuristic described in section 6.3 is analyzed

with different values of ks. When ks = ∞, the heuristic is equivalent to keeping all
shortcut actions. The number of time intervals in T, the probability of failure Pf , and
the parameter α are varied while keeping the length of P fixed, the results of which
are shown in Figure 6.4. Also varied are the number of vertices in the path, which is
shown in Figure 6.5, while keeping the number of time intervals fixed.

Several things are apparent in the results with a fixed initial path length |P| = 30
and the number of time steps is varied. First, Pf has a large effect on the expected
reward. The closer Pf gets to zero, the lower the expected reward. This happens
because the policy requires taking shortcuts more often to meet the failure constraint,
thereby skipping more vertices and missing out on reward. Second, as the number of
time steps increases, the expected reward grows. This is due to the policy having a
greater time resolution over which to choose actions; higher resolution means better
choices are made. Third, the parameter α also has a large effect on the expected
reward. Larger values of α mean less variance in the edge costs, and therefore each
action directed by the policy is less risky so it can collect more reward. Fourth, even if
α is random and different for each edge, the policy is still able to collect a large fraction
of the reward despite P being fixed. This is because π will avoid taking edges with
high variance when they do not yield high reward. Fifth, using shortcut heuristics
has a small effect on the expected reward but a huge effect on the computation time.
There is little expected reward loss when ks = 5 but it consistently takes less than half
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(a) (b)

(c) (d)

Figure 6.4: Rewards and computation time when the path length is fixed to 30
vertices. Each graph shares the same legend. (a) Average rewards for the fixed
resolution method when α = 0.75. (b) Average rewards for the fixed resolution
method when α = 0.5. (c) Average rewards for the fixed resolution method when α
is a uniform random variable. (d) Average time taken to compute a policy π with
the given parameters.
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(a) (b)

Figure 6.5: Rewards and computation time when the number of time steps is fixed at
30. Both graphs share the same legend. (a) Average rewards for the fixed resolution
method when α is a uniform random variable. (b) Average time taken to compute a
policy π with the given parameters.

the time of ks = ∞ to run. Sixth, Pf and α have no effect on the run time, but the
number of time intervals does. The fixed resolution algorithm will take roughly the
same time regardless of the chosen failure probability or the variability in edge costs,
but the computation time will increase with increased time steps roughly linearly.
And finally, changes in α notably do not affect relative efficiencies when Pf or ks are
fixed, and only the spread changes.

When the number of time intervals is fixed |T| = 30 and the length of the path is
varied, a few more observations can be made. Changes in α effected these tests in a
similar manner as before, whereby the only difference was a change in the spread of
rewards collected but no change in the relative differences for each Pf or ks. Results
for a randomized α are representative of results for fixed values for α as well. The
number of vertices in the path seems to slightly effect the policy’s expected reward
relative to the path. A longer P will lead to a policy that achieves a greater fraction
expected reward than a shorter P , and this trend seems more substantial with tighter
failure bounds. Also, the number of vertices in P has a large effect on the amount
of computation time required to create a policy, however shortcut heuristics are very
helpful in limiting the growth rate of computation time.

6.5 Conclusion

When the assumption of deterministic edge costs is removed from the OP, finding
effective solutions becomes challenging. The SOPCC is a formal variant of the OP
using stochastic edge costs and requires a policy driven solution to efficiently collect
rewards. This chapter studied how to utilize deterministic orienteering solutions to
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obtain path policies by formulating the problem as a CMDP. The state space was
set up as a tuple containing vertices paired with time intervals corresponding to the
time of arrival for the particular vertex. The action set allowed for traveling to any
vertex further along in the path, but not to any other vertex in the graph. Transition
probabilities for each state/action pair were defined by the PDF of the corresponding
edge’s cost, and a special failure state was created to account for any time that the
sum of edge costs exceeded the budget. Since this method has a state space and
action set that grows super-linearly, a heuristic was given to reduce the number of
state/action pairs effecting the computation time. Finally, the method was tested on
numerous randomized trials to evaluate how different parameters effect the quality
of its solutions. Overall, this Markovian approach to solving the SOPCC gives useful
policies that allow an agent to collect rewards over a graph while obeying a budget
and probability of failure.



Chapter 7

Adaptive Approaches to Stochastic
Orienteering

In Chapter 6, the SOPCC was introduced and a solution method to the problem
was given using a deterministic OP solver and a specially defined CMDP. The ap-
proach described is, however, fairly limited in that it lacks adaptivity which inhibits
its potential reward collection. This chapter tackles these limitations by discussing
two ways in which the method can be improved. The first way involves choosing a
nonuniform discretization of time when building the CMDP state space. The second
way employs a flexible sequence of vertices to which a policy can direct an agent. A
new algorithm utilizing these improvements is given along with heuristics to improve
its time efficiency before validating with randomized experiments. Work here was
first given in [117, 119].

7.1 The Discretization of Time

In this section, a refinement of the previous Algorithm 6.11 is proposed, which
performs an adaptive discretization of the temporal dimension, as opposed to the
uniform one discussed in section 6.2. The problem with a uniform time discretization
approach is the state space S = V × T is wasteful, as it uses the same resolution
both for states (v, t) with very small probability of being reached as well as those
with high probability. In regions where there are many states with high probability,
a discretization with a smaller ∆ should be used to determine policies, and in regions
with low probability, fewer states are needed so a larger ∆ is appropriate.

7.1.1 Sample Based Time Prediction

As the time to traverse an edge is a continuous random variable, it follows that
the time a vertex is visited is a continuous random variable as well. Ideally, one would
like to compute a policy of the type π(v, t), for t ∈ R. A continuous time policy can
be approximated with a discretized policy, and the approximation becomes better
as ∆ shrinks. However, this increases the computation time. The idea with using
an adaptive discretization is to allocate a more fine-grain time subdivision in high-
density temporal regions and a more coarse one in low-density temporal regions.
Here, a temporal region for a given vertex means the possible distribution of times

91
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when the vertex is reached. In order to improve the time discretization, a sample of
arrival times for every vertex following the original path P is used to predict a good
breakdown of T. The algorithm is outlined in Algorithm 7.13.

Algorithm 7.13 Solve SOPCC with Adaptive Time

Input: G(V,E), R, C, B, vs, vg, Pf , k, s
Output: P, π
1: Z(e) = E[C(e)]∀e
2: P ← OP-solver(G(V,E), R, Z, B, vs, vg)
3: K ← simulation(G(V,E), C, P, k)
4: T← split(0, B, K, s)
5: CM = {P × T,S(v)∀v ∈ P,Pr, R,D, Pf , β(vs) = 1}
6: π, ρ← CMDP-solver(CM)
7: return P, π

The algorithm works much the same was as Algorithm 6.11. After finding an
initial path (line 2), it is repeatedly executed k times without considering any policy,
i.e., all vertices in P are sequentially traversed from v1 to v|P|, without considering the
temporal deadline B (line 3). During this process, for every vertex, the arrival time
is logged in K and therefore it is possible to numerically approximate the temporal
distribution of arrival times and their spreads (see top panel in Figure 7.1.) Then,
these temporal distributions are used to build a tailored temporal discretization for
each vertex in P , splitting time into s equal probability intervals from t = 0 to t = B
independently for every vertex in the path. This makes a vertex-dependent temporal
discretization Tv ∈ T. The number of intervals in this case is therefore N = dK≤B

s
e

(Only samples where the arrival time is less than or equal to B are considered, since
arrival times larger than B are encompassed by sf ). Two special segments are created
at the beginning and the end, i.e., the first temporal segment in Tv starts at time 0,
and the last one ends at time B.

7.1.2 Improving Adaptive Intervals

While it is useful to consider the distribution of arrival times to adaptively dis-
cretize the temporal dimension of the state space, this approach has a fatal flaw.
It considers the arrival times produced by simulation the original path, rather than
actual arrival times of the policy. Thus there can be instances where a state has a
very coarse time discretization but the resulting policy directs an agent to this state
with a high probability. For example, a policy might direct an agent to always skip
a vertex, so the next vertex is visited with a time distribution that is much different
than expected. Additionally, there can be value (in the form of increased expected
reward) in a state space that limits the size of its largest time intervals, as smaller
intervals are more accurate. There is no way of knowing what the distribution of
arrival times will be for a certain policy without first computing the policy, therefore
it makes sense to generalize our estimate by augmenting the simulated arrival times
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with evenly spaced data on the interval 0 < t < B. This essentially combines the
fixed discretization used in Algorithm 6.11 with the adaptive discretization used in
Algorithm 7.13. Figure 7.1 shows an example of the uniform, adaptive, and combined
discretizations. Once the set Tv is built for every vertex, the CMDP can be built as
in the fixed-interval algorithm and solved.

An interesting aspect that emerges from using an adaptive discretization approach
is that it is possible to reduce the number of elements in each of the sets Tv while
essentially keeping the same performance as in the fixed discretization algorithm.
Here, same performance means that in expectation the two algorithms collect the
same reward while both ensuring that the probability of reaching v|P| after B is less
than Pf . However, the adaptive discretization algorithm is much faster because it
has a much smaller state space.

7.2 Adaptivity using Path Trees

A major pitfall of adapting a deterministic orienteering path into a stochastic
orienteering policy using shortcuts is the lack of flexibility with vertices the policy
can visit. The method described in section 6.2 develops a policy π that is capable of
visiting only the vertices in P . Thus, the maximum achievable reward is R(P) and
the expected reward can be much lower. However there are two situations which may
arise where it is beneficial to deviate from the initial deterministic path. The first
occurs when following π and arriving at a vertex vi much earlier than expected. The
second occurs when following π and arriving at a vertex vi late enough to require
taking a shortcut to some vertex beyond vi+1. In both situations, there may be
enough budget left that a new path Pnew and policy πnew can be computed from vi
which will safely return an expected total reward larger than following the original
policy from the current state to the goal vertex vg. This method of determining a new
policy during execution of the original policy is called online adaptation, and while
the idea works well in these situations, it has the drawback of requiring an expensive
computation to be done on-the-fly, which may take too long to compute Pnew and
πnew for use in real time.

Instead of online adaptivity, Pnew can be computed offline and cached before the
execution of π. In this way, πnew will be a policy that considers a directed path
tree, starting from v1 and going to vi along P , then choosing to continue following
P or following Pnew until either branch reaches vg. Since there may be many states
where a new path should be computed, multiple branches can be added to the path
tree. Note that it must be a directed tree, rather than a directed graph, because
each vertex implicitly encodes information about what vertices have been previously
visited (satisfying the Markov property), i.e. an agent at vi has visited all vertices
leading up to vi from v1 (disregarding shortcuts). Adding a new branch to the path
tree increases the total number of vertices to |P|+ |Pnew|, and the resulting problem
size is the same as one where there are no branches and the initial path P has a
length of |P|+ |Pnew|. An example of a path tree is given in Figure 7.2.
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(a) Distribution of arrival times at a certain vertex vi following
strictly P (k = 10000).

(b) Time discretization built by the algorithm using a fixed-interval
approach with 10 intervals.

(c) Time discretization built using the adaptive-interval approach
placing s = 1000 samples in each interval.

(d) Time discretization built by combining the adaptive-interval ap-
proach (k = 10000) with evenly spaced data (k = 10000) obtaining
a total of s = 2000 samples in each interval.

(e) Distribution of arrival times at vertex vi following policies com-
puted with each type of time discretization. Note that each dis-
cretization has the same number of intervals.

Figure 7.1: A demonstration of the effect on vertex arrival times for different methods
of discretizing time.
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Figure 7.2: An example of a path with two additional branches at vi and vi+1 to
create a path tree. Note there is no inter-connectivity between branches.

Here, superscript notation is used to indicate a path starting at v1 (or equivalently
vs) and ending at vn (vg) using a branch in PT , where n is the total length of that
particular path. As with the non-branching path P , the policy may consider shortcuts
that jump to vertices further along the path than the current vertex, but only along
the same branch and any sub branches that exist. Using the example in Figure 7.2,
v1 may jump to any vertex in P , P1

j>i, and P2
j>i+1, vi+1 may jump to only vertices

further along in P and any vertex in P2
j>i+1, v1

i+1 can only jump to vertices further
along in P1, etc.

Using this idea of creating a path tree to represent multiple possibilities for future
vertex visitations leads to a new algorithm to solve an instance of the SOP:

Algorithm 7.14 Solve SOPCC with Path Tree

Input: G(V,E), R, C, B, vs, vg, Pf
Output: PT , πnew
1: Z(e) = E[C(e)]∀e
2: P ← OP-solver(G(V,E), R, Z, B, vs, vg)
3: CM = {P × T,S(v)∀v ∈ P,Pr, R,D, Pf , β(vs) = 1}
4: π, ρ← CMDP-solver(CM)
5: Sjump ← (vi, tj) where π(vi, tj) > vi+1 for all (vi, tj)
6: PT ← P
7: for all (vi, tj) ∈ Sjump do
8: Pnew ← OP-solver(G(V,E), R, Z, B − tj , vi, vg)
9: PT = {PT ,Pnew}

10: CM = {PT × T,S(v)∀v ∈ PT ,Pr, R,D, Pf , β(vs) = 1}
11: πnew, ρ← CMDP-solver(CM)
12: return PT , πnew

Algorithm 7.14 uses the concept of a path tree to increase the expected reward.
The idea is to compute an initial policy π using the method described in section 6.2
(lines 1-4), use that to determine where path branches should occur (line 5), and add
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new branches to the path tree (lines 6-9) to determine a new policy πnew (lines 10-
11). There are some extenuating circumstances to consider when a newly computed
branch is to be added to PT . Some branches may follow a sequence of vertices
that starts out the same as in the original path, i.e. vi, vi+1 . . . vj, and these can
be shortened to start from vj instead. Additionally, duplicates (both of branches
and the original path) can often occur and these can be safely discarded. The final
output of the algorithm is a policy πnew that determines which action to take for
a sequence of vertices along PT at various times, maximizing the expected reward
and bounding the failure probability to Pf , where the actions are possible vertex
transitions (shortcuts) as outlined earlier. The expected reward E[R(PT , πnew)] will
be at least equal to that from the method in Section section 6.2 and may even be
greater than R(P) due to the adaptive nature of the path tree.

7.3 Unified Method with Heuristics

In section 7.2 an adaptive path method was introduced that develops a path tree
allowing variation in which vertices an agent following πnew is allowed to visit. The
adaptive path algorithm is able to achieve a higher expected reward than the original
method from section 6.2, however it comes at the cost of a significantly increased state
space size. There may be many states where shortcuts are taken in the original policy,
each requiring its own path branch, and as a consequence the number of vertices
in PT can be many times greater than in P . Additionally, without considering
shortcut heuristics, the number of state/action pairs in the resulting CMDP grows
much quicker than the non-adaptive path method. This number increases to:

|T| ·
∑
Pb∈PT

(
|Pb|(|Pb| − 1)

2
+ 1

)
= O

(
|T| · |PT |2

)
(7.1)

where |PT | indicates the total number of vertices in the path tree. Since each new
branch Pb adds a quantity of new vertices to PT , this number can grow very quickly.

For each branch, the length of the resulting path Pb is variable. Because new
branches are computed using a deterministic orienteering algorithm, the size of branches
cannot be explicitly controlled. What can be controlled is the number of path
branches added to PT . To limit the number of branches, the number of states where
a new path branch is computed should be reduced. An intuitive way of reducing this
number is to consider adding path branches only when there is a high likelihood that
they will be utilized. Since all non-loop states in CM can be visited only once, the
occupancy measure vector ρ is equal to probability that each state/action pair will
be executed. Therefore, the algorithm in section 7.2 can be modified such that only
the kb shortcut actions with the highest ρ values will be added to Sjump, where kb is
a user defined parameter. As such, there will be kb branches added to the path tree
instead of potentially |S × T|.

In order to achieve the best results on larger problems, all of the previously
mentioned methods - Algorithm 6.12, Algorithm 7.13, and Algorithm 7.14 - should
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be combined. Because the number of state/action pairs in the CMDP grows very
rapidly, the heuristics mentioned in this section are useful for problems of practical
size (|P| > 15). The pseudo-code for the entire process is shown in Algorithm 7.15.

Algorithm 7.15 Solve SOPCC with Adaptive Time and Path Tree

Input: G(V,E), R, C, B, vs, vg, Pf , k, s
Output: PT , πnew
1: Z(e) = E[C(e)]∀e
2: P ← OP-solver(G(V,E), R, Z, B, vs, vg)
3: K ← simulation(G(V,E), C, P, k)
4: T← split(0, B, K, s)
5: for all vi ∈ P do
6: for all vj ∈ P do
7: H(vi, vj) = R(Pj,|P|)/E[cvi,vj ]
8: In S(vi) keep only ks − 1 actions with highest H and vg
9: CM = {P × T,S(v)∀v ∈ P,Pr, R,D, Pf , β(vs) = 1}

10: π, ρ← CMDP-solver(CM)
11: Sjump ← (vi, tj) where π(vi, tj) > vi+1 for all (vi, tj)
12: In Sjump keep only kb states with highest ρ
13: PT ← P
14: for all (vi, tj) ∈ Sjump do
15: Pnew ← OP-solver(G(V,E), R, Z, B − tj , vi, vg)
16: PT = PT ,Pnew
17: K ← simulation(G(V,E), C, PT , k)
18: T← split(0, B, K, s)
19: for all vi ∈ PT do
20: for all vj ∈ PT do
21: H(vi, vj) = R(Pj,|P|)/E[cvi,vj ]
22: In S(vi) keep only ks − 1 actions with highest H and vg
23: CM = {PT × T,S(v)∀v ∈ PT ,Pr, R,D, Pf , β(vs) = 1}
24: πnew, ρ← CMDP-solver(CM)
25: return PT , πnew

The entire process essentially performs the method described in section 7.1 twice,
once using P and again using PT . Shortcut heuristics are used both times (lines 5-
8,19-22) by calculating H(vi, vj) for all pairs i < j and the ks−1 largest valued actions
are allowed into each CMDP CM. It starts with the adaptive time method using the
shortcut heuristic to produce a high-reward policy with a limited number of states
that is ideal to build a path tree from (lines 1-10). A path tree is built according
to the method in section 7.2 (lines 13-16), but with a limited number of branches
(line 12) selected according to the most probable shortcut actions in π. The adaptive
time method is then used again with a shortcut heuristic to produce the final policy
πnew over PT (lines 17-24). This allows for efficient discretization of vertex-time space
and limits the size of the CMDP (which is now much larger due to the vertex tree
branches). All together, this combined method computes a new policy that is able
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to achieve a higher expected reward than any method separately on large problem
sizes.

7.4 Evaluated Performance Improvements

As with Chapter 6, the methods described in this chapter are evaluated using a
set of synthetic SOPCC problems based on a randomized graph. Vertices in G were
sampled from the unit square with uniform distribution, and edges between them
were given a random cost distribution based on a shifted exponential function. This
is the exact same setup as in section 6.4. Again, the S-algorithm heuristic from [126]
was used at all points where a solution to the OP was needed. In these tests, the
fraction of expected collected reward at each data point is the average of 10 unique
instances, as is the displayed run times. The only major difference between the
results discussed here and those in section 6.4 is that the parameter α is not varied,
and instead remains a uniform random number between 0 and 1 that is unique for
each edge. The reason for not comparing each method on different fixed values of α
is, as revealed earlier, that in each test it does not change the relative effectiveness of
the prospective algorithms, only the spreads between them.

7.4.1 Adaptive Time Intervals

The set of tests here compared the fixed time interval algorithm to the adaptive
time algorithm, using the two different sampling methods described in section 7.1.
These results are discussed in [119]. Here, results in Figure 7.3 show the number of
time steps being varied while the length of P is fixed, and results in Figure 7.4 show
the length of P being varied while the number of time steps is fixed.

A few patterns emerge when comparing the adaptive time methods. The adaptive
only method seems to fare favorably in relation to the fixed method when the number
of time intervals is low, however it becomes worse than the fixed method with more
time steps. This is because it does not provide enough flexibility for the policy due
to the arrival time distribution being estimated from the deterministic path. The
method combining adaptive and fixed time intervals is the clear winner in terms of
expected reward collection. In almost every scenario, it gains visibly more reward
than either the adaptive or fixed time intervals alone. The only exceptions happen
when the number of time steps for each vertex is 3, which is where the adaptive
only time intervals work best. It can be seen that the combined method reaches its
potential much sooner than the others and the reward curve flattens out very quickly,
suggesting that its use would allow cutting the size of |T| for more expedient policy
calculations. The amount of time to compute a policy using the combined method
does increase slightly, however it is more than made up for by the potential to decrease
the number of time intervals needed to reach the same expected reward as the fixed
method. An interesting trend also emerges with both the adaptive and combined
methods, where as the number of vertices in P increases, the expected reward for the
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(a) (b)

Figure 7.3: Rewards and computation time when the number of vertices in P is fixed
at 30. Both graphs share the same legend. (a) Average rewards for the adaptive time
method when α is a uniform random variable on the interval (0, 1). (b) Average time
taken to compute a policy π with the given parameters.

(a) (b)

Figure 7.4: Rewards and computation time when the number of time intervals is fixed
at 30. Both graphs share the same legend. (a) Average rewards for the adaptive time
method when α is a uniform random variable. (b) Average time taken to compute a
policy π with the given parameters.
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(a) (b)

Figure 7.5: Rewards and computation time when the number of vertices in P is fixed
at 15. Both graphs share the same legend. (a) Average rewards for the adaptive path
method when α is a uniform random variable on the interval (0, 1). (b) Average time
taken to compute a policy π with the given parameters.

policies increases. This trend happens with the fixed interval method as well, but it is
more pronounced with the two adaptive methods, and the reward gap widens. This
shows how the usefulness of adaptive times becomes more prevalent as the problem
size increases.

7.4.2 Adaptive Path Tree

The next set of tests was performed comparing the original SOPCC algorithm to
the adaptive path algorithm described in section 7.2, utilizing the branch heuristics
proposed in section 7.3. These results are originally discussed in [117]. Like before,
results are shown where the number of time steps is varied and the length of P is
fixed, as in Figure 7.5, and also where the length of P is variable and the number of
time steps is fixed, as in Figure 7.6. It is worth repeating that P is the initial path,
and that any Pb ∈ PT can be much longer. For these tests, kb = ∞ indicates all
possible jump states are allowed to be branches and kb = 0 means none are allowed
(equivalent to Algorithm 6.11).

The benefits and detriments of the adaptive path algorithm are quite clear. There
is a significant increase in expected reward collected compared to the original SOPCC
algorithm for both kb = ∞ and kb = 5, showing that the method is very useful in
maximizing reward when solving the SOP. Indeed, each additional branch can only
increase the expected reward from the baseline established by the original SOPCC
method (kb = 0), because branching provides access to vertices previously unvisited
by P . There is also a significant increase in the computation time compared to the
fixed resolution algorithm, by many times. This is true for both kb =∞ and kb = 5,
although the latter is much quicker than the former. It can seen that keeping kb small
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(a) (b)

Figure 7.6: Rewards and computation time when the number of time intervals is fixed
at 10. Both graphs share the same legend. (a) Average rewards for the adaptive path
method when α is a uniform random variable. (b) Average time taken to compute a
policy π with the given parameters.

helps control the total computation time while also obtaining most of the additional
reward provided by the adaptive path algorithm. There is also a new pattern that
emerges using this algorithm, which is the computation time depends on Pf when
kb =∞. This is a natural consequence of the shortcut mechanism which each policy
utilizes. As Pf gets smaller, π will direct more shortcut actions, and therefore the
adaptive path method will add more branches to PT . This is not a problem when
kb is bounded, however, because kb limits the maximum number of branches utilizes.
Finally, it should be pointed out that when kb =∞ the computation time scales very
quickly with both the number of time steps and the length of P , which means the
full adaptive path algorithm is very limited in the size of problem it can solve.

7.4.3 Combined Method

The last set of tests performed was done to compare the combined method from
section 7.3, which combines the adaptive time and adaptive path methods and makes
use of both types of heuristics. Results shown in Figure 7.7 and Figure 7.8 are the
same as before; the time steps are varied while |P| is fixed, and |P| is varied while
the time steps are fixed. Again, kb = 0 means that no branching occurs. This is
to directly compare the combined approach with the original SOPCC method and
adaptive time interval approaches on the same set of P . For this set of tests, whenever
branching does occur, parameters are set at kb = 10 and ks = 10 to limit the size of
the CMDP and get faster results. Because kb was limited, longer initial paths could
be studied, up to |P| = 50. As shown earlier in this section, these heuristics obtain
expected rewards very close to the methods without heuristics, allowing us to test
problems with more vertices and branches than otherwise possible.
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(a) (b)

Figure 7.7: Rewards and computation time when the number of vertices in P is fixed
at 50. Both graphs share the same legend. (a) Average rewards for the combined
method when α is a uniform random variable on the interval (0, 1). (b) Average time
taken to compute a policy π with the given parameters.

(a) (b)

Figure 7.8: Rewards and computation time when the number of time intervals is fixed
at 15. Both graphs share the same legend. (a) Average rewards for the combined
method when α is a uniform random variable. (b) Average time taken to compute a
policy π with the given parameters.
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The results are as expected. Combining the adaptive time interval approach with
the adaptive path approach leads to the highest expected reward obtained for all
values of Pf that were tested. Because of the use of adaptive time (combining adaptive
and fixed intervals) in the combined method, the expected reward rises and levels out
much quicker than using only the adaptive path method. The reverse is true as well;
the use of adaptive paths in the combined method allows higher expected rewards. In
some individual cases (not apparent on the charts because of averaging), the fraction
of expected reward collected is greater than 1, meaning that πnew makes efficient use
of branching to visit vertices not in the original path and collects even more reward.
As for computation time, combining both methods does not significantly impact how
long it takes to compute a solution. The combined method with heuristics shows only
a slight increase in computation time compared to the adaptive path method with
fixed time intervals. This increase in time can easily be compensated for by reducing
the number of time steps for each vertex in T, as the combined method consistently
reaches its maximum expected reward using about half the number of time intervals
it takes the adaptive path method.

7.5 Conclusion

Solving the SOPCC, as discussed in Chapter 6 requires the solution to be adaptive
in the sense that it is policy driven. A path policy allows for this sort of adaptivity
to occur such that vertices can be skipped when time is running low. However this
method is limiting, especially when there is a small number of time intervals accounted
for in the state space. section 7.1 showed ways to improve on the discretization of time,
thereby allowing a policy to collect more expected reward with fewer time intervals.
Additionally, section 7.2 showed how to improve on the initial path computed by a
deterministic OP solver, such that newer policies can choose one of multiple routes
in a path tree to maximize the expected reward. Both of these improvements to the
original SOPCC method were tested on randomized graphs and shown to be superior,
especially when combined together. Thus, a truly adaptive algorithm solving the
SOPCC was developed.



Chapter 8

Large-Scale Stochastic
Orienteering

This chapter discusses a way to improve the efficiency of solving the SOPCC on
large-scale graphs, including AGs. In Chapter 6 and Chapter 7, path policy generation
was notably limited to problems where the initial path contained between 30 and 50
vertices. Unfortunately, this is not to the scale of many real-world problems, even
with heuristic improvements. A new supplemental concept, introduced in [116], is
used to overcome this limitation.

8.1 Vertex Aggregation

The method of using CMDPs to compute optimal path policies for solutions to
the SOPCC is rather limited in terms of the size of problem that can be solved, par-
ticularly due to practical restrictions on computational time and memory. Following
the computation of an initial path using a deterministic OP solver, as sequenced by
section 6.2 and section 7.2, the state space of the CMDP may become arbitrarily large
as the sequence of vertices in P grows, making it intractable to solve. The concept
of aggregation is utilized to overcome this limitation. Aggregation techniques used
to reduce the size of CMDPs to a tractable level are not new, and an overview of
them can be found in [20]. These techniques, however, usually employ a compression
on the state space, meaning similar states are grouped together. This requires that
special care be taken when computing transition probabilities between states, since
aggregated states in general have unique transitions. Every part of the CMDP must
be redefined in terms containing the new aggregate states, which is mathematically
a difficult process.

Instead of aggregating on the state space, a technique which aggregates vertices
before building the state space is proposed. This is where a set of sequential vertices in
the initial path P(i, j) = {vi . . . vj} is aggregated into a single compound vertex which
is representative of the sub-path between those vertices, denoted as vi,j. Essentially,
this is a way to represent a group of vertices as a single vertex, whereby the rewards
and costs associated with that sequence are aggregated. Here, the reward for visiting
a compound vertex is R(vi,j) =

∑j
k=iR(vk), and the cost for the traveling to a

compound vertex from vx (which is not part of the compound vertex) is C(vx, vi,j) =

104
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Figure 8.1: A compound vertex is an aggregate of multiple vertices. Here, vx is any
vertex (or another compound vertex) coming before vi,j in P , and vy is any coming
after.

C(vx, vi) +
∑j−1

k=i C(vk, vk+1). The cost of the compound vertex is defined as such
because it has an explicitly defined entry vertex vi and exit vertex vj, and all other
vertices between must be visited in sequence. Finally, this allows the path to be
redefined as a sequence of vertices containing one or more compound vertices, i.e.
P = {v1, . . . , vi,j, . . . , v|P|}, and the total size of the state space for the resulting
CMDP is reduced by T× (j − i).

A compound vertex has special connectivity requirements regarding edges to other
vertices in the path. Figure 8.1 shows how this works. All incoming edges to the
compound vertex must enter at vi and all outgoing edges from the compound vertex
must leave at vj. All individual vertices within the compound vertex are connected
only in sequence as in P , with no shortcuts allowed. This means that an agent
leaving vk can only go to vk+1 for all i ≤ k < j and an agent arriving at vk must
have left from vk−1 for all i < k ≤ j. Essentially, when it comes to a path policy, a
compound vertex is treated as a single vertex with no possible shortcuts in between
and follows a pre-determined sequence. Additionally, this means that the rewards
and costs associated with the compound vertex must be treated as a single unit. The
reward for the compound vertex R(vi,j) is not collected until all constituent vertices
have been visited, i.e. the agent is at vj, while the cost for visiting the compound
vertex C(vi,j) is enumerated immediately upon crossing edge ex,i. In other words,
it can be understood that the rewards for all aggregated vertices are “pushed” back
to vj as a single value, while the costs for all edges within the compound vertex are
“pulled” forward to ex,i as a single random cost defined by the convolution of PDFs
for the affiliated edges. An interesting consequence of this is that if an agent exhausts
its budget while within vi,j before reaching vj, no rewards R(vi,j) are collected and
all the costs C(vi,j) are accrued.

Some advantageous aspects of compound vertices are that they may be of arbi-
trary size containing any number of vertices, they may be directly adjacent to other
compound vertices, and each vertex within it may also be a compound vertex. These
are a natural consequence of the way they are defined. In the case of nested com-
pound vertices, where one or more are contained within a larger compound vertex,
they admit a hierarchical structure that resolves to a singular compound vertex that
just follows the sequence of all sub-compounds. As long as v1 and v|P| are not con-
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tained in any compound vertex, a suitable policy may be constructed for the SOPCC
(if one exists).

8.2 Solving the SOPCC on AGs

With the introduction of vertex aggregation to solve the SOPCC on large-scale
graphs, its is now reasonable to consider this problem in the context of AGs. A new
type of problem can be defined as follows:

Aisle Graph Stochastic Orienteering Problem with Chance Con-
straints (AGSOPCC): Given a graphG(V,E) = AG(w, l) with stochas-
tic cost function C, PDFs for the cost of each edge fe, a reward function
R, vertices within the graph vs, vg ∈ V , and constants B,Pf , find a path
P ∈ V beginning at vs and ending at vg and policy π which, for an
agent following π, accrues a total cost greater than B with probability no
more than Pf , and maximizes the expected cumulative reward of visited
vertices.

Since AGs are typically based on structured environments such as vineyards or
warehouses, they typically contain far too many vertices for any SOPCC method
from Chapter 6 or Chapter 7 to solve. Therefore, vertex aggregation is necessary for
all but the smallest problem sizes. As discussed in section 3.2, AGs have a special
structure which limits travel to vertices that are adjacent. Particularly, the vertices
in an AG are connected by only two or three edges, depending on whether or not the
vertex is within one of the graphs rows. These graphs may be made into complete
graphs artificially, whereby new edges are added to connect every vertex to each
other directly, however the new edges simply represent paths starting at one vertex
and ending at another. The lack of organic connections between vertices makes paths
built over AGs gives rise to a natural arrangement of vertices that can be aggregated
together without reducing the number of possible shortcut opportunities.

The previous definition of an AG included a cost function that was not stochastic,
and therefore the definition should be extended. An agent traveling across an edge in
an AG would be subjected to a cost which is representative of the real-world space that
is traversed. Additionally, there is an expectation that the agent, if representative
of a vehicle such as a robot, has a defined maximum speed and therefore it has a
minimum traversal time. It is also reasonable to assume that an agent usually does
not take much longer than the minimum time, but on occasion does, and the extra
time it consumes may be very large. Because of these considerations, the stochastic
cost function is chosen to be a minimum cost α plus a random value drawn from
an exponential distribution who’s distribution depends on the minimum cost, i.e.
C(e) = α + E(1/(1 − α)) for all e ∈ E. Here, it is assumed that α is between 0 and
1, which is based on the reasonable assumption that all edges share an expected cost
of 1 (in a deterministic problem, this would be equivalent to the CCAGOP with unit
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cost). It is set to 1 here only for convenience, however the expected cost for each
edge can be any real positive value dependent on the problem at hand. Note that α
is used in the same fashion as in section 6.4 when di,j = 1.

With a complete definition of a stochastic AG, the process of solving the AG-
SOPCC using vertex aggregation can be described. It follows the same steps as
Algorithm 6.11 (or Algorithm 7.15 if using adaptive time or path improvements),
however with a few key details unique for AGs. First, when an initial path is com-
puted, it is preferable to use GPR instead of another heuristic (though if the graph
is small enough an optimal solver may be used in its place). The design of GPR is to
create a path containing a series of full-row traversals, where an agent moves from one
side of the graph to the other side using one of the rows, and partial-row traversals,
where an agent enters and exits a row from the same side while only visiting some
of its vertices. The vertices visited in a full-row or partial-row must follow a specific
sequence because of how they are connected with edges, and this makes them nat-
ural candidates for aggregation together as a single compound vertex. Thus, every
full-row or partial-row can be aggregated into its own compound vertex without loss
of optimality or changing the overall path. The cost of entering one of these com-
pound vertices is C(vx, vi,j) = k · α + Γ(k, 1 − α), where k is the number of vertices
passed (including duplicates) along the full-row or partial-row and Γ(k, 1 − α) is a
random value taken from the two parameter gamma distribution. This cost, a shifted
gamma distribution, is the result of the convolution of the PDF associated with each
individual edge cost within the compound vertex.

With a set of compound vertices identified, it is possible to again aggregate these
into larger compound vertices, resulting in a much smaller state space size than orig-
inally required. However, there is a unique consideration that needs to be addressed
when aggregating compound vertices over AGs. A path over an AG requires that a
full-row or partial-row be entered from the same side of the graph as the previous
row was exited on. This means that edges connecting each compound vertex must
also obey the same rule, and therefore possible shortcuts across the original path are
limited. Figure 8.2 shows an example of how this restriction is handled in a relatively
small graph AG(w = 10, l = 8). If two or more compound vertices are aggregated
together, the same rule applies but on a macro scale, meaning all edges leading to
the new compound vertex must use the same side for entry as the first full-row or
partial-row in the sequence, and all edges leaving must use the same side to exit as
the last in the sequence.

After compound vertices are created shortcuts are properly defined, a CMDP can
be used to solve the AGSOPCC without additional requirements. By and large, the
use of compound vertices allows typically long paths over AGs to be aggregated into a
few compound vertices that make policy computation much quicker. The example in
Figure 8.2 starts with a path 53 vertices in length but is aggregated into 6 compound
vertices plus the start and goal vertex, meaning more computational effort can be
devoted to building a better policy using extra time intervals for the same effort it
would take to build a worse policy with no aggregation and fewer time intervals.
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Figure 8.2: An example of the connectivity of multiple compound vertices for a path
over an AG. Blue dots are vertices visited in the original orienteering path given
by GPR, and are grouped together as compound vertices based on inclusion of a
full-row or partial-row traversal. Black arrows represent the original sequence taken
by the path, and dashed arrows represent possible shortcuts that allow for skipping
compound vertices. The blue star represents both the start and goal vertex of the
path.
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8.3 Performance and Efficiency Comparisons

To test the increase of computational efficiency on the SOPCC using using vertex
aggregation, problems were designed around creating a path policy for a robot op-
eration in a vineyard. An AG was created based on the same commercial vineyard
used in previously in Chapter 5, and the same data was used for the reward of each
vertex. The results displayed show averages of runs for all 9 datasets for every set
of parameters used, with the corresponding fraction of collected reward showing the
total expected reward collected divided by the total reward collected by the origi-
nal path. The failure probability Pf = Pr[C(P , π) > B] was fixed at 5% for the
tests shown, however additional tests with different values of Pf were conducted that
yielded similar results. α was fixed at 0.75 as well, and as discussed in section 6.4
changing this value did not result in substantially different outcomes. These results
were originally discussed in [116].

8.3.1 Non-Adaptive Path Results

This first set of results shows the problems with the parameters discussed solved
using the non-adaptive version of the SOPCC solver from section 6.2. The budget B
was fixed to 1/4 the traversable distance of the graph, generating initial paths using
GPR with an average length of 14851 vertices. This was done because of time and
memory constraints, as larger budgets mean longer initial paths. The paths consisted
of an average of 76 full-rows and partial-rows, and therefore the initial number of
compound vertices was 76 as well. These tests were conducted varying the amount of
further aggregation used, with a size of 1 meaning no more aggregation (76 compound
vertices), size 2 meaning two full-rows or partial-rows were aggregated together (38
compound vertices), and so on up to a size of 16 (average of 4.75 compound vertices).
Increasing the size of aggregated compound vertices (thereby decreasing the number
of compound vertices in the CMDP’s state space) inevitably leads to an uneven
distribution of compound vertices where some are larger than others. This is because
the initial number of compound vertices does not evenly divide into the chosen size.
This is not an issue and does not lead to a loss in performance.

Figure 8.3a demonstrates how varying the number of time steps |T| and the com-
pound vertex size effects the amount of expected reward collected relative to the
initial paths from GPR. Using large size compound vertices (meaning many full-rows
and partial-rows aggregated together), performance noticeably deteriorates, but not
substantially. Comparing a size of 1 with a size of 16 at |T| = 100, there was only
an average of 1.65% difference, meaning that the vast majority of expected rewards
collected when using small sized compound vertices were also collected while using a
large size. This shows that losses in performance are not significant between coarse
and fine grain state spaces, at least in the vertex dimension. Throughout the entire
range of time steps tested, using compound vertices of sizes 1, 2, and 4 resulted in
very comparable rewards, and interestingly, a size of 1 was not always the top per-
former. This happens because the smaller granularity requires more accurate arrival
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(a) (b)

Figure 8.3: A comparison of the effect changing the size of each compound vertex has
on the simulation’s outcome when using the non-adaptive algorithm. (a) The reward
collected over an AG for the SOPCC when full-rows and partial-rows are aggregated
together into compound vertices, based on the number within each determined by
the size parameter. (b) Solid lines: The average computation time needed when
solving an instance of the AGSOPCC, when varying the compound vertex size and
the number of time steps. Included is the time required to build the CMDP in Matlab
and solve the CMDP in CPLEX. Dashed lines: Corresponding numbers of transitions
in the state-action-state table of the CMDP where the probability of transition was
greater than zero.



CHAPTER 8. LARGE-SCALE STOCHASTIC ORIENTEERING 111

time estimations, which are dictated by the size of each time step ∆, and therefore
the number of time steps. This is why more time steps result in a more predictable
ordering regarding the fraction of reward expected. Also, increased vertex resolution
can be a detriment when using fewer time intervals because state transitions are more
likely to occur without crossing into new time intervals, thereby reducing their accu-
racy of estimation. This occurs using any size of compound vertex, however, and is
more likely to happen when the ratio of time steps to compound vertices is small.

Figure 8.3b displays the average computation time of each CMDP and the average
number of transitions in each CMDP with nonzero probability. It shows how the
size of compound vertices used when building the state space egregiously effects the
computation resources required to solve the problem. As expected from results in
section 6.4, the number of time steps increases the amount of computation time needed
super-linearly. More significantly, larger sized compound vertices greatly reduce the
time needed to find a solution compared to smaller sized compound vertices. The
significance of the change is two fold; not only does the size of the state space decrease
because there are fewer compound vertices to consider, but so does the number of
actions available to each compound vertex. This means that the number of state-
action-state transitions with a nonzero probability changes greatly, which also greatly
effects the number of decision variable in each CMDP, which is the largest determining
factor in a CMDP’s time to solution. This is why the time follows the number closely
in the chart. Using a compound vertex of size 16 with 100 time steps completes in
0.91% of the time required when the compound vertex size is 1 with the same number
of time steps. This is a 109 times speed increase. When comparing a compound vertex
size of 4 instead, the difference changes to 8.53% or an 11.7 times speed increase.
Clearly, the difference in computation time is substantial and justifies the minuscule
loss in potential rewards when solving the AGSOPCC using the method outlined.

8.3.2 Adaptive Path Results

The second set of results show the simulations with the parameters discussed
solved using the adaptive path tree version of the SOPCC solver from section 7.2,
with the branch heuristics from section 6.3. For these tests, the budget B was fixed
to 1/5 the traversable distance of the graph, resulting in initial paths from GPR
with an average length of 11881 vertices, or 58 full-rows and partial-rows. Again, the
amount of aggregation beyond the initial 58 compound vertices was varied, between
4, 8, and 16, in order to show how effective these extra aggregations are on the path
tree model. Unfortunately, smaller aggregate sizes of 1 and 2 were not possible due
to computation time constraints, as using the path tree method greatly increases the
amount of time necessary to arrive at a policy, even when limited by kb.

For the given parameters, the average fraction of expected reward collected can
be seen in Figure 8.4a, and the average computation time can be seen in Figure 8.4b.
Here, the number of time steps, the size of each compound vertex, and the number
of allowed branches are changed. The results shown are not surprising given what
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(a) (b)

Figure 8.4: A comparison of the effect changing the size of each compound vertex has
on the simulation’s outcome when using the adaptive path algorithm. (a) The reward
collected over an AG for the SOPCC using the path tree method, when full-rows and
partial-rows are aggregated together into compound vertices, based on the number
within each determined by the size parameter. (b) The average computation time
needed when solving an instance of the AGSOPCC using the path tree method, when
varying the compound vertex size and the number of time steps. The time shown is
the total time required to build the CMDP in Matlab and solve the resulting CMDP
in CPLEX.
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was discovered using compound vertices of different sizes in the previous set of tests.
The largest fraction of expected collectible rewards comes when using the smallest
compound aggregation size, and the smallest fraction when using the largest aggregate
size. There was, however, a noticeable leveling off in the reward after increasing the
number of time steps to 30 for sizes 16 and 8, and 40 time steps for size 4. This
suggests that after a certain point, the number of time steps no longer effects the
reward outcome and it is therefore unnecessary to increase |T| beyond that. Finally,
the change in kb from 0 (no path branching) to 5 (up to 5 path branches) shows
a small increase in the expected reward collected, but also a large increase in the
amount of computation time needed. Looking at |T| = 40 and size = 4, there was an
increase of only 1.8% in the expected reward collected, however there was a 5.3 second
(or a 583%) increase in the average amount of time needed to find a solution to the
AGSOPCC. Unfortunately, the large increase in computation time necessary meant
that kb had to be limited to 5, as a larger branching factor would have necessitated
much more time to solve for a minuscule reward boost. These results do, however,
show promise in the regard that the path tree method is still effective at increasing
the potential rewards of a AGSOPCC, even when vertex aggregation is used, though
trade-offs must be considered.

8.4 Conclusion

The SOPCC, when solved using any of the methods described in Chapter 6 and
Chapter 7, requires quite a bit of computational resources to arrive at a solution,
even on small graphs with small budgets. In problems with graphs of moderate
size or moderate budgets, the amount of time required increases dramatically, and
therefore the concept of vertex aggregation was introduced to mitigate the increase
in state space size and number of actions causing the time surge. Vertex aggregation
allows the initial path built for a SOPCC to be condensed into a representation that
has much fewer compound vertices (so-called because they each represent a group of
vertices) within it, thereby reducing the computational need of the resulting CMDP.
They are also useful when deployed on the AGSOPCC, as they allow for a compact
description of each full-row or partial-row in a path over an AG. Because of this,
it is possible to solve the AGSOPCC on graphs of realistic size containing tens of
thousands of vertices, such as those relevant to vineyard robotics. Therefore, the use
of compound vertices made using vertex aggregation described in this chapter is a
powerful tool for stochastic orienteering on large-scale graphs.



Chapter 9

The Lagrangian Method for
Stochastic Orienteering

The method described in section 6.2 and all the subsequent modifications to it,
rely on the use of a specially built CMDP to solve a SOPCC. The typical approach
to optimal policy generation for CMDPs is to use a linear program, as explained in
section 2.5. This proceedure, however, is very time consuming to complete, especially
as the size of the CMDP grows. This chapter discusses the Lagrangian method for
solving CMDPs as a way to mitigate some of the time grown for finding solutions to
SOPCC CMDPs. The work here was first presented in [118].

9.1 Acyclic Absorbing CMDPs

The Lagrangian method from [4], which uses dynamic programming as opposed
too linear programming for CMDPs, has the potential to speed up computation of
policies (see [79] for a discussion on how dynamic programming might be more ef-
ficient). This section develops a basis for using the Lagrangian approach to solve
CMDPs specifically built for the SOPCC, and discusses some properties of these
CMDPs that will be exploited later.

9.1.1 Absorbing CMDPs

A realization of the execution of a policy π over a single-constraint CMDP will
induce a trajectory consisting of a sequence of states and resulting in the collec-
tion of a reward for each state R(s, π(s)) as well as the accumulation of a cost
for each state/action pair utilized D(s, π(s)), . . . , D(s, π(s)). In literature, multi-
ple types of CMDPs are commonly investigated, however two are prevalent and
discussed here, and are used because they ensure that the sum collected rewards
is bounded under any possible trajectory. The first type is the discounted infinite
horizon CMDP, which allows for an infinite number of executions of the CMDP.
Here, the trajectory is the sequence of states s1, s2, . . . s∞, the total collected re-
ward is given by

∑+∞
n=1 γ

nR(sn, π(sn)), and the total accumulated cost is given by∑+∞
n=1 γ

nD(sn, π(sn)). The discount factor γ is usually given as a constant on the
interval [0, 1) to prevent the total reward from tending to infinity during calculation.
Note how γ is used in both the reward and cost functions. In some formulations, γ is
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not used in the calculation of accumulated costs, since these values are usually meant
to be constrained in totality (unlike reward, which is unconstrained). The second
type is the finite horizon CMDP, which limits the execution of the CMDP to only
N transitions, where N is a given constant. Here, the trajectory is the sequence of
states s1, . . . , sN , the total collected reward is given by

∑N−1
n=1 R(sn, π(sn)), and the

total accumulated cost is given by
∑N−1

n=1 D(sn, π(sn)).
For some problems, the assumptions made for finite and infinite horizon CMDPs

are either impractical or unnecessary. The type of CMDP developed in section 6.2 is
an absorbing CMDP, which does not utilize these assumptions. A CMDP is absorbing
if it has a special state sl ∈ S with a single action al such that:

• For every possible policy π, the trajectory will eventually enter sl with a prob-
ability of 1.

• The reward for this state and action is R(sl, al) = 0.

• The cost for this state and action is D(sl, al) = 0.

• The transition kernel dictates Pr(sl, al, sl) = 1.

The absorbing state sl ascribes a special property to the CMDP which ensures that
every policy is terminal, i.e. the trajectory eventually stops accumulating rewards
and accruing costs. Therefore, the total reward still has finite expectation without
needing a discount factor or limiting the trajectory horizon. This implies that the
amount of transitions in a trajectory is a finite random number, meaning that the
total collected reward and total accumulated cost for a trajectory can be calculated
in the same way as the finite horizon CMDP, where N is the number of states in the
full length of the trajectory.

9.1.2 Acyclic CMDPs

While absorbing CMDPs necessarily have finite length trajectories, there is no
requirement for a trajectory to be of reasonable length. Indeed, a trajectory may be
of arbitrary length as long as it is guaranteed to eventually reach the absorbing state.
This includes trajectory lengths which are longer than the size of the state space |S|.
The reason why this is possible is that in general, a CMDP may contain a set of
state/action pairs which induce a cycle in the CMDP graph, leading to a repetition
of states in some induced trajectory. For many problems, this behavior is an integral
part of the system dynamics. However, there are situations in which this behavior
does not make sense. One common example of these situations is when the state
space contains a time component. Since there is no way to reverse the flow of time,
a transition to some state in the past should not be possible. Likewise, the flow of
time is continuous and unchanging, meaning that even near instantaneous transitions
still advance the time component of the state. For these types of situations, it is
impossible for states to repeatedly appear in a trajectory of the CMDP if the state
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space contains time as a component. The CMDP used for SOPCCs, as given in
section 6.2 is designed in this way, using time as one of the two dimensions of its state
space.

A CMDP which does not contain actions that allow states to be visited more than
once is called an acyclic CMDP. In order for a CMDP to be considered acyclic, it
must meet the following conditions:

• For any two states si and sj, if sj is reachable from si, then si is not reachable
from sj.

• Any action a leading from state s back to s must have R(s, a) = 0 and D(s, a) =
0.

The second condition allows for the inclusion of absorbing states, which do not induce
cycles in the graph that effect the total reward or cost. A special property of an
acyclic CMDP (and acyclic directed graphs in general) is that it has a topological
ordering, an arrangement of states that is consistent for every trajectory. Formally,
it means that for every action a ∈ A leading from state s to s′, s′ occurs later in the
ordering than s. For example, for a CMDP with a topological ordering si > · · · > sj,
all trajectories containing both si and sj will have si occurring before sj regardless of
states in between.

For a generic acyclic CMDP, there can be multiple possible terminal states (if any
at all) in an acyclic CMDP and therefore they are not generally absorbing. How-
ever, the properties of absorbing CMDPs are desirable for computation, and it is
advantageous to convert an acyclic CMDP into one that is also absorbing. This can
be accomplished simply by adding an absorbing state sl to the CMDP and giving
all terminal states (states with no outgoing actions) the action al. Taking al from
these states should gather no additional reward or costs and result in arriving at sl
with probability 1. This achieves a CMDP with no loops and a single terminal state,
termed here as an acyclic absorbing CMDP (aaCMDP). Of note is that the CMDP
used to find path policies for the SOPCC is set up in this way, with a designated ab-
sorbing state and corresponding action that locks progression in a non-accumulating
loop. Therefore, it matches properties described here can be characterized as an
aaCMDP.

9.2 Sequential Stochastic Decision Making

Dynamic programming is commonly used to solve MDPs, with methods like Value
Iteration (VI) and Policy Iteration (PI), however it is not possible to apply these meth-
ods directly to CMDPs. VI works iteratively with repeated sweeps through the state
space, updating a value function defined over each state until convergence is obtained,
i.e. the value function remains static across iterations or the maximum difference of
any state between consecutive iterations is less than a preassigned threshold θ. Then,
the optimal policy can be extracted from the value function. PI is similar to VI,
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however the policy is updated at every iteration and convergence happens when the
policy no longer changes. In order to apply the dynamic programming principle to
CMDPs, one must apply the Lagrangian approach which converts the CMDP to an
MDP using Lagrangian multipliers before a policy can be produced.

9.2.1 The Lagrangian Method

For a CMDP with J constraints, λ ∈ RJ is a real non-negative vector representing
the Lagrangian multiplier. A new reward function Rλ(π) can be introduced for a
given λ and π

Rλ(π) = R(π)−
J∑
j=1

λj(Dj(π)− Uj) (9.1)

which defines the Lagrangian reward with respect to the CMDP’s J cost functions
Dj and constraints Uj. Shown by theorem 9.9 in [4], a policy π∗ is optimal for CM
if and only if

R(π∗) = sup
λ

max

[
R(π)−

J∑
j=1

λj(Dj(π)− Uj)

]
(9.2)

For the choice of λ used, an associated MDP can be constructed and solved with VI or
PI. This Lagrangian approach, however, has a major downside in that the appropriate
λ needed for a particular CMDP must be found numerically.

The CMDP design used in the process of solving a SOPCC given by section 6.2
has only 1 cost function rather than J , and therefore the appropriate Lagrangian
multiplier λ in this case is a scalar. Because of this, the reward function can be
written slightly differently as

Rλ(s, a) = (1− λ)R(s, a)− λD(s, a) (9.3)

parameterized by λ ∈ [0, 1]. Written like this, the reward function is no longer infinite
as λ ← ∞ but bound between [−D(s, a), R(s, a)]. Typical Lagrangian methods
used in literature (see [55]) suggest searching for the appropriate λ between 0 and
a “sufficiently large” value, however it is generally not obvious where the second
value lies and could be unreasonably large. Instead, λ as used above acts as a weight
parameter, the optimal value of which can searched for within a defined interval rather
than being unconstrained. When λ = 0, the reward function Rλ results in an MDP
maximizing R without consideration of the cost function. When λ = 1, the opposite
is true and Rλ considers only the cost function D. Importantly, this means that as λ
increases towards 1 the reward for all state/action pairs Rλ(s, a) is strictly decreases,
and the cost function of the associated MDP decreases as well.

The following theorem, a rewritten version from [4], establishes the relationship
between the policy found for two Lagrangian MDPs and the optimal stochastic policy
of the CMDP on which they are based:
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Theorem 9.2.1. The optimal policy π∗ for a CMDP with a single constraint is a
randomized mixture of two deterministic policies of its Lagrangian MDP, i.e.

π∗ = σπ∗λ1 + (1− σ)π∗λ2 (9.4)

where π∗λi is the optimal policy for the Lagrangian CMDP for λi and σ is a suitable
mixing parameter to be determined.

This theorem does not state that any mixture of two deterministic policies for
the Lagrangian MDP is the optimal policy for the CMDP, but rather states two such
policies exist which will mix to form the optimal stochastic policy given an appropriate
value for σ. As will be shown later, a λ can be chosen for which the resulting policy
mixture π∗ obeys the constraint E[D(π∗)] ≤ Pf , as long as such a policy exists for
the CMDP.

9.2.2 Finding λ

The Lagrangian reward function Rλ(s, a) is a weighted sum of the reward and cost
functions of the given CMDP taking λ as a parameter. In order to obtain a policy
satisfying the constraint E[D(π∗)] ≤ Pf while also maximizing R(s, a), the optimal
value for λ needs to be determined. Because λ was defined within a closed interval,
it is possible to utilize a bracketed root-finding algorithm to approximate the optimal
value. Algorithm 9.16 is one way of finding λ, which makes use of the Bisection Search
method to iteratively shorten the interval in which the optimal value is known to lay
until an approximation error on the reward is satisfied.

The precision of the numerical approximation of λ can be controlled with two
parameters. The first parameter, ε, provides a maximum bound on the absolute
difference in reward for the two policies πhi and πlo which are computed with the
current bounds of λ using λhi and λlo. Since the expectation of total reward r is
known to monotonically decrease as λ increases, it can be reasoned that all Lagrangian
policies computed with λlo < λ < λhi have expected total reward falling somewhere
between rhi and rlo. Thus, the maximum difference in expected reward between the
optimal policy and λ is less than or equal to ε. The second parameter, θ, provides a
stopping condition on Algorithm 9.16 that causes it to terminate execution when the
interval for λ is sufficiently small. This is a necessary parameter because of a it is not
guaranteed that |rhi − rlo| will ever be less than or equal to ε. The reason for this is
that the expected total reward r(β) from following a policy π is not differentiable with
respect to λ. That is, r(β) is a step function over changes in λ. This is because there
are only a finite number of deterministic policies for a given MDP, and for sufficiently
small changes in λ the optimal policy does not always change. It is possible that
the optimal λ for the Lagrangian MDP lies on the edge of a step where λhi and λlo
approach from opposite sides and |rhi − rlo| is always greater than ε until λhi = λlo.
Algorithm 9.16 has a worst case computational complexity of O(log(1

ε
) ·X), where X

is the complexity of VI. The use of VI may be replaced by PI, however an updated
version of VI will be given soon.
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Algorithm 9.16 Lagrange Bisection

Input: P , R, D, Pf , β, ε, θ
Output: rhi, rlo, dhi, dlo, πhi, πlo
1: λhi ← 1; λlo ← 0
2: rλ, r, d, πhi =VI(P , D, R, D, S)
3: rhi ← r(β)
4: rλ, r, d, πlo =VI(P , D, R, D, S)
5: rlo ← r(β)
6: λ = 0.5
7: while |rhi − rlo| > ε) and (|λhi − λlo| > θ) do
8: rλ(s, a)← (1− λ)R(s, a)− λD(s, a);∀(s, a) ∈ S ×A
9: rλ, r, d, π =VI(P , Rλ, R, D, S)

10: if d(β) > Pf then
11: λlo ← λ
12: rlo ← r(β)
13: dlo ← d(β)
14: πlo ← π
15: else
16: λhi ← λ
17: rhi ← r(β)
18: dhi ← d(β)
19: πhi ← π
20: λ← (λlo + λhi)/2
21: return rhi, rlo, dhi, dlo, πhi, πlo
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There exists more bracketed root-finding algorithms that are capable of numeri-
cally approximating the optimal value of λ, however Bisection Search is one of the
most well-known. Another possible method to use is the Illinois False Position Search
method from [46]. Algorithm 9.16 can easily be modified to use this method instead
simply by swapping 20 for the following formula:

λ← 0.5(λlo(dlo − Pf ))− λhi(dhi − Pf )
0.5(dhi − Pf )− (dlo − Pf )

(9.5)

The benefit of using Illinois False Position Search over using Bisection Search is that
it usually converges faster. However, this is not guaranteed. Nevertheless, it provides
on average a significant speed improvement and therefore is included here for plenum.

Theorem 9.2.1 states that two deterministic policies for the Lagrangian MDP with
different values of λ can be mixed together to obtain the optimal stochastic policy for
a CMDP, but it leaves unexplained how to find the appropriate mixing parameter σ.
A closed formula for σ exists (see [80] page 139), which requires that the constraint
E[C(π∗)] ≤ Pf must be active for π∗, leading to the following computation for the
mixing parameter:

σ =
Pf − dlo
dhi − dlo

(9.6)

Algorithm 9.17 shows how to use σ to mix the two policies πhi and πlo together,
obtaining an optimal policy for the CMDP in O(S2) time. The result of using this in
conjunction with Algorithm 9.16 is a policy π for a CMDP that satisfies the constraint
E[C(π∗)] ≤ Pf and maximizes the expected total reward R(β) to within ε of the
optimum.

Algorithm 9.17 Policy Mixture

Input: πlo, πhi, σ
Output: π
1: for all s ∈ S do
2: for all s ∈ A(s) do
3: π(s, a)← σπlo(s, a) + (1− σ)πhi(s, a)
4: return π

9.2.3 Exploiting aaCMDPs for Speed

VI is a commonly used dynamic programming algorithm based on the Bellman
equation for finding optimal policies of MDPs. Typically, VI requires repeatedly
iterating over the state space of an MDP until the value function converges, at which
point an optimal policy has been found. The version of VI presented in Algorithm 9.18
is a slightly modified version that was developed specifically for Lagrangian MDPs
of aaCMDPs with a single constraint. It exploits the properties of aaCMDPs to find
the optimal policy in a single loop over the state space, thereby arriving at a solution
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Algorithm 9.18 Acyclic Absorbing Value Iteration

Input: P , Rλ, R, D, S
Output: rλ, r, d, π
1: for all s ∈ S in reverse topological order do
2: rλ(s)← 0, r(s)← 0, d(s)← 0
3: r ← Rλ(s)
4: π(s)← arg maxa

∑
s′,rλ p(s

′, rλ|s, a)[rλ +Rλ(s′)]

5: rλ(s)←
∑

s′,rλ p(s
′, rλ|s, π(s))[rλ +Rλ(s′)]

6: r(s)←
∑

s′,r p(s
′, r|s, π(s))[r +R(s′)]

7: d(s)←
∑

s′,d p(s
′, d|s, π(s))[d+D(s′)]

8: δ ← max(δ, |r −Rλ(s)|)
9: return rλ, r, d, π

much quicker than normal VI. It also evaluates the reward function R(π) and cost
function D(π) at the same time.

There are two contributions here to consider. First, not only is the Lagrangian
reward function evaluated for every state (line 5), but so are the reward and cost
functions of the original CMDP (lines 6 and 7). This allows for an evaluation of the
output policy π on these two functions by referencing their values at start state where
β(s) = 1. Second, the for-loop only needs to commence once for all states as long as
the proper ordering of states is used (line 1). This fact is established by the following
theorem:

Theorem 9.2.2. Given an MDP where no state can appear twice in a realization
and with a single absorbing state that is reached with probability 1, value iteration can
converge to the optimum value function in a single iteration.

Proof. First, start by initializing the value of the absorbing state Rλ(sl) = 0 and
defining Ŝ as the set of all states that have been evaluated. Since the absorbing state
has no action to any other state (other than itself, with transition cost D(sl) = 0),
Rλ(s′) = Rλ(sl) = 0 meaning the value of the absorbing state will never change,
regardless of the number of iterations performed. Next, add sl to Ŝ and evaluate
some new state si ∈ S\Ŝ where all possible actions at si lead only to states within
Ŝ. Such a state must exist, since it is known that all possible sequences of states
end with the absorbing state (due to the probability of reaching the absorbing state
being 1), and the lack of any loops allowing states to have actions that lead to states
previously visited. si is evaluated according to the Bellman equation in line 5, and
because si can only transition to sl (the only state in Ŝ at this point) its value will also
remain static over all iterations. Then, si is added to Ŝ and the process is repeated,
resulting in a static value for every state that is added to Ŝ. Eventually, the only state
remaining is the starting state for the acyclic absorbing MDP, which is necessarily
evaluated with an unchanging value. Thus, every state in S is eventually evaluated
and determined to have a value that will not change across iterations of the value
iteration algorithm.
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Theorem 9.2.2 shows that, because of the acyclic and absorbing nature of the
state space, every state needs to have its value evaluated only once, as long as they
are done in the correct order. This means that the for-loop in Algorithm 9.18 (line 5)
should choose s ∈ S starting at the absorbing state sl and work its way backwards
as described in the proof, i.e. in reverse topological ordering. If done this way, there
is no need to continually update the value function for every state until convergence,
because convergence will have been achieved immediately. A valid question to ask is
how to quickly sort the state space in reverse topological ordering. In cases where the
state space has a temporal component, time can be used as long as all possible state
transitions guarantee the progression of time. For the SOPCC, ordering of vertices in
the initial path can be used, since every action guarantees moving to a vertex further
along the path. In this case, Algorithm 9.18 runs in O(S2) time, as the states can be
presorted in O(S logS).

9.3 Comparing Lagrange to Linear Programming

To asses the efficiency of using the Lagrangian method when finding policies for
aaCMDPs, the method as described in this chapter was tested against linear program-
ming on a number of different aaCMDPs built for the SOPCC. Both the non-adaptive
method from Chapter 6 and the adaptive path method from Chapter 7 using path
trees were used. These were built for the SOPCC where positions for vertices v ∈ V
in a graph G(V,E) are obtained by sampling the unit square with a uniform distri-
bution and the reward for each r(v) is a random sample from a uniform distribution
on the interval [0, 1]. Edge costs are calculated the same as in section 6.4,

C(vi, vj) = αdi,j + E
(

1

(1− α)di,j

)
(9.7)

where di,j is the Euclidean distance between two vertices vi, vj and 0 < α < 1 which
relates to the variance ((1 − α)di,j)

2 of the exponential distribution. As before, the
initial path P is calculated by reducing the SOPCC to a deterministic OP using
expected edge costs and solving using the S-Algorithm from [126]. The length of
the initial path |P| was varied as this is the main factor effecting the time to find a
solution. To obtain consistent length paths, the budget B was allowed to vary and
the S-Algorithm was run multiple times for each trial until a suitable budget and
length of path was found. These extra runs were not included as part of the results.
Other parameters were fixed, with α = 0.5, failure constraint Pf = 0.05, max reward
deviation ε = 0.1, number of time steps |T| = 10, and θ = 0.0001. For each data
point, 10 random graphs were created and a CMDP was constructed for the SOPCC
using a budget resulting in the appropriate length of initial path.

Each CMDP was solved using the Lagrangian method as described in section 9.2
with both Bisection Search and Illinois False Position Search as the means of find-
ing the appropriate Lagrange multipliers. These results were compared against two
standard linear programming solution methods, the Interior Point algorithm and the
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(a) (b)

Figure 9.1: Results of the non-adaptive SOPCC CMDP solvers on lengths of paths
up to 100 vertices. Shown are averages as well as minimum and maximums. (a) The
error of expected reward collected for the Lagrangian methods of solving the CMDP
for each SOPCC. (b) The required time to solution using different methods of solving
the CMDP for each SOPCC.

Dual Simplex Algorithm. All coding was done in Matlab and the built-in functions
for linear programming were used. There exists more efficient linear programming
solvers, however implementing everything in Matlab allows for establishing a consis-
tent standard to evaluate the scalability of the various methods. Each of the tests
shown were performed on a Linux computer running an Intel Core i7 6700k processor
with 32GB of ram.

To begin, the non-adaptive SOPCC algorithm was used to build CMDPs. Fig-
ure 9.1 shows the results of the tests on lengths of initial paths between 10 and
100 vertices. The chart in Figure 9.1b shows the average, minimum, and maximum
computation times for each of the 10 randomized graphs across all lengths of paths.
Initially, there is little noticeable difference between each of the 4 methods, however
when |P| ≥ 50, the trends start to become apparent. The computation times for In-
terior Point method and the Dual Simplex method both start to grow very quickly in
relation to |P|, whereas the Lagrangian approaches using Bisection Search and Illinois
False Position Search do not take off as quickly. The linear programming methods
also develop large spreads in computation time, whereas the Lagrangian methods
stay very consistent. For a path of 100 vertices, the Lagrangian using Illinois False
Position search is the clear winner in terms of speed, with an average time of 21.3s
to solution, followed by Lagrangian with Bisection search with 43.1s, then the Dual
Simplex linear programming method with 96.3s and lastly the Interior Point linear
programming method with 188.7s.

The chart in Figure 9.1a shows the percentage difference from optimal either of the
two Lagrangian approaches are in terms of expected collected reward. The average
as well as the minimum and maximum differences are displayed. Since ε = 0.1 for
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Figure 9.2: The required time to solution using the two Lagrangian methods of solving
the CMDP for each SOPCC, on lengths of paths from 100 to 200 vertices.

all of the tests, the maximum percentage difference that either search will achieve is
10%, however in practice the actual difference is much smaller than the bound. The
largest error on reward for the Bisection search was only 2.79%, found when |P| = 20,
and every other trial had errors less than 1%. When P was 10, 20, and 40 vertices in
length, some trials resulted in errors of 0%, showing that it is indeed possible for the
Lagrangian method to optimally solve a CMDP. The largest percentage difference in
reward from optimal for the Illinois False Position search was 1.71% when |P| = 90,
and some trials achieved zero error when the length of the path was 10, 20, 30, 40,
and 60 vertices.

The Lagrangian methods were also run on SOPCC CMDPs built using with ini-
tial paths from 100 vertices in length up to 200 vertices. The results are shown in
Figure 9.2. As expected, the trends continue for both Lagrangian methods, with the
Bisection search approach taking roughly double the amount of time to solution as
the Illinois False Position approach. Due to time and memory constraints, the linear
programming methods were impractical to use and therefore not included as part of
these tests.

Finally, the adaptive path method for the SOPCC was used to compare the La-
grangian methods to the linear programming methods with the resulting CMDPs,
with the results shown in Figure 9.3. Though a path tree creates a more complex
state space, the resulting CMDP is still acyclic and absorbing and therefore the La-
grangian approach exploiting properties of this type of state space still applies. As
before, the length of initial path was varied as a proxy to the size of the resulting
CMDP. Despite the adaptive path method utilizing the branch heuristics from sec-
tion 7.3 with kb = 5, the time to solution for all methods still grows much faster than
before due to the larger state and action spaces. Compared to the linear program-
ming methods, the Lagrangian approaches are still favorable in terms of the amount of
time required to compute a solution when |P| ≥ 100. The same trends as seen on the
non-adaptive SOPCC CMDPs are seen here, with the Illinois False Position Search



CHAPTER 9. LAGRANGIAN STOCHASTIC ORIENTEERING 125

(a) (b)

Figure 9.3: Results of the adaptive SOPCC CMDP solvers on lengths of paths up to
120 vertices. Shown are averages as well as minimum and maximums. (a) The error
of expected reward collected for the Lagrangian methods of solving the CMDP for
each SOPCC. (b) The required time to solution using different methods of solving
the CMDP for each SOPCC.

taking on average 147s versus the Dual Simplex Linear program taking on average
391s for an initial path length of 100 vertices. When computing results for initial
paths longer than 100 vertices, the Dual Simplex solver took too long to complete
and computation was suspended before a policy was obtained. In terms of reward
error, the Lagrangian methods seem to have performed slightly worse than before,
however they are still well within the given allowed error of 10%. The worst cases
came from when |P| = 20, with the Illinois False Position search method achiev-
ing a 5.08% difference from the optimum reward and the Bisection search method
managing a 2.93% difference. Both Lagrangian search methods were able to attain
0% errors on multiple occasions for a few different budgets. These results show the
presented Lagrangian methods are very quick at solving large aaCMDPs, and can do
so without losing much optimality.

9.4 Conclusion

The methods presented to solve the SOPCC in Chapter 6 and Chapter 7 require
finding policies to very large CMDPs, especially when the length of the initial path is
long. This is problematic because conventional CMDP solvers use linear programming
to find optimal policies, and the time to solution grows very quickly as the size of
the state and action spaces increases. One way of calculating policies quicker is to
use the Lagrangian method of solving CMDPs, which allows for the use of dynamic
programming methods typically only available to MDPs. By exploiting the design of
the specially constructed state space for the SOPCC, it is possible to quickly produce
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policies for the Lagrangian MDPs. Then, it is possible to adjust these policies to
find the appropriate Lagrangian multiplier by using a bracketed root finding method,
which also guarantees that the resulting policy will be within a bounded distance
from the optimal. These facts were shown to be true when tested on randomizes
instances of the SOPCC of various sizes.



Chapter 10

Final Thoughts

10.1 Conclusions

Throughout this dissertation, routing algorithms for autonomous agents operating
in aisle-like environments are discussed. Chapter 1 provided the motivation, which
involves the use of robots in vineyards to precisely adjust irrigation emitters on a
vine-by-vine basis in order to increase water use efficiency. There are challenges to
navigating a robot within a vineyard to provide optimal adjustment. These chal-
lenges are highly specific to the environmental model used, which was framed as an
Aisle Graph (AG), and require solving computationally difficult problems in order to
obtain effective solutions. The problems discussed throughout are the Orienteering
Problem (OP), the Team Orienteering Problem (TOP), the Bi-Objective Orienteering
Problem (BOOP), and the Stochastic Orienteering Problem with Chance Constraints
(SOPCC), and an overview for each was given in Chapter 2.

Chapter 3 discusses how to create AGs, the vertex-edge graph model which un-
derpins all the following presented algorithms, and also the heuristic methods solving
the Aisle Graph Orienteering Problem (AGOP). AGs belong to a special class of
graphs called Bipartite Planar graphs of degree 3 (BP3), and express an aisle-like
structure which gives AGs their name. Greedy Partial Row (GPR), one of the two
AGOP heuristics outlined in the chapter, was designed specifically to make use of the
BP3 structure in order to quickly build efficient paths for agents operating on AGs.
It was shown to be faster than general case orienteering heuristics while also also
giving higher quality solutions, verified by simulating irrigation emitter adjustment
problems for vineyards.

Chapter 4 discusses how to utilize the knowledge learned from single agent orien-
teering in vineyards to solve the Aisle Graph Team Orienteering Problem (AGTOP).
A big challenge with the AGTOP is the coordination of multiple agents across the
graph, which requires that none of the agents cross each other’s path inside of a row.
This is a problem associated with a team of robots operating in a vineyard, where
each row is narrow enough to limit only one robot within it at a time without risk for
collision. Three heuristics based on GPR are given which are able to overcome this
challenge, coordinating each agent in space-time while also efficiently scaling to large
graphs with large numbers of agents. Again, these were shown to be more effective
than general case heuristics and much faster for the same size team and problem.

The Aisle Graph Bi-Objective Orienteering Problem (AGBOOP) was discussed
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in Chapter 5. The main purpose of a bi-objective approach to routing in vineyards
is the ability for a robot to carry multiple payloads and perform different tasks.
One in particular is soil moisture sampling, which can be done along side of irriga-
tion adjustment. Two types of AGBOOPs were discussed, the Dual Maximization
(AGDMBOOP) variant, which aims to maximize for both objectives, and the Objec-
tive Constraint (AGOCBOOP) variant, which aims to constraint one of the objectives
to a minimum value while maximizing the other. By extending GPR to optimize paths
for multiple reward functions, it was shown that an agent navigating across an AG
can balance two objectives at once for either of the two variations of the AGBOOP.
Simulations on vineyard data proved that the extended heuristics are suitable for real-
world problems where irrigation adjustment and soil moisture sampling are necessary
tasks.

One important aspect of real world robotics problems that is often overlooked is
the stochasticity of robotic movement. In particular, field conditions may compromise
the assumption of determinism regarding mobility. For a ground robot, this can
manifest as needing unexpected amounts of time when moving from place to place.
Chapter 6 attempts to address this issue for the OP, by studying a problem called
the Stochastic Orienteering Problem with Chance Constraints (SOPCC). The SOPCC
rationalizes stochastic movements across edges in a graph, and reasons about choices
that an agent can make when deciding where to go next. A policy is created which
tells the agent how to maximize the expected reward of its path while also restricting
its chance of overrunning the budget to a defined maximum probability. A heuristic
method is given that utilizes any deterministic OP solver to create an initial path and
creates a policy that tells an agent where and when it should take shortcuts along
the path to reach the goal vertex on time. The method is validated on randomized
generic graphs to show its suitability but lacks adaptability and scalability.

Chapter 7 discusses two ways to modify the SOPCC method into an adaptive
algorithm. The first provides an adaptive way to choose the time intervals to create
an appropriate state space. It relies on simulating the initial path over several trials
and finding the distribution of arrival times for each vertex. The arrival times are used
in combination with a uniform discretization of the time dimension to create a new
adaptive time discretization for every vertex. The second provides an adaptive path
over which an agent can move. A path tree is created by finding states which are likely
to be used but provide less than ideal utility and computing an additional branch that
redirects the agent to collect more reward. Combining both of these method together
creates an adaptive heuristic for the SOPCC which is more productive in terms of
reward collection than the non-adaptive SOPCC method.

To correct the lack of scalability for the SOPCC, Chapter 8 presents a mechanism
by which vertices in a path can be aggregated into a set of compound vertices which
are each representative of multiple consecutive vertices. While it reduces the number
of available shortcuts, it also greatly reduces the amount of computation time required
to find a policy that satisfies the chance constraint. A way to apply aggregation to
orienteering paths created by GPR was also examined, which utilized full-rows and
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partial-rows as natural aggregation positions, thus allowing both the non-adaptive
and adaptive SOPCC methods to work on AGs with many vertices. Once again
vineyard data was used to simulate irrigation adjustment problems where a robot
needs to navigate with randomized edge costs, and results confirm that the provided
aggregation method for the SOPCC is able to scale to large problem sizes.

While scalability of the SOPCC has been addressed using agregation, it is a com-
promise that compresses the state space to a manageable size rather than solving a
larger problem quicker. Chapter 9 attempts to correct this by using the Lagrangian
method to replace linear programming when finding policies for the SOPCC. The
SOPCC CMDP is reduced to a simpler Lagrangian MDP over which a much faster
dynamic programming solver can find a policy. By using a bracketed root finding
method such as Binary search or Illinois False Position search, the optimal Lagrangian
multiplier can be approximated with two nearby values that satisfy an error bound
on the reward. The policies for these two Lagrange multiplier values can be mixed
together to provide a policy for the CMDP which keeps the constraint active and is
close to optimal. Experimentation on randomized graphs show that the Lagrangian
method of solving CMDPs scales better than the linear programming method and
can produce SOPCC policies for larger problems.

10.2 Future Work

There is more work to be done regarding planning algorithms for robots operating
in vineyards to optimize water usage. The algorithms presented are only useful with
prior knowledge given about a vineyard’s needed irrigation adjustment, and they also
make some assumptions that may not be true in practice. Future work should focus
on challenging these assumptions to make the irrigation adjustment more robust and
engineering new algorithmic approaches that achieve better results than obtained
thus far.

10.2.1 Non-uniform Costs and Different Vineyard Shapes

One big assumption made in this dissertation is that an AG is always rectan-
gular in shape, and uniform in cost. Real-life vineyard blocks, however, do not fit
these assumptions. A block will most likely be missing more than a few vines, due
to removal for various reasons, and therefore some vertexes will be missing in its
graph representation. Not all vineyards are rectangular in shape either, some may
be triangular or irregularly shaped due to natural geography, human activity, or land
usage requirements. It is often the case that they exist on plots of land that are not
flat ground, giving rise to non-uniform costs between vertexes and possibly different
costs depending on the direction of travel. Finally, it is even possible that vineyards
have no grid infrastructure such as trellises limiting movement, which is sometimes
the case with older vineyards, and the restrictions imposed by this structure are no
longer a concern. In all of these cases, the AGOP and AGTOP solvers will need to
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be rethought, or perhaps even dismissed for better alternatives, to deal with these
less orderly circumstances.

10.2.2 Improving GPR

One disadvantage to the GPR heuristic used throughout is that it works using
a greedy paradigm. Greedy algorithms are locally optimal, meaning they make the
best choice for the next decision, maximizing the outcome immediately. However, a
series of greedy choices does not always attain the best overall outcome, and this is
especially true for NP-hard problems like the OP. The optimal combination of choices
is non-obvious because every previous decision effects the results of future decisions.
This is evident in all of the aforementioned solvers by looking at the resulting paths.
A path may cross two rows that are right next to each other but they may not
be directly connected, instead many other full-rows or partial-rows can be traversed
between them. This is not optimal, as budget will be wasted traveling to those other
rows and back. Effort should be exerted to produce a path that wastes a minimal
amount of budget.

One method to solve this problem is to use a k-Horizon paradigm instead of a
strictly greedy one. k-Horizon algorithms are a form of receding, moving, or rolling
horizon algorithms that look at sequences of k decisions before making a choice,
instead of a single decision as with a greedy algorithm. By looking k decisions ahead,
it is possible to find a choice that more globally optimal than a simple greedy heuristic.
The disadvantage of this type of algorithm is the computational complexity, as it
increases the number of iterations required by k. An infinite horizon algorithm would
perform the best, as it will look at every possible combination of future decisions,
making only the optimal choice, however this is no different than using a tree search
algorithm. By redesigning the GPR algorithm to use a k-Horizon, it will be possible
to produce better results that waste less budget.

Another way to conserve budget when building paths on AGs for the OP and its
derivatives is to do it after running the heuristics instead of during. The sequence of
visitations for each full-row and partial-row in the path can be reordered linearly to
cut excess travel costs. This idea is the result of the observation that paths will often
waste budget running up and down the sides of the AG, passing rows multiple times
before eventually including them in the path. Once rearrangements are made, newly
freed budget can then be used by resetting the feasibility of unvisited vertexes and
continuing where the heuristic algorithm left off. This process can be repeated until
no change happens on the last run, eventually reaching an equilibrium that gives a
much more optimal result than initially. This approach has an advantage over the
k-Horizon method in that it will not multiply the runtime by k. However, it also
has the disadvantage that the runtime will be dependent on the newly freed budget,
which is impossible to know ahead of time.
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10.2.3 Non-homogeneous Agents

Another assumption made by the algorithms solving the AGTOP is that all of
the agents are exactly the same. That is, they all have the same reward and cost
functions over the given AG. It is possible that the agents cooperating together are
non-homogeneous; there could be multiple types of robots that move at different
speeds and there could be humans that perform the same tasks but with different
levels of efficiency. This would lead to different reward and cost functions that are
agent dependent, resulting in a need to plan and coordinate all agents according
to their ability. Allowing non-homogeneous agents to work together requires some
changes to how the AGTOP algorithms work. Calculations for the heuristic values
need to account for the different rewards and costs associated with each agent, and
calculations for the time conflicts need to account for the differences in movement
speed as well. It may be beneficial to change the operations of SGPR and PGPR
to iterate loops on a time basis rather than on full/partial-row and feasible vertex
basis. This would fundamentally modify how the algorithms work, however, changing
their complexities and may possibly make them less computationally efficient. That
is just one method of reckoning dissimilar agents solving the AGTOP and there may
be others.

10.2.4 Online Path Planning

When navigating a vineyard to adjust irrigation, soil moisture sampling can also
be carried out as a supplemental task. This leads to a question of whether it is
possible and practical to use new data collected from the sampling to modify prior
knowledge of the vineyards moisture status and change the irrigation based on the
new knowledge. This would require online updating of the robot’s path, however it
is not a trivial task. For example, in order to use GPR for online path planning,
the algorithm will need to be changed to allow starting a path from any vertex in
the graph, so as to allow the agent to start from its current location after the reward
function is updated. Additionally, there will be a need for some method to amend the
reward function based on the new data, and this will not be straightforward because
of how soil drainage and water percolation can effect the moisture of surrounding soil
when one irrigation emitter is changed. Thus, incorporating additional information
to an AG, whether it changes old data or provides new knowledge, modifies the way
the OP and TOP must be solved for vineyards.
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