
UNIVERSITY OF CALIFORNIA, MERCED

Probabilistic Constrained Decision
Making for Robots Exploring,

Mapping, and Navigating Indoor
Environments.

A dissertation submitted in partial satisfaction of the requirements for the degree
Doctor of Philosophy

in

Electrical Engineering and Computer Science

by

José Luis Susa Rincón

Committee in charge:
Professor Stefano Carpin, Chair
Professor Marcelo Kallmann
Professor David C. Noelle

2020

Copyright Notice

©2020 José Luis Susa Rincón
All Rights Reserved.

The Dissertation of José Luis Susa Rincón is approved, and it is acceptable in
quality and form for publication on microfilm and electronically:

Marcelo Kallmann

David C. Noelle

Stefano Carpin, Chair

University of California, Merced

2019

iii

”Tú debes ser como una flecha, y nosotros con tu mamá seremos el arco
que con toda nuestras fuerzas te ayudaremos a volar lo más alto y lejos
que podamos.”

”You have to be an arrow: your mother and I will be the bow that, with
all our strength, will make you fly as far and high as possible.”

José Félix Susa Lizarazo

iv

Dedication

Today is a good day to look back, it is different to any other days in the past, I
remember the long journey to get here; It took 35 years, and I almost didn’t make it
because the path had many obstacles. Reflecting on the winding path - I remember
being at a multi-robot conference, presenting one of my papers that I never imagined
I would write. I remember an internship in Japan where I worked on autonomous
cars. I left behind my country and my family to be here - and created a new one;
three awesome ladies (including Boo). I never imagined in my wildest dreams that I
was going to see all I have seen, do all I have done, and learn what I have learned.
However, in my mind, the luxury and luck of surviving, has always given me the
best motivation to do more and more, to contribute to this world and enjoy the
opportunity I was given. This difficult journey was also tough not just for me but for
my parents and family, I believe they never imagined that one day I was going to be a
crazy scientist, building and making intelligent machines or, in technical terms, being
a robotics Engineer. Today I get to show my family and friends that, even if they are
not physically with me, they all share a vital part in this story...a story that is just
beginning. Nothing I have done is attributed to me alone, but is in fact a triumph
of the many people who have taken this journey with me - and stuck with me on the
good and bad days. This dissertation is ultimately a triumph of my parents. With
them standing by me, I have made the right choices in life that allow me to write
these very words.

This is for my brother Juanca, my mom, my dad, my grandma Ligia, my little
baby gordis, my wife, Dashis, Boo and the many others that walked with me.

v

Contents

List of Symbols ix

List of Figures ix

List of Tables xiii

List of Algorithms xiv

Acknowledgment xv

Curriculum Vita xviii

Abstract xx

1 Introduction 1

2 Literature Review 5
2.1 Planning under Uncertainty . 5

2.1.1 Markov Decision Processes - MDP 7
2.1.2 Constrained Markov Decision Processes - CMDP 8

2.2 Context for the Rapid Deployment Problem 10
2.3 Mapping and Exploration . 12

2.3.1 Mapping . 12
2.3.2 Map Merging . 14
2.3.3 Exploration and SLAM . 15

2.4 Replicability and R-Articles . 16

3 Theoretical Background 19
3.1 Introduction . 19
3.2 Markov Decision Process - MDP . 19

3.2.1 MDP Formulation . 21
3.3 Constrained Markov Decision Process - CMDP 23

3.3.1 CMDP Formulation . 23
3.3.2 Solving CMDPs . 25

vi

4 Rapid Deployment of Mobile Robots under Constraints 27
4.1 Introduction . 27
4.2 Observing Multiple Targets with One Robot 29

4.2.1 Environment model . 29
4.2.2 A model based on CMDPs . 30

4.3 Solving the rapid deployment problem 34
4.4 Group Assignment Problem . 35
4.5 Simulations . 38
4.6 Conclusions . 40

5 Motion Planning Under Temporal Constraints with Stochastic
Motion Primitives: Theory and Practice 42
5.1 Introduction . 42
5.2 Preliminary Background . 44

5.2.1 Uncertainty Quantification via Probabilistically-Valid
Stochastic Models . 44

5.2.2 Stochastic Motion Primitives Derivation 46
5.2.3 Extracting the Transition Probabilities 48
5.2.4 Deterministic Model Fitting 52
5.2.5 Stochastic Model Extension 53

5.3 Experimental Setup . 55
5.3.1 Environment . 56
5.3.2 Infrastructure . 58

5.4 CMDP definition . 59
5.5 Experimental Validation . 63
5.6 Conclusions . 65

6 Time-Constrained Exploration Using Toposemantic Spatial Models 68
6.1 Introduction . 68
6.2 Replicability . 71
6.3 Oriented Topological Semantic Maps 72

6.3.1 OTSM Formulation . 75
6.3.2 Incremental Map Construction, Navigation, and Exploration . 78

6.4 Exploration Algorithms . 82
6.4.1 Random Strategy Exploration 82
6.4.2 Topological Frontier . 82
6.4.3 Topological Frontier with Normalized Distances 83
6.4.4 Semantic: Explore Corridors First 83
6.4.5 Semantic: Complete Corridors First 83

6.5 Experimental Validation . 84
6.5.1 Setup . 84
6.5.2 Maneuvers . 85
6.5.3 Calculating the Failure and Temporal deadline 85
6.5.4 Software Architecture . 87

vii

6.6 Results . 88
6.6.1 Random Strategy Exploration 90
6.6.2 Topological Frontier Exploration 91
6.6.3 Topological Frontier with Normalized Distances Exploration . 91
6.6.4 Semantic Strategy Exploration 91

6.7 Conclusions . 95

7 OTSM Implementation 96
7.1 Introduction . 96
7.2 Systems Implementations . 97

7.2.1 Intersection Detection System (IDS) using 2D LIDAR 97
7.2.2 Labeling System (LS) using 2D images 103
7.2.3 Loop closure problem . 103

7.3 Experimental Setup . 105
7.4 Results . 107
7.5 Conclusions . 108

8 Map Merging of Oriented Topological Semantic Maps 110
8.1 Introduction . 110
8.2 Inverse Warrington’s Object Recognition Model (IWORM) 112
8.3 IWORM Inspired Map Merging of OTSMs 112

8.3.1 Sources of error . 117
8.3.2 Understanding Errors . 119

8.4 Simulations . 120
8.4.1 Setup . 120

8.5 Results . 121
8.6 Conclusions . 124

9 Conclusions 126
9.1 Summary of Contributions . 126
9.2 Future Work . 127

Bibliography 128

viii

List of Figures

2.1 Rapidly Exploring Random Trees (RRT) (Taken from:
http://mrs.felk.cvut.cz/research/motion-planning. Vojtěch Vonásek). 6

2.2 Motion uncertainty when moving in a 2D map. 8
2.3 Left: Sample terrain map with red areas showing higher risks. Right:

Two solutions using a Hierarchical Solution with CMDP for different
risk constraints. Taken from [58] . 9

2.4 Rapid Deployment Problem with a group of robots trying to reach
different targets with multiple observation points. 9

2.5 Map described as a graph with multiple vertices, where the pink
triangle is taken as a deployment vertex and the ones with green
crosses as goal vertices. Taken from [34]. 11

2.6 (a): Example of a gridMap. Taken from [78]. (b): Example of a
Topological map. Taken from [60]. (c): Example of a Semantic Map.
Taken from [140] . 18

3.1 Example of a graph taken from an environment where the deployment
point is named as v0. For any state there is a chance to fail and end
in a sink state S while going to a target state T. Image taken from [41] 20

4.1 A possible setup for rapid deployment. Ten different targets are
outlined by solid thick circles (visibility sets are displayed by thin
circles of the same color.) . 29

4.2 When a successful observation from state xi is made, the state goes
through an augmented state x′i and, from there, it executes its only
action. Then with probability 1, it goes back to the state xi but with
the corresponding modified bit. 31

4.3 Success probability for different temporal deadlines for a different
number of robots in the team for the case where 10 targets are
considered. 38

4.4 Average time to solve a single linear program for the SRMTO problem
as a function of the number of targets (average taken over all linear
programs to be solved for a specific number of targets). 40

ix

4.5 Average cumulative time to solve all linear programs to solve the
SRMTO problem as a function of the number of targets (average
taken over all temporal deadlines considered for a given number of
targets). 41

5.1 Example of data fitting: a) Grey lines correspond to the empirical data.
Dashed lines correspond to sample trajectories. Blue line correspond
to the mean of the sample trajectories. Red lines correspond to the
cone of data. b) Computing the cone of data with variability ellipses
εt centered at the sample mean. Image taken from [85] 44

5.2 The environment with the Vicon system composed for motion capture
cameras around the room. 46

5.3 The Duckiebot robot used in this study. 47
5.4 Experimental distribution of the trajectory endpoints (blue for fast

maneuvers, and purple for slow maneuvers). Fast maneuvers (plotted
in blue color) are those that end at larger displacements along the y
axis. The final orientation is indicated by the arrow. Position
uncertainty ellipses are shown in thick curves. 49

5.5 Left: Position discretization. Right: Orientation Discretization. . . . 50
5.6 Left: 50 trajectories for 3 Maneuvers (“probabilitic template”). Right:

Calculating probabilities for forward trajectories that end at range 1. 51
5.7 (a) Example of using the probabilistic template with the states on the

map. (b) Example of a small extract from a transitions table. This
table can contain thousands of transitions, depending of the
discretization and the number of actions. 52

5.8 Example of the forward maneuver with and without initial noise for
the position. 54

5.9 Realizations of the stochastic model: (a) FS, (b) FF, (c) CWS, (d)
CWF, (e) CCWS, (f) CCWF. 55

5.10 One of the real scenarios that we used for our experiments 56
5.11 The two intial environments used for testing. The overlaid grid shows

the discretization used for the CMDP. In the following, the
environments are referred to as empty 5.11(a), maze 5.11(b). 57

5.12 The two following environments used for testing. The overlaid grid
shows the discretization used for the CMDP. In the following the
environments are referred to as two ways 5.12(a) and 5.12(b). 58

5.13 Infrastructure for Robot Duck executing policy from CMDP. 59
5.14 Structure of the CMDP for the deployment problem. Top states in

X ′ correspond to the states obtained by discretizing the environment
and with transition probabilities numerically determined as described
in the following. State S is entered when there is a collision. State T
is the only state in M and is always entered at the end of a run, either
successfully ending in a goal state xG or being unsuccessful because of
a collision. 60

x

5.15 For a given state x and maneuver a, multiple trajectories are generated
using the generative model. Each trajectory is then checked to see if it
is collision free or not. Collision free trajectories, like the red ones, are
used to determine the transition probabilities to states like x′, x′′ and
like. Trajectories resulting in a collision, like the blue one, are used to
numerically estimate P (x, a,S), i.e., the transition probability into the
sink state S. 62

5.16 Trajectories showing failures when going to the goal. Zones marked by
a red ellipse show where the trajectories collided with the obstacles.
(a) Red lines correspond to Maze a, and blue lines to Maze a1. (b)
Red lines correspond to Empty map b and blue lines to Empty b1. . . 64

5.17 Trajectories showing failures when going to the goal. Zones marked by
a red ellipse show where the trajectories collided with the obstacles.
(a) Two different failing trajectories. (b) One failing trajectory. 65

6.1 On the left: three adjacent vertices along the E-W direction. c1a is
on the left of c1b, and c1c is on the right of c1b. On the right: three
vertices along the N-S direction with c2a on the right of c2b and c2c
on the left of c2b. 73

6.2 Three corridors are connected. For corridor 1 we have two adjacent
vertices along the E-W direction. c1a is on the left of c1b. For corridor
2 we have two adjacent vertices along the N-S direction with c2a on
the right of c2b. The third corridor have two adjacent vertices along
the E-W direction. c3a is on the left of c3b. c3b is on the left of c2b,
and c2a is on the left of c1b . 74

6.3 Two corridors and one room in the middle. For corridor 1 we have two
adjacent vertices along the E-W direction. c1a is on the left of c1b.
For corridor 2 we have two adjacent vertices along the N-S direction
with c2a on the right of c2b. The Room 1 is on the left of c2b and on
the left of c1b . 75

6.4 Oriented Topological Semantic Map - OTSM. Vertices with a label Rx
are rooms, while corridors have labels of the type Cx. Edges with a R
label are purple, while edges with a L label are green. 77

6.5 Examples of OTSM taken from CAD designs from the University of
California Merced. 79

6.6 Engineering building at the University of California Merced. 84
6.7 Software Architecture. 88
6.8 Three starting points (A, B, C) and one target 89
6.9 The performance of the five exploration strategies. 90
6.10 An analysis of the failures for the five exploration strategies. 90
6.11 The success percentage for all of the exploration strategies. 93
6.12 The time spent for all of the exploration strategies. 94

xi

7.1 Intersections in the real world and corresponding laser scan as seen in
2D LIDAR. (a):Left Intersection. (b): Right Intersection. 98

7.2 Intersections in the real world and corresponding laser scan as seen in
2D LIDAR. (a): Four-way Intersection. (b): T Intersection. 99

7.3 Visualization breakpoints, line segments obtained from a single laser
scan using a 180 degrees LIDAR. Taken from [125] 100

7.4 Example line segments identified and middle points for a) Left
intersection, b) Right intersection, c) T intersection, d) Four way
intersection. 102

7.5 Last three layers of resNet-101 changed. 103
7.6 Sketch of the floor at the University of California Merced, with

intersections (blue zones) and rooms (Orange zones). 105
7.7 Pioneer Robot 3AT mounted with a Laptop, a LIDAR, a RGB camera

and two IMU um7. 106

8.1 Diagram of the Warrington’s Object Recognition Model inspired by
the [180] . 113

8.2 Diagram of the Inverse Warrington’s Object Recognition Model . . . 114
8.3 Error type 1: A semantic labeling error. 117
8.4 Error type 2: An error with the compass. 118
8.5 Error type 3: A missing edge in a sub-map. 118
8.6 Error type 4: A vertex missing in a sub-map. 119
8.7 Left: start locations. Right: overlapping regions. 121
8.8 Comparison of quality from 20 full maps with different errors when

maps do not overlap A+D. 122
8.9 Left: OTSM Error Free No Overlapping. Right: OTSM Errors

1+2+3+4 No Overlapping . 123
8.10 Comparison of quality from 20 full maps with different errors when

maps overlap A+B+C+D+E. 124
8.11 Left: Final OTSM error-free. Right: Final OTSM with errors 1+2+3+4125

xii

List of Tables

5.1 Average performance over 50 runs. 63
5.2 Comparison of transition probabilities P for different amount of data

samples taken from the real robot and generating 500 modeled samples. 66
5.3 Comparison of P distribution for different amount of modeled

samples taken from the stochastic model against the 500 modeled
samples successfully used in table 5.1 66

7.1 Average performance for the intersection detection system over 10 runs
for 8 different type of intersections. 107

7.2 Performance of the accumulative training with multiple steps. It shows
the number of images taken, the time to train the Neural Network, the
final identified label and the light conditions. 109

xiii

List of Algorithms

4.1 Rapid deployment . 35

6.1 Map Initialization . 78
6.2 Adding a new node to the map . 80
6.3 Navigation Algorithm . 81
6.4 Global Exploration Algorithm . 81

7.1 Compute line segments between any two break-points bp1, bp2 101

8.1 Merging OTSMs . 115
8.2 IWORM scores the resemblance of a pair of vertices vi, vj. 115

xiv

Acknowledgments

It has been a journey, with ups and ups. I cannot say there were downs because
everything was for a purpose and each step brought me up here. I have to thank
my advisor Stefano Carpin who was the one who made all this possible. He gave
me the opportunity to have all I have today, and he gave me advice and showed
patience throughout this process and I will always remain in his debt. He believed
in me, taking me on as a graduate student without knowing me, a complete stranger
from a singular country. He saw potential in me when others could not. Thank
you for taking a chance on me; I will always remember my humble origins and the
mentor who let me be who I am today. I also have to thank my thesis committee
Professor David Noelle, and Professor Marcelo Kallmann for supporting my work and
this dissertation. Special gratitude for Sree Harsha, Carlos Diaz, Jose Gonzales, and
Victor Gonzalez who helped with some of the experiments and implementations of
some of the algorithms. I am also grateful for the partial support from by the Army
Research Lab through grant W911NF-08-2-0004 (MAST CTA, task CNC-15-4-4).
The Miguel Velez Scholarship, and the California Merced Bobcat Fellowships that
allowed me to complete my program successfully.

I cannot avoid recognizing the amazing people behind the school of engineering,
who were always there to support me. Without people like Tomiko Hale and Tamika
Hankston always helping with any administration process, the department would
not be functional. Thank you all for your support and work. I really appreciate
being a part of this great university, surrounded by excellent people. I also need to
thank Martha Garibay, the beautiful person that works for the janitorial staff who
sometimes worked with me until very late at night and brought me cookies and bread
for motivation.

I want to recognize some members of this great university, who, during all these
years, gave advice and support. I need to write some words for Jesus Cisneros and
Eric Cannon for assisting and supporting my outreach initiatives and facilitating the
financial support. Becky Mirza for being the head of the international office and
always standing by and for us as international students. She always helped us get
what we needed to have a happy life in this country. The Graduate Programming
and Events Coordinator Jen Quiralte and the GRC Coordinator Cassie Gunter for
their time and effort to offer activities and support for all graduate students.

I have many people in my heart and my thoughts, people that gave me some of
the best years of my life so far. I enjoy their company, the conversations, the tales

xv

and mysteries we shared at some point. Ivan, many years have passed and he is still
by my side. He’s helped me and my family throughout this journey - thank you so
much. Of course, I have to thank Eli! Before I even arrived to this country, she was
already on my side. We have lived together for years and I hope we can always be in
each others lives, stay close.

I cannot feel comfortable saying thank you to the best of all in the middle of this
page. She should be at the beginning and at the end, in the center and on the sides,
she should be everywhere!. However, the middle may be exactly where she means to
be. Anna, you deserve the best place on this page and in the next pages of my life.
I could write a whole new dissertation about each of the little and big things you
have done for me and with every moment I had to say thank you. We have faced and
overcame many challenges. You have been my companion, my support, my friend,
my box of laughs and giggles, my travel buddy, my feelings expert, my wife and the
mother of the most precious daughter in the world and the cutest Boo ever. I feel
lucky for finding you in this world. We still have a story to write so please accept my
apology for only writing this time a very short abstract of our life together!

Last but not least, there are people who deserve my most sincere acknowledgments,
as they were an important part of this process. Shams and Shuo were very helpful
during my first years. They taught me how to succeed and survive graduate school.
Dr. Alain, Dr. Angel, Adytia, Jorge, Jocelyn, Andres, Ana (Simões), of course Dr.
Drunkachu, and Himanshu. I am thankful for meeting you and thankful for all the
adventures we have shared throughout these past years.

It is a very long process to be formed as a researcher, as a thinker, as an engineer,
and as a person; In parallel with the academic work done to complete this dissertation,
for the past few years, a group of other graduate students from UC Merced and I
have been leading a renewed effort to reach the new generation to grow their passion
to learn and study in a new way. I would like to recognize the work that helped me
to see robotics as a social disruptor, as a tool we can use to break the status quo. I
believe we must make the use of robotics in learning a social priority.

For decades, we have grown with an invariable idea of education. We have hoped
to obtain all our knowledge from a person standing on front of us, we have sat hours,
and hours listening to different teachers and grasping merely the very surface of
the idea that they want us to assimilate. We spend years going through school, to
college, obtaining multiple degrees, and diplomas, we also accumulate some grades
that become only numbers on paper. However, two questions come to mind: how
much of all that time and effort is reflected into our society, and how much of that
energy is returned to contribute to the great cause of making a better world.

I would like to recognize the great experience I obtained coordinating the Migrant
Education in Science and Technology (MESAT) program in 2016 and the Science,
Technology and Arts for Youth (STAY) program in 2017. These programs focused on
students being able to play being the scientist/engineer within a structured, yet fun
and engaging problem, based in the natural sciences. With my team, we have also
given many interactive talks, engaging a similar model of problem-based learning in

xvi

a very short amount of time. In each talk, we presented secondary students with a
problem based in real life and asked them to go with us through a series of problem-
solving techniques. In most cases, students forgot they were “learning” because we
provided an atmosphere of play and collaboration.

Robotics is a difficult science, complex, and beautiful at the same time. How we
use it will impact the world and people in many ways, I have to be thankful for this
opportunity to work in this field, help to make it greater and continue working with
the next generation.

xvii

Curriculum Vita

Education
• University of California, Merced. Merced, CA, USA. (2014 – 2020).

Ph.D. in Electrical Engineering and Computer Sciences.

• Ecole Nationale D’Ingénieurs De Brest. Brest, France. (2005 - 2008).
M.Sc. in Engineering.

• Escuela Colombiana de Ingenieŕıa Julio Garavito. Bogotá, Colombia.
(2001 - 2005).
B.S. in Electronics Engineering.

Research Experience
• Universidad Central. Bogotá, Colombia. (2013,2014). Engineer‘s

Coordinator.

• Escuela Colombiana de Ingenieŕıa. Bogotá, Colombia. (2008, 2009).
Researcher.

• Ecole Nationale supérieure de techniques Avancées. Paris, France. (Fall
2007). Cognitive Robotics Intern.

• “Ecole Nationale D’Ingénieurs De Brest (ENIB). Brest, France. (2005-
2006). Research Assistant.

Publications
• J. L. Susa Rincon, K. Karydis, V. Kumar, S. Carpin. Motion Planning Under

Temporal Constraints with Stochastic Motion Primitives: Theory and Practice.
Springer Autonomous Robots (Under Review).

xviii

• J. L. Susa Rincon, S. Carpin. Time Constrained Exploration Using
TopoSemantic Spatial Models: a replicable approach. IEEE Robotics and
Automation Magazine, (2019).

• J. L. Susa Rincon, S. Carpin. Map Merging of Oriented Topological
Semantic Maps. IEEE International Symposium on Multi-Robot and
Multi-Agent Systems, (2019).

• J. L. Susa Rincon, P. Tokekar, V Kumar, S. Carpin. Rapid Deployment of
Mobile Robots Under Temporal, Performance, Perception, and Resource
Constraints. IEEE IEEE Robotics and Automation Letters , (2017).

• J. L. Susa Rincon, A. Garcia. Interactive Video Game - Red Dot [computer
software]. Science Faire Groningen, The Netherlands , (2014).

• J. L. Susa Rincon, A. Garcia. Interactive Video Game – Saving Manzanares
River [computer software]. Science Faire Corferias Sergio Arboleda University.
Bogotá, Colombia, (2013).

• J. L. Susa Rincon. Educación en robótica para niños. Gobernación de Arauca.
ISBN: 978-958-99553-1-4. Colombia, (2011).

• J. L. Susa Rincon,D. Ramos. Navigation of an autonomous mobile robot
using the combined force field concept. Escuela Colombiana de Ingenieŕıa
Magazine No 78. ISSN 0121-5132. Pag 49. April-June , (2010).

• J. L. Susa Rincon, J.F. Susa Lizarazo. Wartegg Automatic Test Qualifier
[computer software]. Colombia, 2008 v1.0, 2016 v5.1.

xix

Abstract
Probabilistic Constrained Decision Making for Robots Exploring,
Mapping, and Navigating Indoor Environments.

Robots are becoming more of a part of our daily lives. They have become an
extension of some our human capabilities and there is a need to develop control
algorithms that contribute to the successful deployment of these machines to navigate,
explore and map indoor human environments. These robots and their actions, despite
our effort to make them as predictable as possible, show stochastic behaviors, as well
as motion and sensing uncertainties. We leverage the use of Constrained Markov
Decision Processes (CMDP) to balance multi-cost problems with constraints, under
the premise of having multiple possible sources of uncertainties. This dissertation
engages in solving some of these problems in the following chapters.

Initially, we highlight some of the theoretical background about Markov Decision
Process (MDP) and its extension the CMDP. From this point we deal with the
problem of multiple robots visiting multiple targets, while we fix temporal and
failure probability constraints. We present our solution to expand the state space
following a binary sequence that represents successful observations of each of the
targets. All this is classified as the rapid deployment problem, which we define and
solve for a team of robots.

Closing the gap between reality and theory, we implement a stochastic model
that recreates the motion primitives from a robot. We proceed to use these modeled
primitives to create modeled trajectories and extract transition probabilities from
them. These transition probabilities characterize some of the robot’s behavior and
we use them with our formulation of a CMDP. Then we calculate a navigation policy
to traverse some real scenarios.

We create and implement a new spatial model dubbed Oriented Topological
Semantic Map (OTSM). This new type of map can be built in run-time, and
together with a CMDP, we assign actionable temporal deadlines to the robot
executing an exploration task. We open-sourced a ROS framework that can be
downloaded and used to reproduce our results and we published the first
Reproducible Article or R-article in robotics. Consequently, we implement an
OTSM by grouping an Orientation System (OS), an Intersection Detection System
(IDS), and a Labeling System (LS), using odometry, accelerometers, a LIDAR, and
a residual neural network resNet, to extract the orientation, the topology, and the
semantics of an indoor environment.

In the last part of this dissertation we propose a new algorithm to merge
together pieces of OTSMs when a group of robots have the task to explore an
unknown environment. Then they combine their local maps into a global map. Our
solution was inspired from research in cognitive science that focused on object
recognition. Applying this theory, we create a two-stage method to compare vertices
in different OTSMs and measure their resemblance.

xx

Chapter 1

Introduction

Mobile robots can be seen as an extension of our human capacities. We can extend
our limitations using one or multiple robots to solve problems that otherwise would
be difficult, dangerous, or less efficient to solve by ourselves. For instance,
exploration and mapping of a new environment can be a time-consuming and
potentially dangerous task that humans do regularly. However we believe this is one
area where robots can help considerably. We aim, with this work, to offer novel
solutions for problems like exploring, mapping, and navigating indoor environments
with mobile robots. We hope that this work contributes to the overall development
of these machines that, one day, will help us with our daily tasks.

Often, a robot is seen as a perfect and deterministic agent that behaves in a certain
way repetitively under the same conditions and commands; in real life, however, this
kind of ideal robot is impossible to develop. Although the control systems aim to
reduce the level of errors and noise to make the robot more predictable, at the end,
it is very hard to avoid the fact that the robot is a machine with many components
(e.g. sensors, actuators, software, etc), each of which, carry inherent errors. Sensors,
for example, are components that can only partially estimate the true aspects of
specific physical properties. Most of the measurements we use are an approximation
of a physical property, and all the sensors present noise when measuring them. The
environment also plays a decisive role in defining the type and the amount of errors
included in the system. For a physical environment, high and low temperatures, the
direction and the amount of light, the type and material of surrounding objects, and
the surface where the robot moves, contribute to the overall noise and error. Hence,
we will always face a reality where a robot has multiple sources of errors in a variable
environment. Under this premise, we develop all our algorithms, assuming that these
robots are faulty machines, with noise and errors, and there are multiple types of
uncertainties that need to be considered.

The purpose of this dissertation is to study how to model and solve different
problems in three different areas of robotics, i.e navigation, exploration, and
mapping. For all of them we will assume that the robots have motion, sensing, and
state uncertainties. In navigation, we consider the problem where a team of mobile
robots is tasked with collecting information about a set of stationary targets. There

1

Chapter 1. Introduction 2

is a temporal deadline to complete the task, and the objective is to determine a
control policy maximizing the probability of successfully completing the task within
the assigned deadline. Furthermore, there are more targets than robots, so load
sharing between robots is necessary. We model this problem using the theory of
Constrained Markov Decision Processes (CMDP) and split the solution in two steps.
First, policies to observe small subsets of targets are computed, and the proposed
model and algorithm allow extracting accurate information characterizing the
performance of the computed control policies. In the second stage a subset of the
computed policies is assigned to the robots for execution with the objective of
maximizing a collective team performance function. We show that the objective
function is submodular, and a greedy approximation algorithm can be used to solve
this nonlinear assignment problem. Simulations demonstrate how these models can
be used in practice to appropriately tune the parameters characterizing this
problem, and show how the approach favorably scales with the complexity of the
problem. A simulation and the implementation of the solution with a real robot is
shown in chapters 4 and 5. We present a methodology that uses grey-box methods
to identify stochastic motion primitives from sampled trajectories. This approach
yields a generative method with guaranteed performance that allows us to predict
stochastic behaviors not observed in the original sampled dataset. Developed
primitives are then used by a planning algorithm based on Constrained Markov
Decision Processes that computes a motion policy aiming to achieve a target pose
while being subject to constraints bounding the time to completion as well as failure
probability. This work yields a data-driven, closed-loop trajectory control and
planning policy with guaranteed, bounded failure probability. Theoretical findings
are demonstrated in practice by experimentation on a differential-drive mobile robot
subject to motion uncertainties to navigate through different mazes. Experimental
results confirm the validity of the proposed method.

For exploration and mapping, spurred by progress in machine learning, there is
a tendency to use novel designs in which robots rely more on visual sensors and less
on traditional sensors like range finders. Starting from these premises, our objective
is twofold. In chapter 6, we first revisit the classic exploration problem introducing
temporal constraints in the task and embracing a new type of map called Oriented
Topological Semantic Maps (OTSM) that does not include any metric attribute. To
assess strengths and weaknesses of the various exploration methods abstracting from
the underlying technical implementation, we perform a set of simulations in ROS
using its Gazebo simulation environment. The simulation-based approach leads to
the second objective of this contribution, namely presenting a set of findings that are
fully replicable by a third party. As replicable robotics gains more and more attention,
this work represents a first attempt to present a fully replicable investigation based
on the widely used Gazebo simulation environment. In chapter 7 we make use of
the replicable framework in a real robot, and we test the different systems to extract
topological, semantic and orientation information to create OTSMs.

In chapter 8 we propose a solution for the problem of merging together partial

Chapter 1. Introduction 3

spatial models relying on our recently introduced Oriented Topological Semantic
Maps (OTSM). This problem arises when a group of robots cooperatively explore
an environment, and each one independently builds a partial map that must be
combined with the others into a full map. Our methodology is inspired by the
Warrington’s Object Recognition Model, a cognitive model hypothesizing two
post-sensory categorical stages working together for object recognition. Accordingly,
we use two stages to compare different maps and match them together based on
their mutual resemblance. Our method is complemented by a scoring system to
measure the likelihood that two vertices in different OTSMs correspond to the same
vertex, despite possible errors in labeling, orientation, or topological structure. Our
methodology is validated in a simulation informed by an ongoing real robot
implementation, thus allowing us to perform various experiments with carefully
controlled error sources.

Finally, we conclude with chapter 9 summarizing our main contributions; We
will see by the end of this dissertation that we can leverage a CMDP to model
problems where there is stochasticity, uncertainties, and where we need to find a
policy that balances temporal and failure probability constraints. In robotics, such
application of CMDP model is still mostly unexplored and we hope this dissertation
fills in some of the gaps in the areas of navigation, exploration, and mapping. For
example, we offered a solution for efficiently distributing a group of robots to visit
stationary targets and making stochastic observations that differs from the initial work
of rapid deployment introduced by Carpin [35] and Purohit [141]. In exploration, we
showed that using semantic information is sufficient to find a target in an unknown
environment, and if we have multiple robots exploring, we are able to combine several
pieces of OTSM maps they create. We also conclude, that in using stochastic models
we can effectively extract and characterize the robot’s motion, and that we can use
the proposed method to calculate a realistic policy to control a robot. This is, to the
best of our knowledge, the first time the use of these stochastic models with a CMDP
is proven experimentally.

One of the main contributions of this dissertation, is the creation and use of the
OTSMs, for a single and group of robots. We can relate our work to previous works,
such as Quatrinni et al. [143], Luperto and Amigoni [109], Blochliger et al. [20],
Varadarajan [174], where semantic, and topological information is used to navigate
and explore environments. However, for the first time, we created a map that is
navigable by humans and robots, that contains enough information to guide a robot,
and that we can use in run-time with a CMDP to constrain the exploration and
navigation problem with temporal and failure probability constraints. Also for the
first time, we publish in the robotics literature a Reproducible-Article that stimulates
a standard for future publications to share and standardize replicating results in
robotics research.

All in all, we show how it is possible to implement our methods and solutions in
real robots, we measure the performance in simulation and run the same algorithms
with low cost robots. We use the distributed operation system, ROS, to transfer and

Chapter 1. Introduction 4

run the algorithms and prove their applicability and robustness.

Chapter 2

Literature Review

In this chapter we cover some of the main works that are related and inspired the
rest of this dissertation. First, in section 2.1 we present an overview of some methods
for discrete planning. This will be the core of the following sections where we use
the Constrained Markov Decision Processes (CMDP) to Navigate, Explore and Map
indoor environments. Then, in section 2.2 we introduce some works that state the
Rapid Deployment Problem that we will solve using CMDPs in chapter 4.

In section 2.3 we present the literature related to exploration and mapping,
where we compare the techniques and type of information extracted from different
environments in order to create a representation that can be used by the robot to
calculate policies and an optimal solution for a navigation path using CMDPs.

The last part of this literature review completes the work of mapping an
environment with a multi-robot approach. Different techniques are presented and
serve as the base for our chapter 8.

2.1 Planning under Uncertainty
A significant body of work has focused on answering one main question: How do
we create planning algorithms that can handle uncertainty? We present below some
representative works that support our own developments in this area.

Many traditional motion planning approaches, either combinatorial or sampling
based, build upon a deterministic framework whereby the environment is known and
the outcome of actions is fully predictable (see [97, 40] for thorough introductions
to these topics). However, to be applicable in practice, uncertainty must often be
considered. When we talk about combinatorial motion planning algorithms [167] we
refer to methods that represent the space as combinatorial structures of a given type in
order to plan over a graph. This explicit discretization of the environment creates two
main problems. First, modeling the free configuration space Cfree becomes a complex
problem to solve for all sorts of environments. Second, when we study problems with
many degrees of freedom, dividing the space to achieve a high resolution creates an
exponential growth of the space state that makes the computation of a solution harder

5

Chapter 2. Literature Review 6

to process. Sampling based algorithms also try to extract the connectivity of the free
space [96, 88], but this time we use random sampling to discover this connectivity,
and create the representation of the configuration space C. For this we require a
routine that effectively covers C and makes a clear difference between Cfree and the
forbidden space Cforb. One of the most used algorithms is the RRT algorithm shown
in figure 2.1.

Figure 2.1: Rapidly Exploring Random Trees (RRT) (Taken from:
http://mrs.felk.cvut.cz/research/motion-planning. Vojtěch Vonásek).

This leads to two interrelated challenges. The first is how to design algorithms that
can handle various sources of uncertainty. The second is to quantify how uncertainty
will affect the planning process. Uncertainty may affect various aspects of the system.
For example, there may be uncertain knowledge about the environment in which the
robot will operate, as well as stochasticity in the execution of its actions and/or in
the sensing process used by the robot to track progress during its assigned mission.

Uncertainty quantification has traditionally been a topic in adaptive signal
processing [110] and statistical learning theory [173]. Ideas and tools from these
areas have helped introduce new models able to capture uncertainty, which are used
to derive motion planning strategies. Uncertainty quantification methods can be
classified in two main categories: 1) those that employ an underlying
first-principles/rule-based model and data from physical processes, and 2) those that
employ only data-driven strategies [130, 38]. Examples of the first category include
extending deterministic models to stochastic regimes with probabilistic guarantees
on the model fidelity [86] and using underlying models as prior information [73]
when training a target Gaussian Process model [146]. Data-driven approaches can
be broadly categorized into kernel methods (e.g., Gaussian Processes [145], Support

Chapter 2. Literature Review 7

Vector Machines and Principal Component Analysis), artificial neural networks, and
function expansion methods [103];[119] offers a thorough presentation on the
subject. Examples of the second category include spectral methods [84], kernel
methods [76] (such as Volterra models [126]), and more recently deep neural
networks [69]. For a general overview the reader is referred to Murphy’s work [119].

Compared to purely-data driven approaches, reinforcing existing models with data
can perhaps be less general, but it can yield results faster and more accurately. For
instance, [46] has shown that using a model to provide prior information when training
a target Gaussian Process is more efficient in terms of the required interaction time
to achieve a task (e.g. cart-pole balancing). Here we employ the method proposed
by [86] to extend deterministic models to stochastic ones with guaranteed degree
of fidelity. This approach applies to any user-specified model of a physical process,
and determines whether the supplied model can sufficiently1 reproduce the variability
observed experimentally by augmenting model parameters to random variables with
appropriate statistics. In a similar way, some recent works also have shown how to
transfer control policies for autonomous vehicles into the real world by adding some
noise to both state and action to compensate for the mismatch between the model
and the real world ([80, 136]). Karydis et al. have shown how stochastic primitives
are compatible with the assumptions made in this dissertation and can be generated
using a data-driven approach [87].

2.1.1 Markov Decision Processes - MDP
One of the most common approaches to create a planning algorithm capable of
handling uncertainty in the execution of actions is provided by Markov Decision
Processes (MDPs). MDPs are suitable for stochastic sequential decision-making and
have been extensively used in various control and planning scenarios [90, 54, 162]. A
good starting point to understand MDPs are the books from Bertsekas [17] and
Thrun [163] that have a good overview of what dynamic programming is and how
we use the Bellman equation [15] with MDPs.

A simple example is shown in figure 2.2, where a robot is tasked to go to a goal
location in a 2D environment and each of its actions embeds a level of uncertainty.
When the robot decides to go up toward its target, there is a 10% chance that it falls
into the fire/failure state/sink state and fail the mission. A MDP takes into account
these kind of uncertainties and estimates the best possible policy, i.e. an action for
each state that minimizes failure or maximizes future cumulative rewards. In chapter
3 we will extend the explanation of how MDPs work and how we use them in our
context of robotics.

One of the tenets of the MDP approach is the assumption that the state is
observable and therefore uncertainty in the sensing process does not play a role.
Further, MDPs build upon a dynamic programming framework and hinge on the

1Sufficiency here is measured in terms of a decision making indicator function; see Section 5.2.1
for more details.

Chapter 2. Literature Review 8

Figure 2.2: Motion uncertainty when moving in a 2D map.

assumption that the parameters characterizing the models are known. When the
parameters are not assumed to be known, but are rather estimated through
repeated interactions with the environment, reinforcement learning algorithms are
used [161, 181, 17]. A good review of MDPs and its applications is the work from
Feinberg [57].

2.1.2 Constrained Markov Decision Processes - CMDP
Constrained Markov Decision Processes explicitly considers more than one cost [5].
In a CMDP one cost is minimized while the remaining costs are bounded (all in
expectation). Despite their superior modeling power, CMDPs have been scarcely used
in robotics, and most applications are relatively recent. Ding et al. [49] introduces
a new technique to use a hierarchical approach to solve a multi-objective problem.
Similarly Feyzabady et al. use a method to constrain a navigation plan using a
hierarchy of partial solutions to solve the problem from a global to a local policy
progressively [58]. Figure 2.3 shows a risk map where a hierarchical CMDP evaluates
different risk constraints. Planning with constraints has been also studied by [53, 59]
who used a CMDP to solve a planning problem. Most recently we presented two
different papers where we solve a multi-robot, multi-target problem using CMDPs,
that, combined with a optimal solution of the Traveling Salesman Problem (TSP),
we can find the best distribution of robots to cover routes that contain multiple
observation objectives [160], see figure 2.4. Another example of using CMDP for

Chapter 2. Literature Review 9

an iterative topo-semantic map builder algorithm is shown in [159], where a CMDP
optimizes a route to follow by a robot that progresively explores and create a graph
that describes the environment with topological and semantic information. Both of
these last two works will be presented in chapters 4 and 6.

Figure 2.3: Left: Sample terrain map with red areas showing higher risks. Right:
Two solutions using a Hierarchical Solution with CMDP for different risk constraints.
Taken from [58]

Figure 2.4: Rapid Deployment Problem with a group of robots trying to reach
different targets with multiple observation points.

The use of CMDPs has demonstrated the advantages of leading to a policy that
balances optimality with multiple constraints. This technique has proven to be a
reliable method to deal with different types of uncertainties such as sensing
uncertainties, position uncertainties, and even dynamic or kinematic uncertainties of
the robot’s model.

MDPs and CMDPs work under the hypothesis that the state is observable. A
well-known solution for this kind of problem, still using non-deterministic approach,
is called Partially Observable MDPs or POMDPs. An introduction to this new type
of planners can be found in [128, 155]. A POMP establishes a probability
distribution over the set of possible states, using the available observations and
observation probabilities, and has a solution that maps beliefs into actions. Despite
their inherent computational complexity, numerous variants have been proposed

Chapter 2. Literature Review 10

through the years to efficiently tackle special classes of problems. A way to tackle
POMDPs’ complexity is to make assumptions about the state posterior distribution,
rather than leaving it unconstrained. A common choice is to assume a Gaussian
distribution, thus bridging classic estimation and control theory with motion
planning algorithms [170, 171]. Uncertainty about the state can also be tackled by
developing so-called risk-aware planners that explicitly account for uncertainty in
the execution of plans [107, 102]. In chapter 6 we deal with the same problem of
having an unknown environment, but, instead of increasing the size of the local
space state and calculating a policy over the tree of posterior distribution, we
reformulate how we create the map and describe the environment. This new
representation allows us to significantly reduce the size of the state space and thus,
find optimal policies even in run-time.

2.2 Context for the Rapid Deployment Problem
As we previously mentioned, CMDPs can be used to model problems where there
are multiple associated costs for each particular action. When we have a single robot
solving a planning problem the solution becomes trivial. However, when we think
about the same planning problem, but this time using a group of robots, we face a
new set of problems and challenges to overcome. In this section we review related
work for robot constrained deployment under uncertainty. We can cite Carpin et al.
[34] who has addressed the problem of a multirobot team deployment analyzing the
trade-off between speed of the robot and the probability of success, despite motion
uncertainties, and the number of robots used. This work sets the base to solve
navigation problems where the speed of a robot and uncertainties play an important
role in the coordination of a team of robots. Figure 2.5 shows the particular problem
for a multi-robot team being deployed in a known environment that is represented
with a graph. This graph abstraction can be readily extracted from occupancy grid
maps [91]. In our previously cited paper [160] we presented a new extension of the
fast deployment problem, using, as mentioned, a CMDP for a navigation multirobot
and multitarget problem with not just motion uncertainties but also observation
uncertainties. A larger number of targets overpass the number of available robots
and an efficient distribution of targets among the robots is done using an algorithm
that solves the TSP while the robots respect time and probability failure constraints.

The rapid deployment problem is related to the team orienteering problem [39].
Given a weighted graph with values associated to vertices, the problem is to find M
paths, from a given start to a goal location, whose length does not exceed a given
travel budget B while maximizing the sum of the values for the visited vertices. In this
case M is the number of team members. This problem generalizes the orienteering
problem [67] that is known to be NP-Hard and also APX-hard to approximate. These
problems, however, feature only one cost per edge, whereas in our setting, each edge
in the graph is associated with multiple costs, i.e., time to complete the transition
and failure probability.

Chapter 2. Literature Review 11

Figure 2.5: Map described as a graph with multiple vertices, where the pink triangle
is taken as a deployment vertex and the ones with green crosses as goal vertices.
Taken from [34].

Moreover, the problem we consider features stochastic transitions between
vertices, whereas in orienteering, and also in the related TSP [12], transitions are
commonly deterministic. It then follows that the problem of rapid deployment is
significantly more complex and general than orienteering, and therefore, we will
have to settle for a suboptimal solution. The problem of finding tours to visit sites
with stochastic transitions has been studied extensively in the operations research
community [65, 16]. Laporte et al. [95] were among the first to study a variant of
TSP known as the vehicle routing problem (VRP) [66] under stochastic travel as
well as service times. The service time refers to the amount of time spent at each
site. Since then, a number of algorithms for solving many variants of stochastic have
been proposed [65, 16] typically based on chance-constrained optimization [122].
These works address not only stochastic times, but also cases where the sites
themselves are stochastic [18, 50]. The problem considered in this dissertation
differs from these works in that we do not have specific sites that must be visited by

Chapter 2. Literature Review 12

the robot. Instead, the algorithm must optimize for the sites to be visited based on
the visibility sets of the targets and other input parameters.

Purohit et al. [141] also presented an algorithm to deploy a high number of
low-cost, low-complexity Micro Aerial Vehicles at high speed, with a known
environment and with motion uncertainty. These works precede further
developments like the ones presented by Carpin et al. [41], where a Constrained
Markov Decision Process (CMDP) was used to constrain the same problem while
still guaranteeing an optimal policy. From this point, different extensions were
implemented and successfully proved. In [166] the problem of persistent monitoring
with robot teams was studied where a multi-robot system is tasked with monitoring
a set of locations larger than the size of the team. Therefore, each robot is assigned
multiple targets to observe. However, in [166] they do not consider sensing errors
nor stochastic motion models. Finally, temporal deadlines in robotics have been
extensively studied for scheduling and coordination tasks. For example, when
multiple robots must coordinate their actions so that the relative temporal ordering
becomes relevant [68, 71]

2.3 Mapping and Exploration
A map is a representation of the space that uses a specific set of rules and a certain
structure to describe the relationship between objects and the free space. For each
map there is a specific type of information to display, a different analysis and
processing. There are different map representations and exploration techniques, and
some of the most relevant works that relate with this dissertation, will be covered
by this chapter.

2.3.1 Mapping
The use of LIDARs and distance measurement sensors have promoted the
development of grid maps. A grid map discretizes the space of a certain
environment with equally distributed square cells. Each of these cells correspond to
a specific location with x and y coordinates in the environment. Multiple solutions
have been proposed to create these type of maps and use them in robotics. Thrun
goes over many of these solutions in his work [165].

While metric maps and occupancy grid maps have been common in multiple
applications, new approaches have been developed. Topological and semantic maps
have shown the potential to be used in complex applications (see [79] for a relatively
recent survey). Vision systems gave the starting point for new algorithms to use
visual information to describe the world [105] in a different way using deep neural
networks. Tagging and labeling objects became a key task for autonomous systems.
Multiple labeling methods and scene recognition [64] have been proposed, with the
goal of understanding the objects and their relationships [52, 139]. Mendez et al.

Chapter 2. Literature Review 13

present a novel system to upgrade a Monte Carlo localization algorithm using only
labels for walls, doors, windows and eliminating the need of a LIDAR sensor [114].

Specifically for indoor environments we want to mention the work of Quattrini
et al. [143], who use semantic information combined with geometric information to
improve the exploration of a map that classified areas according to their semantic
relevance. These areas are defined by humans as first goals for the robots. This
research in particular served as the inspiration to develop a new type of map that
can exploit the strength of having semantic and topological information combined.
In chapter 6 we will present how a semantic exploration strategy can outperform a
random strategy when recurring to the use of labels and semantics. Lowry’s work is
also a good example of different methods to extract semantic information from an
environment, specifically visual place recognition research [106].

Other authors have shown that extracting topology information plays a valuable
role when mapping an environment. Sandstr et al. [152] show how a “decomposition
map” serves to locate good candidate neighbors that are “topologically relevant”,
improving the nearest-neighbor time and overall planning. Other methods also
propose generating an informative path planning using a topological structure from
an information field [113]. Ramaithititima’s et al. [144] work also avoids the use of a
metric map. During his experiments, the robots use a topological approach with a
landmark system, which is scalable and provides a bearing-based controller. Tung et
al. propose a method using the visual saliency of objects and the environment and
drive the robot towards salient objects using a 3D occupancy map [44].

Extracting topological features from laser scans collected from a range finder is
another well-established research area and a number of current algorithms successfully
perform this task within the scope of the definition of a topological feature. Extracting
information from these laser scans, either 3D or 2D is a key component that enables
successful localization and exploration strategies. Corner detection, for example,
uses LIDAR data as landmark points [13] for better localization. Shah et al. [153]
uses Vornoi-Delauny graphs in order to extract qualitative information regarding two
nearby landmarks for path-planning. Delauny triangulation has been used in [111] to
provide information regarding the layout of the environment. Line segment extraction
from 2D LIDAR data has been widely used in a number of different cases[137, 27,
123, 1, 9, 112]. Pfister et al. [137] use a weighted line fitting algorithm that generates
line segments. Brunskill et al. [27] use PCA dimensionality reduction to represent
the large dimensional 2D point cloud into a four parameter line segment represented
by the end points. Nguyen et al. [123] use a split-and-merge technique to generate
line segments from the 2D laser scan data.

The use of deep reinforcement learning to include topological and structural
information about a building to improve exploration is a contemporary topic for
some researchers like [186]. Luperto [109] also presents a similar approach to build a
topological structure and a semantic labeling for indoor environments. Other
approaches combine geometric, topological, and semantic information to generate
maps for robots and humans [55, 120, 108, 42].

Chapter 2. Literature Review 14

We present in figure 2.6 three examples of maps, 2.6(a) shows a grid map where a
maze is divided in square cells and each cell represents a location x,y in the map. We
also show in 2.6(b) how a building can be decomposed into connected areas, where we
ignore the distances and other metric information. Finally, we show a semantic map
in 2.6(c) that gives labels to the locations of an office. Each of the vertices is colored
according to the type of location: red for corridors, blue for offices, and green for a
meeting room. This particular work also inspired our Oriented Topological Semantic
Maps explained in detail in chapter 6.

2.3.2 Map Merging
LIDARs, cameras, radars, and other sensors help robots and other autonomous
vehicles [115] to generate maps that extract valuable information from the
surroundings in order to make appropriate decisions. While mapping can be done
by one robot, one of the main goals in this area is to achieve multi-agent mapping,
where individual robots work together to build a whole mapping network, that
become more resilient, flexible, and robust. Specifically chapter 8 deals with this
problem and presents a new technique to merge pieces of maps together for indoor
environments.

Early works in map merging aim at combining multiple grid maps into one global
map using metric features. Carpin [31] used Hough features for the bidimensional case
and the Radon transform for the three-dimensional case [33]. Blanco et al. [19] use
computer vision techniques to extract features and compare them, in what they call
multi-hypothesis RANSAC stage, to match them later to the grid map. Paulik [133],
on the other hand, merges a hybrid, feature-metric map finding a transformation
matrix to match the pieces of maps. A function to measure the overlap between
pixels is proposed and used to calculate the quality of the matching. Park et al. [132]
use geometric information to match shapes and geometric features to find overlapping
points between maps. This approach gives an important advantage when eliminating
the need of knowing the relative position of the robots. Another method, implemented
by Karpov [82], includes communication between the robots and a landmark system
to localize the robots and find matches between the sections of map that each robot
builds. For improving vehicle positioning, Rohani et al. [150] merge road maps
between vehicles in a VANET network. The GPS error from each individual is taken
into account to find the matches, and then a dynamic base station is used to help
other vehicles to improve their location when they are not part of the network.

Merging topological maps is often related to the problem of graph merging,
because of the underlying graph representation. When trying to merge these graphs,
we have some examples of how we can obtain a global map by combining
topological with metric information. For example, Bonanni et al. [22] extract a
graph from a 3D metric map and try to match the vertices of the graph. This is the
opposite of the common approach of applying geometric transformations to each of
the map sections to find the match between them. In our work, we do not need to

Chapter 2. Literature Review 15

know the global or the relative pose of the robots to merge the maps. Similarly,
when merging topological maps for rectilinear worlds, Huang et al. [77] generate
hypotheses of how two graphs match depending on the number of outgoing edges.
Then, they augment the topological map with metric information (like local
distance) while in our work we do not use any concept of distance.

Finally, there are works showing the advantages of using hybrid maps to
encapsulate, at once, more information. Shahbandi et al. [154] propose a
multi-modal map alignment where multiple maps of different types can be combined
into a global model that contains occupancy grid maps, 3D meshes and also
semantic information. Dichtl et al. [48] introduce a new type of map called
PolyMap, where an environment is decomposed in polygons that stay in the middle
of a grid map and a vector map, taking advantage of the strengths of both, and
allowing efficient communication and sharing for multi-robot missions.

2.3.3 Exploration and SLAM
Exploration is one of the main challenges for a robot facing a new environment,
and there is no consensus about the best strategy to follow. Ultimately, this is
application specific and is still an active research topic. There are many ways to
explore a certain environment and it is commonly linked to the need of a specific
type of information, the robot capabilities, or the goals. For instance, for underwater
applications, Vidal et al. recently proposed a two-steps algorithm where a map is used
to produce viewpoints, and they are evaluated based on an information measurement
[175]. Another example for volcanos is presented by [30], and another for a sewer
environment by [179]. Because of this broad set of applications, in this section we
will mainly talk about robot exploration for indoor environments.

Exploration can be done autonomously or assisted. An example of the later is
the work of Stotko et al. [157] where a novel VR system helps a human to
teleoperate a robot. Vilela et al. also present a semi-autonomous exploration
method to coordinate robot teams in urban areas [178]. Although tele-operation is a
valid way to explore an environment, autonomous robots have been the focus of
multiple researchers: Carvalho [36], Albina [3], AlKhawaldah [2] and Ocumura [127]
are just few cases of multi-robot coordination to explore different scenarios. A
related work for indoor environments, assessing the use of Discrete-Time Markov
Process is done by Andre and Bettstetter [10], where they quantify the gain to
coordinate robots and determine how varying the group size impacts the results. A
survey about multi-robot coordination can be read from [184].

Together with exploration, SLAM is another keyword closely related.
Simultaneous Localization and Mapping (SLAM) groups the study of algorithms
that build or update a map, while at the same time, it calculates the robot’s
position or state [29]. The vast majority of SLAM related research embraces a
single-robot approach, but when increasing the number of robots, several challenges
arise, like estimating relative poses of the robots, uncertainty of the relative poses,

Chapter 2. Literature Review 16

concurrent updates of maps and poses, communications, and others. Saeedi et al.
[151] present a complete review for multi-robot SLAM research in the past years.

When the environment that is being explored uses a graph to represent the
relationship between objects or locations in the space, we commonly know it as
graphSLAM: Graph Simultaneous Localization and Mapping [164]. For graphs with
millions of vertices and edges, we have to deal with memory, processing delays and
limitations. However, few vertices means a reduced amount of information that is
sometimes insufficient to finding the optimal solution of an over-discretized
environment. When we use visual information and semantic relationships, we refer
to VisualSLAM, which is a good way to increase the effectiveness of a small graph.
Varadarajan et al. [174] proposed a method to keep a small graph when creating a
topological map to represent an environment, but by augmenting the amount of
information with visual “semantic affordances” to define what they called
“Subject-Object” relationships. This method, for example, manages to solve the
loop closure problem and a dynamic environment. Gao and Zhang [62], instead of
using object recognition and creating semantic relationships between them, use the
leverage of deep neural networks to learn sparse feature representation with a
stacked auto-encoder (SDA) for VisualSLAM. Other methods use the well-known
Bag of words algorithm to solve the loop closure problem like [56] or a combination
of a monocular, stereo and RGB-D sensors [118, 72].

As we mentioned, visualSLAM approaches take advantage of RGB and RGB-D
camera sensors. Earlier use of these sensors involved using a marker based approach
where QR codes were used to identify a particular place of interest in the
environment to provide landmarks for a localization approach [94]. However, a more
general approach proposes the extraction of features from the images captured by
the camera that are used to estimate the pose of the agent [187, 124, 45, 89]. More
recently, the depth data is combined with the 2D images to extract semantic
information of the environment to construct hybrid maps [94] and these techniques
employ prevalent object identification and segmentation[43] of the scene to achieve
this task. Dube et al. [51] generate a SegMap by extracting segments from 3D point
clouds by using a CNN that is trained using two loss functions, Lc (softmax cross
entropy loss or the classification loss) and Lr (retrieval loss). Grinvald et al. [70]
uses mask R-CNNs [74] framework to detect instances of objects and generate a
per-pixel segmentation mask that contains semantic information.

2.4 Replicability and R-Articles
Different efforts in robotics, either in navigation, exploration, mapping fall into the
oblivion due to the impossibility of reusing and replicating the results presented to
the community. In other fields replicabiliy has been also addressed. For example, for
Mining Software Robles [147, 148] makes available a downloadable package, including
scripts, and raw data available to replicate their results. In Neuroscience, we can also
find some examples of the discussion about replicability like the one from Mi lkowski et

Chapter 2. Literature Review 17

al. [116] and how four pilars must be respected to reach the replicability goal. Equally,
in VGI-related research, Ostermann [129] identifies the need to create a new author-
publisher-consumer model in order to reach faster and sustainable research. In the
robotics community, in order to overcome this issue, the IEEE has been experimenting
a new paradigm for papers in robotics that is finally giving the resources to the
scientific community in robotics to share and find new applications. In 2009 and
2015 Bonsignorio [25, 24] presented the need to generate a new standard for papers
in robotics where data sets, code identifiers and HW identifiers become a common
word for the new papers in robotics. Cervera [37] also investigates the ambiguity,
incompleteness, and incorrectness of robotics software used by the most recent papers
of the International Conference on Robotics and Automation in 2017. He and Pörtner
[138] identify that a possible solution to create papers with reproducible results is to
use a Docker container that can be downloaded and used by the community. This
issue has been also addressed in the past by Stoelen et al. [156] hoping to share
control system for a human-robot system. Amigoni et al. [7, 8] in a more recent
work, presents a new approach to improve the replicability of SLAM algorithms and
consider the need to create a common software domain to run simulations and SLAM
modules.

Parallel efforts are related with the development of Benchmarking Data Bases to
test and compare algorithms and solutions. Garcia-Camacho et al. [63] offers three
different benchmarks for clothes manipulation, including folding, spreading and
dressing. Similarly Mnyusiwalla [117] and Triantafyllou et al. [168] propose a
benchmark framework for the very popular task of pick and place. Other
benchmarks in robot manipulation can be found from the work of Yang [185], and
Leitner [99]. Altough benchmarks for robot manipultors are fairly popular, there are
examples of other types of benchmarks aimed to test and compare algorithms for
motion planning on roads [4] and posture Control—Human-Inspired methods[185].

Since 2017 [23] the IEEE Robotics & Automation Magazine has been formally
calling for these new types of papers or articles whose experiments and results are
fully reproducible by others researchers. These new type articles will be known, from
now on, as R-ARTICLES 2 and will be the base for a new way to present and
accelerate research, with reusable and testable software.

As part of this initiative to create the first R-article and serve as the new standard
of all new papers of the same type, we proposed and published [159] the first R-article
in robotics [172] and it is discussed in chapter 6.

2R-Articles - IEEE Robotics and Automation Society, https:
//www.ieee-ras.org/publications/ram/information-for-authors-ram/
reproducible-articles-r-articles-short-replication-articles-r-articles-reply-articles,
last visit: 2020-02-14

https://www.ieee-ras.org/publications/ram/information-for-authors-ram/reproducible-articles-r-articles-short-replication-articles-r-articles-reply-articles
https://www.ieee-ras.org/publications/ram/information-for-authors-ram/reproducible-articles-r-articles-short-replication-articles-r-articles-reply-articles
https://www.ieee-ras.org/publications/ram/information-for-authors-ram/reproducible-articles-r-articles-short-replication-articles-r-articles-reply-articles

Chapter 2. Literature Review 18

(a)

(b)

(c)

Figure 2.6: (a): Example of a gridMap. Taken from [78]. (b): Example of a
Topological map. Taken from [60]. (c): Example of a Semantic Map. Taken from
[140]

Chapter 3

Theoretical Background

3.1 Introduction
This chapter provides the general theoretical background for the following chapters in
this dissertation. In section 3.2 we will present the theoretical background of Markov
Decision Processes (MDPs). Having the base about discrete planning and MDPs
we will cover in section 3.3 an extension of this method called Constrained Markov
Decision Process or CMDP. We will provide a brief summary of the CMDP formalism
and its advantages over MDPs.

3.2 Markov Decision Process - MDP
A Markov Decision Process (MDP) is a tool to solve stochastic sequential decision-
making problems. It has been applied in several domains in various control and
planning scenarios [17, 163]. This method proposes to find a policy that defines for
each state, a single action with a stochastic outcome [17]. The policy uses each of
the associated actions to direct the robot through the optimal path to a goal state,
where one single function, which depends on the overall trajectory and not just the
final state, is minimized or maximized according to the desired objective.

A MDP model applied in robotics consists of mapping between states and actions.
Usually the map of an environment is discretized into regions (generally, uniform
square cells), and one or multiple cells will serve as goal cells. The objective is to
arrive to these cells from any initial location. Each cell will be described later as a
node in a graph (Figure 3.1).

The MDP model calculates the best action for each of the empty cells (i.e. state)
in a map that leads to the goal location. The mapping between the states and actions
is what we call a policy. Each possible action will have a different cost/reward and,
therefore, only one can be the best to take in order to arrive to the goal. It is important
to note the non-deterministic nature of the MDP. The outcomes of the actions are
uncertain, and one action can lead to different next states, and for each state and

19

Chapter 3. Theoretical Background 20

Figure 3.1: Example of a graph taken from an environment where the deployment
point is named as v0. For any state there is a chance to fail and end in a sink state
S while going to a target state T. Image taken from [41]

action we specify a probability distribution over the next states. However, the policy
itself is deterministic and there can only be one best action that is executed for one
state. There are some works that study non-deterministic policies [54] but they go
beyond the scope of this work. Moreover, for the case of finite, discrete MDPs, it is
easy to prove that deterministic policies are optimal [161].

Depending on the specific form of the objective function, MDP problems can be
categorized into four main classes: finite horizon MDPs, infinite horizon MDPs with
discounted cost, average-cost infinite horizon MDPs, and total cost MDPs (or optimal
stopping MDPs), where the cost is on an infinite horizon, but the state will eventually
enter an absorbing set where no additional costs are incurred. For all the cases, at
time t, we will execute an action at that may produce a change of the current state
xt (except for the total cost MDPs with an absorbing state).

• Finite horizon: This objective function is determined under a fixed amount of
time. For this kind of MDPs we optimize the expected value:

min
π

E

 T∑
t=0

c(xt, at)
 (3.1)

• Infinite horizon discounted cost/reward: In this case there is no time limit,
which will cause the expectation to go also to infinity if a discounted factor is
not added. This discounted factor γ, whose values goes from 0 to 1, will limit
the expectation and ensure a finite expectation value:

min
π

E

 lim
T→∞

T∑
t=0

γtc(xt, at)
 (3.2)

• Infinite horizon average cost/reward: This type of MDP solves the problem of
having an infinite expectation by averaging the sum over the total time.

Chapter 3. Theoretical Background 21

min
π

E

 lim
T→∞

1
T

(
T∑
t=0

c(xt, at))
 (3.3)

• Infinite horizon total cost/reward: In this type of MDP, there is no discounted
factor γ. In order to avoid the unbounded expectation, we set one of the states
as an absorbing state, which will have no cost associated for all possible actions.
It is also ”trapping”, which means, after reaching this state no cost will be added
and you can’t leave the state. This will ensure that the sum of the costs never
goes beyond a certain value. For this type we have an optimization function:

min
π

E

 lim
T→∞

(
T∑
t=0

c(xt, at))
 (3.4)

Due the fact we want to use MDP in a robotics context, it makes sense to use a
total cost MDP, which represents a mission with an unknown, but still finite
expectation value and amount of time to complete. It is possible to define three
types of total cost MDPs: (i) transient MDPs, for which the total expected time
spent in each state is finite under any policy, (ii) absorbing MDPs, for which the
total expected “life time” of the system is finite under any policy, and (iii)
contracting MDPs [5]. One can show that all three types of total cost MDPs are
equivalent under the assumption of a finite state and action sets [5].

3.2.1 MDP Formulation
A time invariant MDP can be formulated in the simplest case as a finite quadruple
X,A, P, c where:

X is a finite state space with n elements. The state at time t is indicated by the
random variable Xt.

A is a collection of n finite sets, one for each state in X. A(x) is the set of actions
that can be applied in state x. At is the action taken at time t.

P is the transition probability function. We define P a
xy = P (Xt+1 = y|Xt = x,At =

a) as the probability that the state transitions from x to y when action a is
taken. This probability is assumed to be stationary.

c : X×A→ R≥0 is a cost function. c(x, a) is the cost incurred when applying action
a while in state x.

This model is defined in discrete time, with initial time t0. The stationary
property indicates that the cost and transition probabilities are independent of
time. The base problem that a MDP solves is to find a function called policy π that

Chapter 3. Theoretical Background 22

specifies for each state x the action a = π(x). The output of this policy π is then a
set of pairs of state-action, indicated as (Xt, At).

In order to define a total cost MDP, we need to make the assumption that the
MDP is transient, which ensures a finite cost. The state space X can be partitioned
into a set X ′ and a set M set with the following properties:

1. ∑∞t=0 P
π(Xt = x) <∞for every x ∈ X ′: Eventually the state will enter set M .

2. P a
xy = 0 for each x ∈ M and y ∈ X ′: Once the state enters M it cannot leave

it.

3. c(x, a) = 0 for each x ∈ M,a ∈ A(x): Once the state enters M there is no
additional cost.

where P π(Xt = x) is the probability that Xt = x when following policy π. The total
cost of π is then:

c(π) = Eπ

∑
t

c(Xt, At)
 (3.5)

Eπ is the expectation induced by the policy π over the sequence (Xt, At).
Using the Bellman Equation [15] we obtain the value function:

V π(x) = Eπ

ct + V π(xt+1|xt = x)
 (3.6)

=
∑
x′∈X

P (x, a, x′)
c(x, a, x′) + V ∗(x′)

 (3.7)

An optimal policy π∗ can be obtained solving the following optimization problem:

MDP Problem. Let B = {X,A, P, c} be an absorbing MDP. Determine
a policy π∗ solving the following optimization problem:

π∗(x) = arg min
a∈A

∑
x′∈X

P (x, a, x′)
c(x, a, x′) + V ∗(x′)

 (3.8)

This policy can be called a greedy policy because it selects the best action for each
state using the value V . This policy can be found using an iterative method such as
value iteration or policy iteration. The definition of these methods are beyond the
scope of this document, see [81], [142] and [17] for a more detailed explanation.

MDPs are formulated considering a single objective function and this may be a
limiting factor when robots are tasked with complex missions featuring more than
one objective at once. For each action that the robot executes there is only one cost

Chapter 3. Theoretical Background 23

associated with this action. As an example, we can consider driving a car. When
we drive a car, we want to know how much gas we will use to reach a certain point
and we want to calculate the optimal path to spend the least amount of gas on
our trip. Additionally, we are constrained with time and want to know how much
time we will spend completing our task or how much time we have to complete
our task. In formulating our driving task, we would want to optimize all three of
our variables. MDPs limit the solution of these types of problem, and we need to
extend its capabilities to a more complete model called Constrained Markov Decision
Processes or CMDPs.

3.3 Constrained Markov Decision Process -
CMDP

A MDP optimizes a single objective function. For this reason an extension of MDP
was implemented and is known as a Constrained Markov Decision Process (CMDP).
The CMDP model overcomes this limitation by allowing more than one cost [5]. In
the CMDP formulation, one cost is minimized while the remaining costs are bounded
(all in expectation). This brings a new tool capable of solving a multi-cost problem,
whose different constraints limit the planning.

The CMDP model is used in a similar way as we use the MDP, however the
applications of a CMDP are beyond the scope of the MDP, specially when tackling
problems where we want to find a policy that guides a robot to a goal, while at the
same time, including multiple costs that describe all the limitations of the robot and
the task itself. For example, we may want to limit the time to reach the goal, and
also set a limit for the accepted rate of failure when executing an observation task,
or the global success rate of the mission. All these extra costs and constraints give
the CMDP model the ability to solve more complex problems.

3.3.1 CMDP Formulation
We can extend the previous definition of the MDP model by adding additional costs
and constraints. We exclusively consider finite, discrete time models. In the following,
if X is a finite set we indicate with P(X) the set of probability mass distributions
over X. A CMDP C is defined by X,A, P, c, {ci}Li=1, {Bi}Li=1, β. The meaning of the
components is as follows.

• X is a finite set of n states.

• A = ⋃n
i=1A(xi) the union of n finite sets, where A(xi) is the set of actions that

can be executed in state xi, and therefore A is a finite set, too. Starting from X
and A, we define the state/action set K = {(x, a) ∈ X×A | x ∈ X∧a ∈ A(x)}.

• P : K → P(X) is the one step transition kernel defining the probability
distribution of the next state for a given state/action pair. In the following we

Chapter 3. Theoretical Background 24

will also write P (x, a, x′) for the probability that the next state is x′ when
executing action a from state x.

• c : K → R≥0 is the primary objective function. c(x, a) is the cost/reward
obtained when executing action a from state x.

• ci : K → R≥0 are L cost functions. ci(x, a) is the i-th cost incurred when
executing action a from state x.

• Bi are L real constants defining cost bounds. Their role in the definition of a
CMDP problem will be clarified after specific cost criteria are introduced in the
following.

• β ∈ P(X) is the initial mass distribution over X, i.e., β(x) is the probability
that initial state is x.

A Markovian, randomized policy is a function π associating to each state x ∈ X
a probability mass distribution P(A(s)) over the set of actions that can be executed
in x. It is well-known that for MDPs, deterministic policies are sufficient to
optimize with respect to most cost criteria, but for the case of CMDPs
randomization is necessary. Another notable difference between MDPs and CMDPs
is that for a given cost criterion, the optimal CMDP policy, in general, depends on
the initial distribution β, while for MDPs the optimal policy is independent of the
initial state. In the above definitions, by assuming that c and ci are defined over K,
we are implicitly restricting their definitions over legitimate state/action pairs.
Similarly, the definition of P is restricted to valid state/action pairs. We define c as
a cost/reward and the ci as costs, so when we define the associated optimization
problem, we will aim at minimizing/maximizing the cost/reward function induced
by c while being subject to upper bounds for the cost functions defined by the ci.

As for CMDPs, two discrete time stochastic processes are defined – one for the
states and one for the actions. In the following we indicate with Xt the random
variable for the state at time t and with At the action taken at time t. At time t = 0,
a robot starts from a state x0, and executes action a0. As a consequence of this action,
it receives a cost/reward c(x0, a0), it incurs in L costs c1(x0, a0) . . . cL(x0, a0), and it
moves to a new state x1 according to the probability mass distribution P (x0, a0).
Next, at time t = 1, a new action a1 is executed, and the process repeats. Starting
from c and the ci, different cost/reward or cost functions can be defined. From now
on, we focus on the total cost criterion.

For a given Markovian, randomized policy π and an initial probability mass
distribution β, the probability of each realization of the stochastic processes for the
state and the action can be explicitly computed. Therefore, the following expected
cost/reward can be introduced

c(π, β) = E
[+∞∑
i=1

c(Xi, π(Xi))
]

(3.9)

Chapter 3. Theoretical Background 25

where the expectation is taken with respect to π and β. If one considers ci instead
of c in Eq. (3.9), then L costs ci(π, β) can be similarly defined. Without making
further assumptions, the cost/reward and the costs may be unbounded, and it is
therefore necessary to restrict our attention to special cases for which these functions
are bounded. This special class of CMDPs and policies are called absorbing and
follow the same properties (2) and (3) that we saw for the absorbing set M in the
previous section. Moreover, we assume that this partition is maximal, i.e., M is a
subset of X.

However, without making additional assumptions, there is no guarantee that the
state will eventually enter M . This is ensured by the definition of a transient policy. If
C is an absorbing CMDP, we say that π is a transient policy if∑+∞

t=0 P
π
x0 [Xt = x] < +∞

for each x, x0 ∈ X ′, where P π
x0 [Xt = x] is the probability that the state at time t is

x given that the initial state is x0 and policy π is followed. In the following, when
considering transient policies we will implicitly assume that the underlying CMDP is
absorbing. For a transient policy π, it is immediate to verify that c(π, β) and ci(π, β)
are finite for every initial distribution β. Based on these definitions, we can therefore
define the CMDP planning problem.

CMDP Planning Problem. Let C = {X,A, P, c, {ci}Li=1, {Bi}Li=1, β}
be an absorbing CMDP. Determine a policy π∗ solving the following
optimization problem:

π∗ ∈ arg min
π∈ΠM

c(π, β)

s.t. ci(π, β) ≤ Bi 1 ≤ i ≤ L

where ΠM is the set of randomized, Markovian policies for C.

3.3.2 Solving CMDPs
We stated in section 3.2 that a MDP can be solved using policy or value iteration,
however due to the fact that we are optimizing over more than one cost we can no
longer use an iterative method. It is necessary to arrange the problem in the form
of a linear program in order to solve a CMDP. A well known result in CMDP theory
states that solving a CMDP problem is equivalent to solving a constrained linear
program over a set of optimization variables known as occupation measures. For each
(x, a) ∈ K, the occupancy measure ρ(x, a) is defined as

ρ(x, a) =
+∞∑
t=0

P [Xt = s, π(Xt) = a]

where P [Xt = x, π(Xt) = a] is the probability that at time t the state is x and the
taken action is a for a given policy π and initial distribution β (not explicitly indicated
to avoid cluttered notation.) Note that unless additional hypotheses are made, an
occupancy measure ρ(x, a) is not a probability. For an absorbing CMDP, let K ′ be

Chapter 3. Theoretical Background 26

the set of state/action pairs restricted to the set X ′, i.e., K ′ = {(x, a) ∈ K | x ∈ X ′}.
The following classic result establishes when and how the CMDP planning problem
can be solved (see e.g., [6] for more details).

Theorem 3.1. The CMDP planning problem is solvable if and only if the following
linear program is solvable

max
ρ(x,a)

∑
(x,a)∈K′

ρ(x, a)c(x, a)

s.t.
∑

(x,a)∈K′

ρ(x, a)ci(x, a) ≤ Bi 1 ≤ i ≤ L

∑
y∈X′

∑
a∈A(y)

ρ(x, a)(δx(y)− P (y, a, x)) = β(x)

∀x ∈ X ′

ρ(x, a) ≥ 0 ∀ρ(x, a) ∈ K ′.

If the linear program in Theorem 3.1 is solvable, its optimal solution ρ∗(x, a)
defines the optimal policy π∗ as follows:

π∗(x, a) = ρ∗(x, a)∑
a∈A(x) ρ∗(x, a)

where π∗(x, a) is the probability of taking action a in state x ∈ X ′. For states in
M the policy can be arbitrarily set because it neither contributes to the objective
function nor to the constrained costs.

Chapter 4

Rapid Deployment of Mobile
Robots under Constraints

4.1 Introduction
In this chapter we will go over one of our first published papers called ”Rapid
Deployment of Mobile Robots under Temporal, Performance, Perception, and
Resource Constraints” [160]. This work deals with the problem of having a
multi-robot, multi-target scenario with different observation goals. This case can
simulate the task of monitoring an art gallery where multiple paintings need to be
observed from specific locations, and we must coordinate a group of robots to
complete this task. To make this scenario more realistic we also added different
types of uncertainties: One of these is related to a motion uncertainty where the
robot’s control may fail and move the position of the robot to an unexpected
position and orientation. We also account the fact that the robot may fail observing
a target from its specific observation point. Due to these disturbances, there is no
guarantee that the task will be successfully completed. For example, robots may
crash due to the uncertainty in control, or may fail to observe a target due to
erroneous sensor readings. Ideally, given a temporal deadline, the objective is to
plan the actions for each robot in the team so that the probability of completing the
task within the given deadline is maximized. We consider the case where the
number of robots is smaller than the number of targets to observe. Therefore, to
observe all targets, it is advantageous to split the task among the robots. This work
significantly extends the research [35, 41] where the size of the team is much larger
than the number of targets. In such scenario, a swarm approach is possible, i.e.,
multiple robots are assigned to each target and robustness is obtained through
redundancy. Moreover, in [35, 41] the uncertainty in sensing was not considered.

In [166] it was considered a persistent monitoring application where the number
of targets to be observed exceeded the number of robots. However, no uncertainty
was considered in either the dynamics of the robots or in the sensing process.
Moreover, no performance constraints were given. We consider the situation where

27

Chapter 4. Rapid Deployment of Mobile Robots under Constraints 28

the number of targets is larger than the number of robots. In this case, uncertainty
affects both the dynamics and perception, and the robots must complete the task
within a given temporal deadline. For sensing, we assume that the outcome of
observations is uncertain. In particular, we suppose that even when a target can be
observed, there is some probability of missed detection. This probability is not
constant but is a function of the point from which the observation is made. In other
words, when the robot observes a target, this can still lead to a failure of the
mission due to the sensor’s error.

With regards to the dynamics of the system, we consider a scenario where accuracy
and speed vary. At each stage the robot is presented with a set of possible motion
primitives to choose from. Each primitive is characterized in terms of execution time
and success probability. For a wheeled robot one could assume that faster motions
are associated with higher failure probabilities, or more risk of collision. On the
other hand, for a small-size quadrotor it could also be that too slow motions result
in higher failure rates. Our framework can accommodate both these cases, as long
as each primitive can be stochastically characterized. At the single robot level, the
control policy has to select the actions to execute in each state with the objective
of observing a subset of assigned targets within the given temporal deadline. At the
team level it is, instead, necessary to split the targets between the robots. We also
assume that robots do not communicate while the mission is executed. Therefore, re-
planning to re-balance the target assignment on the fly (e.g., to respond to individual
failures) is not feasible because each robot is unaware of how the mission unfolds at
the team level. In rapid deployment the task is successfully completed if and only if
all targets are observed within the deadline, irrespective of which robot observes a
given target.

Rapid deployment finds application in various domains, including for example
search and rescue where survivors need to be located quickly. In such a case the team
of robots is tasked with gathering information (e.g., taking a picture) about a set
of relevant locations of interest. The scenario we consider implies that robots in the
team will, in general, be tasked with observing more than one target. This assumption
requires solving two problems. First, it is necessary to compute a control policy for a
robot to observe multiple targets while satisfying the given constraints and accounting
for uncertain perception. Second, it is necessary to solve a task assignment problem
to allocate subsets of targets to the robots in the team.

The main contributions of this chapter are the following:

• In Section 4.2, we study the case of a single robot and multiple targets. This
case is challenging, since it generalizes the orienteering problem [21], that is
NP-Hard, by incorporating multiple costs and constraints. We show how the
simpler problem of observing preassigned sequences of targets can be solved
using the theory of CMDP and present a linear programming formulation to
find the optimal solution.

• In Section 4.3 we combine the single robot solutions to solve the rapid

Chapter 4. Rapid Deployment of Mobile Robots under Constraints 29

deployment problem at the team level.

• In Section 4.4 we consider the problem of splitting the targets among the robots.
We formulate a submodular objective function leading to a greedy algorithm
achieving a 1− 1

e
approximation.

• In Section 4.5, we present various simulations studying the CMDP formulation.
We assess the performance of our algorithm and study how it scales with the
complexity of the problem.

4.2 Observing Multiple Targets with One Robot
First, we present a model for the problem we consider, then show how CMDPs, studied
in section 3.3, can be used to solve the problem of observing multiple targets with
one robot under temporal and probabilistic constraints, and with uncertain dynamics
and sensing.

4.2.1 Environment model
The environment is modeled by a graph G = (X,E) where the vertex set X is a
set of locations and an edge e = (x, y) indicates that one or more stochastic motion
primitives to move from x to y exists (see Fig. 4.1).

Figure 4.1: A possible setup for rapid deployment. Ten different targets are outlined
by solid thick circles (visibility sets are displayed by thin circles of the same color.)

Chapter 4. Rapid Deployment of Mobile Robots under Constraints 30

Let a be one of the stochastic motion primitives associated with edge connecting
x to y. Motion primitive a will succeed or fail with a certain probability, and will take
a certain time to execute. Different primitives between the same vertices x and y are
characterized by different success probabilities and time. These primitives model the
different ways in which a robot can move between two locations. In the following,
Paxy is the probability that the motion primitive a succeeds in going from x to y
whereas 1 − Paxy is the probability it fails. Noisy observations are added as follows.
Let T = {t1, . . . , tM} ⊂ X be a set of M stationary targets. An observation action
performed by a robot can detect these targets. For each target t ∈ T we define a
visibility set V(t) ⊂ X, i.e., a set of vertices from which the target can be detected
if the robot performs the observation action. For simplicity, we assume that the
visibility sets are disjoint, i.e., ti 6= tj ⇒ V(ti) ∩ V(tj) = ∅. For x ∈ V(ti), let P(x, o)
be the probability that the robot will detect ti when executing the observation action
o in x. Note that since the visibility sets are assumed to be disjoint, this probability
is unique and by definition larger than 0, otherwise x would not be in V(ti). Note
however that this assumption is introduced only to simplify the presentation and that
the algorithms do not critically hinge on this hypothesis.

4.2.2 A model based on CMDPs
Throughout this work we assume that the state of the robot is its location in the map,
i.e., the vertex in the graph, and that it is observable. Known location is a realistic
assumption when robots are operating outdoors and GPS is available. Moreover, if
a map of the environment is given, localization can be solved using various existing
algorithms [163]. Our solution is then formulated as a feedback policy π mapping
the location onto a mass distribution of the set of possible actions. Using a plain
MDP model, for a given target ti, it would be straightforward to compute a policy
π determining the primitive to execute for each state, to maximize the probability
of eventually observing ti. However, this approach is inadequate because it does not
consider the time taken to complete the observation task, and also because some
robots will be necessarily tasked with observing more than one target (as there are
more targets than robots). To this end, it is necessary to extend the state space with
some memory so that a robot can track the targets it has already seen. One possible
approach is to assign a certain subset of targets to the planning algorithm and let
the planner determine a policy to visit all of them in an unspecified order. However,
it is easy to see that if the robot is assigned k targets to observe, keeping track
of those observed already in an arbitrary order would entail an exponential growth
of the state space (by 2k to be precise). To limit the growth in the state space, the
planner is therefore, not only given a set of targets to observe, but also given the order
in which they should be observed. This assumption implies that given a sequence,
if the robot cannot observe the ith target in the sequence, it will not move on to
observe the successive ones. This is consistent with our definition of the problem,
whereby the task is successfully completed if and only if all targets are observed and

Chapter 4. Rapid Deployment of Mobile Robots under Constraints 31

therefore skipping one target would lead to failure. Alternatively, if the definition of
the problem is changed to allow skipping targets, the same construction we present
in the following can incorporate a counter so that the robot will skip a target after
a series failed detection attempts. To be specific, if the robot is assigned k targets
to be observed in sequence, say t1, t2, . . . , tk, the state space X grows by a factor
k + 1 since to every state we associate a string with k bits 1 indicating which targets
have been observed already. Note that k bits are sufficient (instead of 2k) because
the order is specified. For example, if k = 3 it means the planner needs to observe 3
targets and the state (000, x) indicates that the robot is in state x and has not seen
yet any target. From such state the robot can either remain there, transit to (000, y)
for y 6= x or to state (100, x). In the first case it means that it moves to a different
state y without making any observation, whereas in the second case it means that it
has successfully observed the first target while in x. Observe that moving to state
(010, x) is not permitted because this would mean observing the second target before
the first one, and this is not consistent with our assumptions. To reward the planner
when a target is observed, we introduce augmented states of the form (n, x′) where n
is a string of k bits satisfying the constraints we formerly described (see Figure 4.2).
A reward function taking advantage of these additional states will be introduced later
on. When the robot makes an observation from a state xj belonging to the visibility
set of a target, it will detect the target with probability P (xj, o). In this case it makes
the two transitions indicated in Figure 4.2 to mark that it has seen the target. If the
robot is in state (n, xj) and xj ∈ V(tk) but tk is not the next target to be observed in
the sequence encoded by n, then the observation action cannot be executed.

100,
xi

110,
xi

100,
xi'

P(xi,o)

1-P(xi,o)
1

Figure 4.2: When a successful observation from state xi is made, the state goes
through an augmented state x′i and, from there, it executes its only action. Then
with probability 1, it goes back to the state xi but with the corresponding modified
bit.

Starting from G = (X,E) and an ordered sequence of k targets T , we can then
build a CMDP as follows. Let NT be the set of k bit strings we formerly defined.
From X, a state space X ′ = NT ×X with NT × |X| states is built attaching k bits to
each state in X. The expanded states are defined as follows. Let, T = ∪j=1...MV (tj),
i.e., the union of all the vertices from which one of the targets can be seen. Next, we
define T ′ = NT × T . To distinguish elements of T ′ from elements of X ′, elements

1Note that with k targets the growth is by a factor of k + 1 since each state is expanded with the
k + 1 strings of k bits of the type 00 · · · 00, 10 · · · 00, . . . , 11 · · · 10, 11 · · · 11.

Chapter 4. Rapid Deployment of Mobile Robots under Constraints 32

of the former set will be indicated as (n, x′), whereas elements for the latter will be
indicated as (n, x). Finally we introduce a sink state S and a final state F . The
sink state S is used to represent failure, i.e., to model the event of a robot ceasing
to correctly function. Consequently, once it is entered, no more actions can be taken
by the robot. The full state space is X = X ′ ∪ T ′ ∪ {S,F}, and the absorbing set
is M = {F}. We next define the action set of each state. For each state of type
(n, x) we add an action a if motion primitive a is available in vertex x. Moreover, for
states belonging to the visibility sets, we add an action o for the observe action, but
only if observing a target from that state is compatible with the assigned sequence of
targets. These two types of actions apply only to states in X ′. To each state in T ′
we add a single action going back to the corresponding state with the flipped bit, as
we illustrated in Figure 4.2. Finally, to the sink state S, we add a single action aS
going to F . The mass distribution β is set to 1 to the deployment vertex where the
robots start from, and 0 elsewhere.

The transition function is defined as follows. When an observation action is
executed, it is defined as shown in Figure 4.2, i.e., it remains in the same state with
probability 1 − P (x, o) (no detection), or it goes to the augmented state with
probability P (x, o) (detection). If a is a motion primitive between x and y, then Paxy
is given by the success probability of the primitive, and we set PaxS = 1−Paxy, i.e., if
the primitive fails the state goes to the sink state S. Actions for the states
(n, x′) ∈ T move the state back to (n′, x) with probability 1, where n′ differs from n
for the flipped bit. The only action in S is PSF = 1, i.e., it deterministically moves
the state to the absorbing state. To conclude, we define two different costs and a
reward (hence L = 2 in our model.) First, we define a cost c(x, a), such that
c(S, aS) = 1 and is 0 everywhere else. The purpose of this cost is to accurately
determine failure probabilities, as it was done in [35, 41]. Next we define a cost
d(x, a) for all state actions. d models the time to take an action. If a is a motion
primitive, then d(x, a) is the time to complete the primitive. If a is an observation
action, we set this to the cost of making an observation, e.g., the robot may have to
stop to take a picture. For all other actions the d cost is 0. Finally we introduce a
reward function e(x, a). The reward function is a constant, say 1, for all actions
associated with states of the type (n, x′) and 0 elsewhere. As it will be seen in the
following, by posing the question as an optimization problem, the planner will
produce policies maximizing the expected number of observed targets in the
sequence. Starting from the above definitions, we can then formulate the following
single-robot multiple target problem.

Single robot, multiple target observation problem (SRMTO): Given an
environment G = (V,E), an ordered sequence of targets G ⊂ {t1, . . . , tM} with
visibility regions V(ti), parameters X, A,P , c, d, e, β as per the above definition, a
temporal deadline Tf and a probability bound Pf , determine an optimal randomized
policy π∗ : X′ → P(A) mapping state into actions maximizing the expected number
of observed targets in the given order, while ensuring the temporal and performance
bounds are met in expectation.

Chapter 4. Rapid Deployment of Mobile Robots under Constraints 33

The SRMTO formulation, and the following theorem, are an instance of the total
cost CMDP problem formulated in Eq. (3.3.1).

Theorem 4.1. Let X′ = X\{F} and K′ = {(x, a) : x ∈ X′, a ∈ A(x)}. The following
constrained linear program has a solution if and only if the SRMTO problem has a
solution and there is a one-to-one correspondence between the solution vector ρ(x, a)
and the optimal policy π∗.

max
∑

(x,a)∈K′

ρ(x, a)e(x, a)

s.t.
∑

(x,a)∈K′

ρ(x, a)c(x, a) ≤ Pf

∑
(x,a)∈K′

ρ(x, a)d(x, a) ≤ Tf

∑
y∈X′

∑
a∈A(y)

ρ(y, a)(δx(y)− Payx) = β(x) ∀x ∈ X′

ρ(x, a) ≥ 0

where δx(y) is 1 when x = y and 0 otherwise.

Proof : The proof builds upon the fact [5] that the optimization variables ρ(x, a)
are interpreted as occupancy measures, defined as:

ρ(x, a) =
+∞∑
t=0

Pr[Xt = x,At = a].

Because of the way we defined the costs e, these are 1s only on the outgoing arc
from states of type (n, x′), i.e., states associated with the observation of a target.
Hence the objective function is the expected number of observed targets. Chow et
al. [41] have proved that ∑(x,a)∈K′ ρ(x, a)c(x, a) is the expected failure probability
and this is bounded by Pf in the first constraint. Similarly, in [41] it was shown that∑

(x,a)∈K′ ρ(x, a)d(x, a) is the expected time to complete a strategy, and this is bounded
in expectation by Tf in the second constraint. This establishes that the solution of
the CMDP maximizing the occupancy measures ρ(x, a)e(x, a) will produce a policy
where the success probability will be also maximized together with the cost e. By
construction, all additional costs e follow the sequence of k bits for each succesful
observation and, therefore, going through the augmented states x′ that will lead
ultimately to the final state F . 2

Note that an occupancy measure is, in general, not a probability, but it is a
probability if it sums the probabilities of mutually disjointed events. For example,
the former papers [35, 41] showed that ρ(S, aS) is the probability of a trajectory going
through the sink state and, therefore, by definition, the probability that a robot fails
during its mission. Following the same reasoning one can show, for a given target

Chapter 4. Rapid Deployment of Mobile Robots under Constraints 34

ti ∈ T , the solution to the SRMTO problem provides the probability that the target
is observed. This probability is

pi =
∑

x∈V ′(t)
ρ(x, a) (4.1)

where V ′(t) is the set of states of the type (n, x′) with x ∈ V(t). To see why this
relationship holds, it suffices to observe that for each target ti each trajectory will go
through only one of the states in V ′(t). We can find the solution vector ρ(x, a) by
solving the linear program formulated in Theorem 4.1. The robot can execute the
optimal policy using the corresponding occupancy measures (see [35, 41] for details.).

4.3 Solving the rapid deployment problem
In the rapid deployment problem one is given N robots, a set of M targets T , and
a temporal deadline Tf . The objective is to split the targets among the robots and
compute the associated control policy for each robot so that the team, as a whole,
maximizes the probability of completing the task within the target temporal deadline.
The technique we presented in the previous section computes the control policy for a
single robot under the assumption that the sequence of targets is given, as well as a
probability bound Pf . However, both these elements are not part of the input. To fill
this gap, an iterative algorithm seeking for the maximum probability of success can
be developed, where the optimal value for Pf is determined with a sequential search.

At each iteration, the algorithm determines a set of K > N sequences of targets
together with the optimal policy for each sequence, solving the corresponding
SRMTO problem. Note that the algorithm may not necessarily find an optimal
solution for each of the K sequences. The algorithm then assigns to each robot one
of the sequences for which a solution was found, and computes the success
probability P ′ for the whole team. Upon termination, the algorithm returns the
policies and the assignment of policies to robots that yields the best group
performance. Algorithm 4.1 sketches this approach.

Algorithm 4.1 handles two different probabilities, i.e., Pf and P ′. Pf is the failure
probability bound used in the CMDP described in Theorem 4.1. This is the bound for
the failure probability for each policy computed for the K sequences. Since this is not
part of the input, a linear search is performed over the discretized range [PMIN

f , PMAX
f].

Pf is the failure probability for a single robot executing one of the policies. Once a
policy for all sequences is computed and an assignment is selected, the group success
probability P ′ is computed, and this is a simple algebraic exercise building upon
Eq. (4.1). Finally, note that the relationship between Pf and P ′ is not necessarily
monotone, i.e., while increasing the individual robot failure probability Pf , the group
failure probability P ′ may increase or decrease.

Two problems still need to be solved, i.e., generating the sequences of targets (line
1), and assigning policies to the robots (line 4). Generating all target sequences is
practically infeasible as soon as T features more than a handful of targets. Therefore,

Chapter 4. Rapid Deployment of Mobile Robots under Constraints 35

Data: G = (X,E), set of targets T = {t1, t2, . . . , tM}, temporal deadline Tf ,
number of robots N

Result: A policy for each robot, and success probability P ′
1 Generate K > N sequences of targets S1, . . . , SK ;
2 for Pf ≤ PMIN

f to PMAX
f do

3 Solve SRTMO for each sequence with Pf and Tf ;
4 Assign one sequence to each robot and compute P ′;
5 if P ′ is best then
6 Save Assignment and P ′;
7 return Assignment and P ′

Algorithm 4.1: Rapid deployment

it is necessary to consider only a small set of sequences. Sequences are generated as
follows. First we solve the TSP problem on the complete graph of all M targets. The
cost between vertices x and y is the average time to execute all motion primitives
going from x to y. In our implementation we use the Concorde approximate solver
[11] to quickly determine a tour. Next, we split the tour into subsequences of up to
i targets with 3 ≤ i ≤ M . It therefore follows that with this strategy the number of
generated sequences K bounded by ∑M

i=3 = dM
i
e, i.e., K is O(M logM). The reason

to discard sequences of length 1 and 2 comes after having observed that they rarely
contribute to the optimal solution. The last remaining problem is group assignment,
i.e., deciding which sequence of targets to assign to each robot. This is discussed in
the next section.

4.4 Group Assignment Problem
Let S1, . . . , SK be the groups generated by Algorithm 4.1 for which the SRMTO
problem admits a solution. For a solution to the rapid deployment problem to exist,
it must be that ∪Ki=1Si = T . If this is not the case, then there exists at least one
target that cannot be reached.

For each sequence Sj let ρj be the vector computed by solving SRMTO for fixed
values of Tf and Pf . As formerly stated, the ρj vector encodes valuable information.
For example, it allows us to determine the expected number of targets seen by the
optimal policy π∗ solving SRMTO(Sj), as well as the probability that each of the
targets in Sj will be observed while executing π∗ (Eq. (4.1)). That is to say, that if
ti ∈ Sj, then ρj, combined with the underlying model, gives the probability pij that
ti will be observed by the robot while executing the optimal policy π∗j returned when
solving SRMTO(Sj). More specifically, assuming ti ∈ Sj, for each v ∈ V(ti) define

Xv = {(n, x′) ∈ T ′ | x′ = v}

Chapter 4. Rapid Deployment of Mobile Robots under Constraints 36

Then it is easy to verify that

pij =
∑
v∈Vi

∑
y∈Xv

ρj(y, a) (4.2)

where y ∈ Xv indicates a composite state (n, x′). The validity of this relationship
is verified immediately by writing down the explicit formula for occupancy measures
considering that states in T ′ have just one action, and that each target can be observed
just once due to the structure of the underlying state space. If ti /∈ Sj, then we set
pij = 0.

The objective of the group assignment step is to pick N of the K sets S1, . . . , SK .
Different objective functions can be considered when making the selection. In the
following we cast the problem as an instance of a nonlinear assignment problem
related to the “static weapon target assignment” (SWTA) problem (see [131], ch. 3).
For each target ti ∈ T , let Vi be its importance, i.e., a weighting factor indicating
how important it is to reach it. If Vi is not provided, than we can set all weights to
1. Moreover, as per Eq. (4.2), let us define the survival rate as qij = 1− pij. This is
the probability that target ti will not be observed if group Sj is assigned to one robot
for execution. For each of the K groups, we define a binary variable xj indicating
whether Sj is selected or not. The objective function we consider is then

M∑
i=1

Vi[ΠK
j=1(qij)xj] (4.3)

subject to the constraint that we pick at most N groups. The interpretation of
the formula is as follows. For each target ti and each assignment of variables xj,
ΠK
j=1(qij)xj is the probability that ti is not observed by any of the robots. Note that

if ti /∈ Sj then qij = 1. The objective function is then the sum of these probabilities
for all targets, weighted by the corresponding importance Vj. If all Vjs are one, then
Eq. (4.3) is the expected number of targets not observed by any robot. We can then
formulate the Group Assignment problem.

Group Assignment (GA). Let S1, . . . , SK be K sequences of targets and for
each target i and group j, let qij be the survival rate for i-th target and the j-th
group. Select N groups of targets to minimize Eq. (4.3).

SWTA is known to be NP-complete. Therefore, to solve the GA problem one can
follow at least two strategies. First, GA could be formulated as the following integer
optimization problem:

min
x1,...,xK

M∑
i=1

Vi[ΠK
j=1(qij)xj]

s.t.
K∑
j=1

xj = N xj ∈ {0, 1} 1 ≤ j ≤ K.

For problems of moderate size, this can be exactly solved using a branch-and-bound
approach and one could then take advantage of commercially available solvers.

Chapter 4. Rapid Deployment of Mobile Robots under Constraints 37

Alternatively, and this is the approach we present in the following, an approximate
solution can be determined using a greedy approach for the case where an exact
method is too onerous.

Let A be a group of sequences from S1, . . . , SK , and let us define the function

f(A) = −
M∑
i=1

Vi[Πj∈Aqij]. (4.4)

The GA problem is then equivalent to the problem of selecting N elements from
S1, . . . , SK to maximize f(Si1 ∪ . . . SiN).

Theorem 4.2. Function f as defined in Eq. (4.4) is submodular.

Proof: Given a finite set N , a function g : 2N → R is submodular if for every
X, Y ⊂ N with X ⊆ Y and every z ∈ N \ Y the following condition holds:

g(X ∪ {z})− g(X) ≥ g(Y ∪ {z})− g(Y). (4.5)

First note that for X = Y the submodularity condition is trivially verified. Let X =
{Si1 , . . . , Sik} and Y = {Si1 , . . . , Sik , Sik+1 , . . . , Sik+p

} be two subsets of {S1, . . . , SK}
with X ⊂ Y , and let Sz /∈ Y . The left hand side of Eq. (4.5) is then written as:

f(X ∪ {Sz})− f(X) =
− V1[q1i1 . . . q1ikq1z] . . .− VM [qMi1 . . . qMikqMz]
+ V1[q1i1 . . . q1ik] . . .+ VM [qMi1 . . . qMik] =
V1[q1i1 . . . q1ik(1− q1z)] + . . .

+ VM [qMi1 . . . qMik(1− qMz)].

Similarly, the right side of Eq. (4.5) is

f(Y ∪{Sz})− f(Y) =
− V1[q1i1 . . . q1ikq1ik+1 . . . q1ik+p

q1z] . . .
− VM [qMi1 . . . qMikqMik+1 . . . qMik+p

qMz]
+ V1[q1i1 . . . q1ikq1ik+1 . . . q1ik+p

] . . .
+ VM [qMi1 . . . qMikqMik+1 . . . qMik+p

]
= V1[q1i1 . . . q1ikq1ik+1 . . . q1ik+p

(1− q1z)] + . . .

+ VM [qMi1 . . . qMikqMik+1 . . . qMik+p
(1− qMz)].

The submodularity condition is then verified because the weights Vj are positive and
qij ≤ 1 for each i, j. 2

According to this theorem one can use the well known greedy algorithm due to
Nemhauser et al. [121] and obtain an approximated solution with a constant 1 − 1

e

approximation factor.

Chapter 4. Rapid Deployment of Mobile Robots under Constraints 38

4.5 Simulations
In this section we present some simulations showing how our solution can not only be
used to determine the optimal control policy, but also to infer interesting design and
analysis properties. For example it is possible to assess a priori what is the probability
of successfully completing a rapid deployment task for a given temporal deadline Tf
and a certain number of robots N .

First, for the environment shown in Figure 4.1 we study how the probability of
successfully completing the task varies with the number of robots and the temporal
deadline Tf . This is shown in Figure 4.3.

100 200 300 400 500 600 700 800

T
f

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P

1 robot

2 robots

3 robots

4 robots

5 robots

6 robots

Figure 4.3: Success probability for different temporal deadlines for a different number
of robots in the team for the case where 10 targets are considered.

The different curves are not only associated with control strategies, but allow us
to anticipate the performance of the team. This way, based on the desired
probability of success P ′, one can either alter the temporal deadline Tf or allocate
more robots to the task. A comment is in order to explain why there is a drop in
performance for Tf = 500. This is particularly evident for the case where two robots
are considered. The reason is that for the target assignment problem we rely on a
greedy allocation algorithm that is known to be suboptimal. For that specific
combination of temporal deadline and number of robots, the greedy strategy picks a
suboptimal target assignment that yields a performance drop. The trend of the
curves can be used by a human operator (e.g., the incident commander in a search

Chapter 4. Rapid Deployment of Mobile Robots under Constraints 39

and rescue task) to decide how to allocate resources (how many robots) or how to
pick the temporal deadline Tf to achieve a desired confidence level in terms of
probability of success.

An important question to ask is how the method scales with the number of
robots N and the number of targets M . The algorithm relies on the solution of two
subproblems, namely SRMTO (policy calculation) and GA (group assignment). The
greedy solution to the GA problem is a function of both the number of targets and
the number of robots. In particular, it is O(KN2). This bound follows because we
have to iterate N times over the K sequences, and it takes O(N) to evaluate each
candidate sequence. Considering that in Section 4.3 we clarified that the number of
sequences K is O(M logM), it follows that the complexity of the greedy algorithm
for GA is O(M logMN2). If instead one opts for the exact method, then it is
necessary to solve an integer optimization problem with K binary variables.

The SRMTO problem, is instead, by definition, independent from the number of
robots because it deals with the generation of a single robot policy. We, therefore
consider only, the dependency between the time to solve SRMTO and the number of
targets M . More targets mean more subsequences to consider, with the associated
solution of various linear programs to solve the SRMTO problem instance. As the
number of targets grows, there is an increase in the size of the linear programs we
need to solve because there will be subsequences with more targets. Moreover, the
number of subsequences of targets grows as well. Figures 4.4 and 4.5 analyze this
growth as a function of the number of targets. In particular, Figure 4.4 displays the
average time (with standard deviation bars) to solve a single linear program2 as a
function of the number of targets. As it can be seen, the growth trend is roughly
linear. Figure 4.5 instead plots the trend for the sum of the time to solve all the linear
programs associated with a specific temporal deadline. The curve shows mean and
standard deviation of the trends for different temporal deadlines. The small standard
deviation confirms that this is largely independent from the Tf value and unveils a
quadratic growth.

2For the implementation, we rely on Matlab’s function linprog.

Chapter 4. Rapid Deployment of Mobile Robots under Constraints 40

10 12 14 16 18 20

Number of Targets

-10

-5

0

5

10

15

20

A
v
e
ra

g
e
 t
im

e
 t
o
 s

o
lv

e
 l
in

e
a
r

p
ro

g
ra

m
 (

s
)

Figure 4.4: Average time to solve a single linear program for the SRMTO problem
as a function of the number of targets (average taken over all linear programs to be
solved for a specific number of targets).

4.6 Conclusions
We have extended previous work on the rapid deployment problem by considering
two important generalizations, namely that the robots are subject to imperfect
observations and that there are more targets to observe than robots available. This
problem is significantly more complex than the one we considered before and is
associated with some hard problems such as orienteering. In particular, it features
multiple costs associated for every edge, such as the probability of success and the
time to complete a primitive. We have shown that the CMDP framework we
formerly formulated can still be extended to tackle a constrained robot where a
single robot is tasked with observing a sequence of targets under temporal and
probabilistic constraints. This building block can then be used to solve the original
problem, i.e., maximizing the probability that the task is solved within a given
temporal deadline. The CMDP model, in particular, allows to precisely predict
success and failure probabilities at the single robot and at the team level. In

Chapter 4. Rapid Deployment of Mobile Robots under Constraints 41

10 12 14 16 18 20

Number of Targets

0

500

1000

1500

2000

C
u
m

u
la

ti
v
e
 T

im
e
 (

s
)

Figure 4.5: Average cumulative time to solve all linear programs to solve the SRMTO
problem as a function of the number of targets (average taken over all temporal
deadlines considered for a given number of targets).

addition, we have shown that the problem of assigning groups of targets to robots is
related to the SWTA problem that can be approximately solved using a greedy
algorithm. The simulations show how the results presented in this work can be used
by a human supervisor to make informed decisions about how to allocate resources
like the number of robots or the time to allocate. The method we proposed scales
quadratically with the number of robots and targets.

Chapter 5

Motion Planning Under Temporal
Constraints with Stochastic Motion
Primitives: Theory and Practice

5.1 Introduction
In the previous chapter we proposed the solution for the “Single robot, multiple
target observation problem” (SRMTO), where we modeled a multi-target scenario
having multiple robots that needed to be distributed respecting some temporal and
failure constraints. For that problem we assumed that the transition probabilities
were given. However, in reality this assumption presents some limitations and
imprecisions. We now consider the same problem of computing and executing
motion policies through composition of a set of preassigned motion primitives while
being subject to multiple constraints, such as task completion time and success
probability. Now we will experimentally determine the motion stochasticity of our
robot and how this translates into the transition probabilities that we use for the
CMDP. Derived policies are aimed at and executed by a robot subject to significant
motion uncertainties. Robot motion is modeled by a set of stochastic motion
primitives. The latter are then composed into feedback plans, i.e. policies mapping
states into actions. Our underlying assumption is that each primitive can be
characterized in terms of execution time and uncertainty. For instance, consider the
case where a mobile robot has to reach a target location within time Tf . Because of
the inherent uncertainty affecting the motion primitives, there is no guarantee that
an autonomous agent executing the plan will for sure conclude its task within the
assigned deadline. Therefore, a maximum failure probability Pf is specified as well,
and the objective is to determine a plan that meets the constraints: the temporal
deadline Tf and the maximum failure probability Pf . These hypotheses, while
useful to lay the theoretical foundations of the work, are not always verified in real
world applications. In a separate effort [86], a data driven approach was developed
to derive probabilistic valid stochastic models characterizing a set of motion

42

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 43

primitives for a multi-legged palm-sized robot. In such work, starting from a set of
recorded trajectories, a stochastic model for the vehicle was derived by analyzing its
mechanical structure and identifying possible sources of uncertainty. The
parameters characterizing these disturbances were then identified from collected
data and it was shown that these models could then generate sample trajectories
consistent with the available data. The power of this technique is that it can then
be used to simulate and predict the stochastic behavior of motion primitives that
were not part of the dataset.

In this work, for the first time, we close the loop between theory and practice by
connecting these two efforts together and jointly validating them through physical
experiments. Specifically, stochastic primitives are derived for differential drive
robots. Given the base model and sets of experimental trajectories,
stochastically-valid primitives are built. For each primitive, a spatial probability
distribution is derived to characterize the anticipated outcome of the maneuver,
together with the expected time to complete it. These primitives, in turn, inform a
CMPD planner operating on a discretized representation of the environment
utilizing uniform grids. Our findings are first demonstrated in simulation and then
on a low-cost, error prone differential drive robot.

We presented in section 2.1, the related work on motion planning under
uncertainty, and in this chapter the main contributions are the following:

• Section 5.2.2 shows a novel method to extract the transition probabilities from
a set of trajectories describing the robot’s motion under specific actions.

• Section 5.2 presents the necessary technical preliminaries to understand how a
stochastic model can replicate empirical data and expand it to extract transition
probabilities and use them with a CMDP.

• Section 5.3 discusses how we created several environments where we discretized
the space and use it by the CMDP planner to compute a navigation policy.

• In section 5.4 we define a CMDP model to capture the problem of reaching a
target while avoiding obstacles, and still respecting initial constraints.

• We present mazes with walls and narrow corridors to be navigated by a robot
without any sophisticated low level control for linear and angular velocities.

• We demonstrate the robustness of calculating an off-line policy, using a novel
approach to extract transition probabilities from a stochastic model, that
despite motion uncertainties is able to guide a robot from an origin state to a
goal state.

• In Section 5.5 experimental results are presented where we studied the
performance of the different policies while varying the temporal, and failure
probability constraints.

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 44

5.2 Preliminary Background

5.2.1 Uncertainty Quantification via Probabilistically-Valid
Stochastic Models

This section will summarize the work of Karydis et al. [85] to extract a stochastic
model from experimental data.

Having a sequence of experimental data collected {w1, ..., wI}, I ∈ N indicating
the position and orientation of a ground robot in a time T .

The model M is parameterized by λ ∈ N parameters which are collected in a
vector ξ ∈ Ξ ⊂ Rλ. Varying the parameter values we can generate a set of models
{M(ξ), ξ ∈ Ξ}, whose output is out(M(ξ)).

The goal is to find the parameters ξ̄ ∈ Ξ that enable the model M to replicate
outputs as close as possible from the experimental data. The closeness will be
measured using an appropriate distance metric to the sample mean wave. Figure 5.1
shows the general idea to fit the experimental data to a cone with some variability
ellipses εt.

Figure 5.1: Example of data fitting: a) Grey lines correspond to the empirical data.
Dashed lines correspond to sample trajectories. Blue line correspond to the mean of
the sample trajectories. Red lines correspond to the cone of data. b) Computing the
cone of data with variability ellipses εt centered at the sample mean. Image taken
from [85]

To solve this problem, taking into account that we have time series of finite length
T , we define a least squares optimization:

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 45

ξ̄ = arg min
ξ∈Ξ

T∑
t=1
‖out(M(ξ))t − wave(t)‖2 , (5.1)

where || · || is the Euclidean norm, and t ∈ {1, . . . , T}. Having identified the model
instance with the particular tuple ξ̄ of parameter values, the next step is to capture
the data variability. This can be done treating the model’s parameters as random
vectors, ξ̃, instead of tuples of constants. This way, the tuple ξ̄ can populate the
mean of that random vector, while its higher-order statistics are estimated.

At the same time, it is crucial to define a function that decides if the proposed
model actually fits the experimental data or realization of ξ̃. This realization of ξ̃
is denoted by ξn, n = {1, . . . , N}, N ∈ N. N . This function creates a cone of data
conep,γ(wm) for a multi-sample wm,m ∈ {1, . . . ,M}, with M ∈ N:

g(ξn,wm) :=
0, if out(M(ξn)) ∈ conep,γ(wm)

1, otherwise
. (5.2)

If the the output of the model is out of the cone, it means that the value does
not represent similarity with the experimental data, and therefore helps us to define
a probability of violation which is the basis for judging the validity of a (stochastic)
model. This probability of violation for each ξn, n ∈ {1, . . . , N} parameter multi-
sample is:

P̂ (ξn; WM) := 1
M

M∑
m=1

g(ξn,wm) . (5.3)

The confidence 1− δ is defined as:

P̂0 = max
n∈{1,..,N}

P̂ (ξn; WM) (5.4)

and explains the probability of approximating the near maximum to accuracy ε
and level α [92, 176, 177].

Having the validity of a model we can calculate the probability distribution of a
random vector ξ̄. The goal is to maximize the high-order moments to get P̂0 in (5.4)
lower than a fixed threshold ρ ∈ [0, 1). This is done maximizing {σ1, .., σλ} such that
P̂0 ≤ ρ from the covariance matrix Cov(ξ̃, ξ̃) = diag(σ2

1, . . . , σ
2
λ).

The algorithm presented in [85] shows clearly the method to reach a fitting
stochastic model following five general steps:

• Select values for the model like a tolerance interval, a confidence value, etc.;

• Record data M and calculate conep,γ(wm) for each multisample;

• Generate the vector ξ̄;

• Set values for {σ1, .., σλ} and calculate P̂0;

• Vary values of {σ1, .., σλ} until P̂0 > ρ.

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 46

5.2.2 Stochastic Motion Primitives Derivation
As we discussed in chapter 3, MDPs and CMDPs rely on the fact there is a set P that
describes the probabilities of getting to a state x′ when executing action a from state
x. The assumption that we always have these values, and they are constant over the
time and conditions, is very strong.

The purpose of this section is to illustrate a method to extract the transitions
probabilities from a set of trajectories showing the robot moving for specific actions
or maneuvers. The probabilities-extraction method that we use is a count-based
system, where we want to calculate the value that describes the likelihood that the
robot ends at one specific pose (position and orientation) after executing a certain
action a. In order to obtain this value, we established a protocol and developed a
software architecture to record in real time the different trajectories that the robot
follows after receiving the command to use a maneuver.

To localize the robot in its operating environment and ensure that the state is
observable as required by the CMDP model, we rely on a Vicon motion capture
system installed around the working area. The Vicon system can track the robot’s
pose with sub-centimeter accuracy at a 100 Hz frequency, thus accurately solving
the localization problem and providing the three dimensional pose (x, y, ϑ). Desired
motion commands (linear and angular velocities) were transmitted wirelessly from an
offboard computer workstation.

Figure 5.2: The environment with the Vicon system composed for motion capture
cameras around the room.

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 47

The Robot

The differential-drive robot we used is the Duckiebot (see Figure 5.3), an
open-source platform developed at MIT as part of an autonomy class [134].1 The
robot features two DC stepper motors, and it is equipped with a RaspberryPi 2
board (4-core 900 MHz ARM processor, 1 GB RAM) that runs ROS, a camera and
a USB WiFi module for communications2. It is powered through a portable
10400 mAh battery that offers over two hours of continuous operation. The robot is
not equipped with encoders or other sensors to measure the rotation and speed of
the wheels. Consequently, its motion is rather inaccurate and noisy.

Figure 5.3: The Duckiebot robot used in this study.

Types of Primitives

In this work we use six primitives.3 The selected primitives are parameterized based
on curvature (forward motion, and counterclockwise and clockwise turns) and speed
(fast, slow). In the following they are indicated as FF/FS (forward fast/slow),
CCWF/CCWS (counterclockwise fast/slow), and CWF/CWS (clockwise
fast/slow). The Duckie’s firmware accepts linear and angular velocity commands,
and the primitives are then obtained by, accordingly, setting angular and linear
velocities for a fixed amount of time. The six maneuvers have different durations,

1See https://www.duckietown.org for details.
2The robot is also equipped with a camera that is, however, not used in our setup.
3Similar to all works that consider a motion primitives based approach, the number of primitives

is a user-selected hyper parameter that tradeoffs complexity and descriptive capacity of the planner.
The choice to use the six primitives herein was made empirically, after initial experimentation so
as to strike a balance between algorithm complexity, size of experimental datasets, and algorithm
performance.

 https://www.duckietown.org

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 48

ranging from 0.965s to 1.235s (specific values were determined empirically)4. The
reason for the different times to execute the maneuvers is because we attempted to
generate symmetrical movements when turning left and right, but due to the robot’s
inconsistency, each maneuver still had some disparity when compared with its
counterpart. Therefore, times were tuned and altered to generate a more symmetric
set of training data. These primitives enable us to span both spatial and temporal
components of the deployment problem at hand, i.e. they enable us to compute
policies reaching different parts of the workspace under different temporal
constraints.

5.2.3 Extracting the Transition Probabilities
The first step to model the primitives is to gather experimental data samples for
each of them. To this end, for each individual primitive, we take a certain amount of
sample trajectories. For each trajectory we recorded the three-dimensional pose data
(x, y, θ) using the Vicon motion capture system operating at 100 Hz.

After each trajectory was recorded, staring at the position (0,0), the robot was
manually placed back to a designated start area. The distribution of the endpoints
of the recorded trajectories are shown in Figure 5.4. The plot displays endpoint
orientations with arrows. Position uncertainty ellipses using three standard-deviation
intervals along x and y are overlaid to the points.

While it is possible to augment the uncertainty ellipses to include the orientation
as well, we choose to work here with position uncertainty only.5 Doing so simplifies
the problem in the sense that one needs to specify only desired position waypoints
(possibly accompanied with acceptable uncertainty regions as in Figure 5.4), while the
feedback nature of our planning approach is able to handle orientation discrepancies.
The ability to handle this type of planning problem is useful for rapid deployment in
practical, op-tempo cases (e.g., by specifying waypoints on a hand-held device).

4Linear velocity to 0.4 and 0.8 (on an 0 to 1 scale), respectively. The angular velocity is regulated
by setting two control gains and they are -5.2 for right fast (CWF), 8.2 for left fast (CCWF), -5.4
for right slow (CWS), 6.0 for left slow (CCWS), 0.3 for forward fast (SLF), and 0.6 forward slow
(SLS). The duration of all types of primitives are: 1.235 sec. for RF, 1.18 sec. for LF, 1.15 sec. for
RS, 1.16 for LS, 1.325 sec. for FF and 0.965 sec. for FS.

5If we include uncertainty in the orientation we end up with a more complex distribution that
looks like a crescent when sketched on the x − y plane. Such a distribution is called “banana”
distribution, and it has been shown that it is essentially a Gaussian distribution in exponential
coordinates [104].

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 49

Figure 5.4: Experimental distribution of the trajectory endpoints (blue for fast
maneuvers, and purple for slow maneuvers). Fast maneuvers (plotted in blue color)
are those that end at larger displacements along the y axis. The final orientation is
indicated by the arrow. Position uncertainty ellipses are shown in thick curves.

Data shown in Figure 5.4 give us data-driven motion primitives for the robot.
The data-driven primitives can be directly connected to our framework developed in
chapter 5. However, such primitives cannot generalize well to predict other possible
maneuvers [86, 46]. To do so, we need a model reinforced with data that can help
make trustworthy predictions. This is essential for our planning framework and is
what we will cover in the following section 5.2.4.

It is important now to define the discretization for the position and the orientation.
The environment will be divived in cells of a certain size, and for each of these cells,
there will be a number of possible orientations of our robot. We divide the whole
circumference in a fixed number of degrees, see figure 5.5. The size of the cells and the
number of discretization for the orientation, called ranges, will play a main role when
trying to calculate a policy: Bigger cells means a poor description of the environment,
a smaller cell will correspond to higher resolution and precision of the actual position
of the robot. However, the downside of reducing the size of the cells is the exponential
growth of the space state X, which, in turn, produces exponential increases of the

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 50

time to solve the CMDP and obtain a policy. The state for our CMDP will be the
defined as (x,y,θ), where (x,y) will correspond to a specific cell on the map.

Figure 5.5: Left: Position discretization. Right: Orientation Discretization.

We always set range 1 with 0 degrees as the center of it. The range defines an
interval of degrees/radians (arc). For our case the range 1 means having the robot
pointing up, which is from 15 to −15 degrees clockwise. Range 2 goes from −15 to
−45, and so on. The range 7 goes from −165 to 165 which means pointing down,
then we continue range 8 from 165 to 135, until the start again at 15 degrees with
range 1. After this intervals’ distribution, the circle gets divided in two, being the
right side for negative angles and left side the positive. The number of intervals can
vary and depends on the wished precision. For this case, as an example, we took
intervals of 30 degrees which means twelve intervals.

Having the recorded trajectories, and defining the pose discretization, we now
proceed to numerically calculate the values of the transition probabilities. Figure 5.6
shows on the left only three different maneuvers that the robot can execute: forward,
turning left/right with curve. We can also see 50 trajectory samples taken directly
from the robot for each maneuver. We will present the method using only these three
maneuvers, to facilitate the understanding and help the visualization of the method,
but in reality we will have six maneuvers as we previously mentioned.

We organize each set of trajectories from each maneuver as shown in Figure 5.6
on the right. For our example, we show how, from the maneuver forward, we can
see 4 trajectories that ended at the same range 1 between 15 to −15 degrees. These
4 trajectories out of 50 means an overall probability of 0.08. This also means that
the robot can end in 3 different states according to the 3 cells where they landed, and
for each we will have different transition probabilities P (x, a, x): 2 trajectories ended
at the cell defined between 0cm to −20cm on x and 80cm to 100cm on y, 1 ended
on the cell defined between 0cm to −20cm on x and 120cm to 140cm on y, and the

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 51

Figure 5.6: Left: 50 trajectories for 3 Maneuvers (“probabilitic template”). Right:
Calculating probabilities for forward trajectories that end at range 1.

last one ended on the cell defined between 0cm to 20cm on x and 100cm to 120cm on
y. These give us the transition probabilities of 0.04, 0.02 and 0.02, for the respective
trajectories. We do the same counting for the rest of the 50 trajectories that end
with different locations and orientations. At the end, we will be able to describe for
the forward maneuver all the transition probabilities. We repeat the process for the
other maneuvers and extract the different probabilities from the trajectories.

Now that we know how the robot behaves probabilistically after executing each
maneuver or action, we can now use it for each of the cells in our map. We will overlap
the “probabilistic template” over all the cells and calculate for each one, where the
robot may end when executing an action. Figure 5.7 illustrates this process. On the
left we see our map being overlapped with the 3 trajectories. As we explained, we
used these trajectories to calculate the probabilities of ending in certain regions with
certain orientations. For example, state 48 (hypothetical identifier number) will have
different transitions and different next states, depending on the maneuver. On the
right of the figure 5.6 we can see how when we execute the action forward (FS) from
the state 48 we can end with a high probability at the sink state (wall of yellow cells).
We can also end with a very small chance at the state 1, which is the cell on the
corner of range1. We will complete the transitions table for all the cells, for all the
maneuvers and for all the initial positions with all the 12 diferent initial orientations.

The transition table is going to be used as an input for our CMDP solver together
with the costs of each of the transitions. Normally, in terms of time, there is a high
cost for slow actions and low cost for fast actions. In terms of risk, the transition
probability will define how risky each transition in the table is. For our example,
executing FS from state 48 has a high risk of collision, so we can associate a cost of
1-Transition Probability, which is the by definition of the failure probability.

It is a critical task to extract the transition probabilities in order to solve

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 52

(a) (b)

Figure 5.7: (a) Example of using the probabilistic template with the states on the
map. (b) Example of a small extract from a transitions table. This table can contain
thousands of transitions, depending of the discretization and the number of actions.

CMDPs, however, the method to obtain a good amount of data samples can be
time-consuming. Because of this, we are proposing a new method to reduce the
experimental part when extracting transition probabilities. We developed a model
that can reproduce the variability observed in experimental data with a provable
degree of fidelity. We also have the availability of stochastic motion primitives —to
create the associated transition probabilities—that are guaranteed to be valid for a
robotic system of interest. We can achieve the construction of a
probabilistically-valid stochastic model, and we outline the basic steps below. The
interested reader is referred to [86] and [83] for a more detailed presentation on the
subject.

5.2.4 Deterministic Model Fitting
We begin by introducing models that capture Duckie behaviors in expectation. A
relevant model is that of a differential-drive robot. Let R and L be the wheel radius
and distance between the two wheels, respectively. If vr and vl are the right and left
wheel angular velocities, the following differential-drive model can be derived [97]

ẋ = R

2 (vr + vl) cos θ

ẏ = R

2 (vr + vl) sin θ

θ̇ = R

L
(vr − vl)

(5.5)

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 53

or, equivalently,
ẋ

ẏ

θ̇

 =

R
2 cos θ R

2 cos θ
R
2 sin θ R

2 sin θ
R
L

−R
L

vr
vl

 . (5.6)

The next step is to identify nominal wheel angular velocities for each of the
primitives at hand. To achieve this we use least-squares constrained optimization.
The solver for ordinary differential equations ODE (5.6) is simulated using Matlab’s
ODE45 routine. For each primitive, the simulation time matches the duration of the
experimental one. The cost function penalizes differences at the final pose between
the experiment and the one predicted via simulation.

The next step is to capture the observed variability in experimental poses. This
we cannot do with a deterministic model; a stochastic one is needed.

5.2.5 Stochastic Model Extension
Our approach to derive a stochastic model is based on the method developed by
[86], and introduced in Section 5.2.1. To capture the variability observed in the
experiments, we apply the stochastic model extension tools to the differential-drive
model described above. The candidate stochastic extension we consider here features
zero-mean Gaussian noise that perturbs the system’s state, i.e.

ẋ

ẏ

θ̇

 =

R
2 cos θ R

2 cos θ
R
2 sin θ R

2 sin θ
R
L

−R
L

vr
vl

+

nx

ny

nθ

 , (5.7)

with nx ∼ N (0, σ1), ny ∼ N (0, σ2) and nθ ∼ N (0, σ3). Through this approach,
the goal is to identify σ1, σ2 and σ3 so that the resulting stochastic model produces
outputs that capture the variability experimentally observed in the final pose.

For each primitive we have I = 200 available training samples. We select p = 0.95,
γ = 0.95, α = 0.32, ρ = 0.10, δ = 0.30, ε = 0.33, and set K = 5. With these values
N = 5 and M = 20. We simulate the SDE (5.7) using the Euler-Maruyama method.
The simulation time is the same as the duration of each experimentally-collected
primitive. We use randomized optimization to increase σ1, σ2 and σ3 until we exceed
the selected threshold ρ on the (probably approximate near maximum) probability of
violation.

Application of the stochastic model extension approach yields σ1 = 5.6, σ2 = 6.0,
and σ3 = 0.087 for all maneuvers. Then, we simulate the derived stochastic model
(5.7) by adding random noise at the initial pose, see figure 5.8. This is fixed to plus or
less than half of the size of cells and plus or less than half of the discretization angle.
Specifically, we will have a shift of the origin +-11.5 and +-5 degrees CW/CCW. Noise
is added to emulate the uncertainty about the initial location of the robot. Adding

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 54

such initial pose perturbations has been proven effective in other works where adding
noise to the system’s dynamics improves the actual performance of the robot in the
real world [136]. There is another way to avoid the use of a random noise. For this we
need to record the trajectories, not from a fixed starting point in the middle of a cell,
but positioning the robot anywhere within the cell. This way the stochastic model can
directly extract the robot’s behavior and recreate the variability of the outcomes due
to the uncertainty of the initial location. Without taking into account this uncertainty,
we will be expecting the robot to always move from the middle of a cell and always
end at the middle of another cell, which is practically impossible, unless the cells are
small enough to become points in the space. Finally, for the identification process to
generate the stochastic model needs to generate a probability of violation (probEval)
of approximately 90%, which means that the modeled trajectories will be 90% close
to the input data.

Figure 5.8: Example of the forward maneuver with and without initial noise for the
position.

Figure 5.9 shows 500 realizations of each primitive derived with the stochastic
model. The resulting first- and second-order statistics at the final pose capture well,
the variability observed in experiments. For reference, we show the mean of the data
as a thick line.

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 55

(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Realizations of the stochastic model: (a) FS, (b) FF, (c) CWS, (d) CWF,
(e) CCWS, (f) CCWF.

5.3 Experimental Setup
In this chapter we will only focus on the experimental validation of the methods
presented in 3.3 for CMDPs and 5.2.2 for generating an stochastic model from

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 56

experimental data. We discuss how we implement an end-to-end planning system to
determine a policy for a rapid deployment mission using a differential drive
platform. We will make a description of the environment, the infracstructure we
used, the results of all our experiments and finally some conclusions and future work
that we believe will increase the understanding of this end-to-end planning system.

5.3.1 Environment

Figure 5.10: One of the real scenarios that we used for our experiments

We consider different planar environments similar to the maze shown in figure
5.10. Figures 5.11 and 5.12 show the four different environments used in the tests,
and the overlaid grid the discretization used for the CMDP formulation. Starting
from a preassigned known location, the objective is to reach a given goal region, i.e.
a set of one or more target cells. The goal condition is satisfied as soon as the robot
enters the goal region, irrespective of its orientation. The robot always starts from
the locations marked with the letter ‘S’ facing upwards, and has to reach the squares
marked in red. If the robot collides with any of the obstacles in the environment, the
mission is considered a failure.

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 57

(a) (b)

Figure 5.11: The two intial environments used for testing. The overlaid grid shows
the discretization used for the CMDP. In the following, the environments are referred
to as empty 5.11(a), maze 5.11(b).

In the first two maps, shown in figure 5.11, we see two different environments.
The empty one was used to test the general performance of the policy without any
obstacles and free path choice. Because the policy optimizes the solution to reach
the goal, we expect to see that the robot does not go around using valuable time
resources, but instead the policy should guide the robot to the shortest path possible
with the lowest risk and minimum time. For the second map, the maze , we tried to
force the robot to avoid obstacles and have sharp turns. We expect higher failure and
slower run-times. Because of the difficulty of the maze, the policy needs to balance
the risk with the time in order to reach the goal.

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 58

(a) (b)

Figure 5.12: The two following environments used for testing. The overlaid grid shows
the discretization used for the CMDP. In the following the environments are referred
to as two ways 5.12(a) and 5.12(b).

For the last two maps the goal was different. First, for the environment shown
in figure 5.12(a) we wanted to study, with the same environment, what would be the
policy when the goal was exactly on the opposite side of the map and where only two
ways were possible; One with a very narrow corridor with a very high risk of collision,
against a second way with a wider space to maneuver more freely and safely. Again,
we were expecting that the policy was “aware” about the risk of the right way, and
it should guide the robot to use the left way. For the second map shown in figure
5.12(b), we tried to force the robot to take the risky way, having a starting point closer
to the right, the policy could estimate that the risk of taking the narrow passage was
worth the shorter time to reach the goal.

5.3.2 Infrastructure
The whole infrastructure is shown in figure 5.13; For a given environment and a
set of motion primitives, a policy is computed offline, solving the associated CMDP
problem on a desktop computer (Purple box). This solver was implemented in C++
as a ROS node, but any other solver can be used (e.g. linprog from Matlab). This
policy associates each state to a specific action/maneuver that will lead to the global
target and will be used later for a different ROS node that will search in it. The robot
is located at the starting state and a desktop computer queries the motion capture
system (Vicon) to determine the pose of the robot, giving the three coordinates (x,y,
θ). From this point the state x0 is calculated and, with it, we can lookup into the
policy the corresponding action π(x). This action is then sent to the robot via WiFi,
and the motion primitive associated with the selected action is then executed by the
hardware onboard the robot. The behavior of each action will depend on the robot’s

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 59

kinematics and the parameters previously fixed. This process repeats until the robot
reaches a state that is considered the goal or an obstacle, which will define the success
or failure of the mission.

Figure 5.13: Infrastructure for Robot Duck executing policy from CMDP.

For our experiments we sampled 200 trajectories that were used to extract the
transition probabilities. (See Section 5.4 below for details on how the CMDP
parameters are extracted.). For each trajectory we recorded the three-dimensional
pose data (x, y, θ). In principle, all run time computation could take place on the
Duckiebot. Our design choices are solely driven by technical convenience and are
inconsequential to the validation of the algorithm.

5.4 CMDP definition
As per the definitions given in Section 3.3, various parameters are needed to complete
the specification of a CMDP. The finite state space X is given by the discretized robot
pose (x, y, θ). To this end, we discretize the environments shown in Figure 5.11 and

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 60

Figure 5.12 in squares of 23×23 cm, thus obtaining grids with 16×21 = 336 cells for
the pose. The orientation is discretized into sectors 10 degree wide. Therefore, we will
have 36 different values for the orientation. Each of the maps displayed in Fig. 5.11
and Fig. 5.12 has between 9,000 and 10,000 states, that is, less than 16 × 21 × 36
because states inaccessible due to obstacles are removed. All of these states belong
to the set of transient states X ′. The choice of the discretization angle and the cell
size is based on some preliminary tests aiming at determining the appropriate tradeoff
between accuracy and speed, as the number of states is directly related to the number
of optimization variables in the linear program to solve the CMDP problem.

To solve the rapid deployment problem, two additional states S and T are
introduced, similarly to [41]. State S is a sink state representing the failure event,
whereby the robot does not accomplish its assigned task because it collides with an
obstacle. State T is a terminal state that is entered when the mission terminates,
either with success or failure. The sink state S belongs to the state of transient
states X ′, whereas the set M includes just T (see Figure 5.14).

Figure 5.14: Structure of the CMDP for the deployment problem. Top states in X ′

correspond to the states obtained by discretizing the environment and with transition
probabilities numerically determined as described in the following. State S is entered
when there is a collision. State T is the only state in M and is always entered at
the end of a run, either successfully ending in a goal state xG or being unsuccessful
because of a collision.

The average number of state-action pairs is 55,837, yielding, on average, 714,729
possible state/action/state transitions with strictly positive probability. For the maze
shown in figure 5.11(b) the number is 9,002 52381 for state-action pairs and 714729
transitions. For the map represented in figure 5.12(a) the number of states is 9146
and has 53245 state-action pairs and 714729 transitions. The number of state-action
pairs is equal to the number of variables ρ in the constrained linear system defined

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 61

in Theorem 3.1.
After defining the states, it is necessary to define the set of actions. For each

state x ∈ X different form S and T the action set A(x) includes the six primitives
we introduced in Section 5.2.2. For each couple of states x and x′, and primitive a,
the transition probability P (x, a, x′) is determined using a sampling based approach
leveraging the generative stochastic models we identified.

For given starting state x and action a we generate 500 trajectories using the
generative model associated with the stochastic primitive defined by a. Each sample
represents a trajectory obtained following the primitive starting from a point inside
x chosen using a uniform distribution. Using the geometrical model of the robot and
of the environment, each trajectory is then checked for collisions, similarly to what is
done in sampling based path planners such as PRMs and RRTs [88, 98].

If the trajectory is collision-free, then the end point of the trajectory identifies a
state x′ and this event is recorded to numerically estimate P (x, a, x′). If instead the
trajectory generates a collision, then this event contributes to the count to determine
the probability P (x, a,S) into the sink state(see figure 5.15). For the sink state S
we define a single action aS with P (S, aS , T) = 1, i.e., once the robot enters the
sink state S , at the next time step, it will deterministically move to the terminal
state T . Similarly, for the goal state(s) xG we also define just a single action aG with
P (xG, aG, T) = 1. These choices are consistent with the former work [35] and allow
to accurately estimate the probability of successfully completing a mission. To be
precise (see Theorem 1 in [35]), ρ(S, aS) is the failure probability, i.e. the probability
of not completing the task because of a collision with the environment.

To complete the CMDP definition, the remaining elements to introduce are the
costs c and ci and the initial probability distribution β. The primary cost c is defined
as c(xG, aG) = 1 and c(x, a) = 0 for all other state/action couples. We consider two
additional costs c1 and c2. Cost c1(x, a) is the time of executing primitive a and is
determined according to their speed (slow vs. fast). Note that with c1 defined as
the time to execute the maneuver, we are then in the hypotheses of Lemma 5.1, i.e.
there is a cost that is strictly positive for each (x, a) ∈ K. Regarding the second cost,
c2(S, aS) = 1 and c2(x, a) = 0 for all other state/action couples. As shown below, this
allows us to formulate the problem with a bound on the failure probability. Finally,
since we assumed the robot always starts at a preassigned location and orientation,
β(x) = 1 for the unique initial state and β(x′) = 0 for all other states.
Lemma 5.1. Let C be an instance of the CMDP planning problem in which at least
one of the ci costs is strictly positive in X ′, i.e., for at least one cost ci(x, a) > 0 for
each (x, a) ∈ K with x ∈ X ′. Then, every optimal policy for the CMDP planning
problem must be transient.
Proof. Without loss of generality let c1 be the strictly positive cost. Assume there
exist an optimal policy π∗ that is not transient. This means that the state remains
indefinitely in X ′ and, consequently, the constraint c1(π, β) ≤ B1 in the linear
program introduced in Theorem 3.1 cannot be satisfied. Therefore π∗ cannot be an
optimal policy because it does not solve the linear program.

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 62

Figure 5.15: For a given state x and maneuver a, multiple trajectories are generated
using the generative model. Each trajectory is then checked to see if it is collision
free or not. Collision free trajectories, like the red ones, are used to determine
the transition probabilities to states like x′, x′′ and like. Trajectories resulting in
a collision, like the blue one, are used to numerically estimate P (x, a,S), i.e., the
transition probability into the sink state S.

According to this model, the generic linear program given in Theorem 3.1 takes
now takes the form

max
ρ(x,a)

∑
(x,a)∈K′

ρ(x, a)c(x, a)

s.t.
∑

(x,a)∈K′

ρ(x, a)c1(x, a) ≤ Tf

∑
(x,a)∈K′

ρ(x, a)c2(x, a) ≤ Pf

∑
y∈X′

∑
u∈U(y)

ρ(x, a)(δx(y)− Pr(y, a, x)) = β(x)

∀x ∈ X ′

ρ(x, a) ≥ 0 ∀ρ(x, a) ∈ K ′,

where Tf is the temporal deadline to complete the task, and Pf is the bound on
the failure probability. To see that ∑(x,a)∈K′ ρ(x, a)c2(x, a) is, indeed, the failure
probability, it suffices to observe that the state enters S exactly once, i.e. when
it collides with an obstacle, and then, it deterministically moves to T . Therefore,∑

(x,a)∈K′ ρ(x, a)c2(x, a) is indeed the failure probability. The reader is referred to [35]
for a more detailed discussion of this derivation.

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 63

map Pf Tf Failures Time (sec)
Empty b 5% 50 4% 30.8542
Empty b1 10% 50 6% 32.7447

Maze a 5% 50 18% 43.2439
Maze a1 10% 50 16% 46.9762
Maze a2 10% 250 10% 43.7111

Two ways c 5% 50 4% 32.4043
Two ways d 5% 50 2% 46.8571

Table 5.1: Average performance over 50 runs.

5.5 Experimental Validation
In this section we present various experiments to validate theoretical findings of this
chapter. In the first set of experiments we consider the DuckieBot operating in the
four environments shown in Fig. 5.11 and 5.12. We considered the four maps discussed
earlier with different starting and goal locations, as well as different bounds Tf and
Pf for the time to complete the task and the success probability. Table 5.1 shows
the results. The parameters used to obtain the current results are not unique and
different combinations of values can reach the same or better performance. The study
of how to determine and combine these values efficiently will be out of the context of
this paper and will be the goal of future research.

We can see that in all scenarios there is good agreement between the theoretical
bounds for the failure probability, the time to completion, and the values observed
experimentally. The only outliers are the cases with the maze environment shown
in Fig. 5.11(b). In these cases the complexity of the environment makes it hard to
experimentally match the expected failure probability. The reason for this discrepancy
is due to the fact that in some cases, after executing a maneuver, the robot reaches a
state that, according to the model, had a 0 probability to be reached. Such a problem
could be mitigated by increasing the number of trajectories generated to assess the
transition probability.

To better understand the source of failures, Fig. 5.16 and Fig. 5.17 plots the
trajectories that resulted in a collision with the environment. These figures emphasize
the regions where the robot hit the obstacles during the experiments with red circles.
In all cases, this can be explained from the shape of the maneuvers used to move the
robot, i.e. maneuvers of the type CWF or CCWF. The policy tries to reach the goal
using fast maneuvers instead of slow and this causes the robot to hit the walls when
trying to turn on the top of the map in figure 5.16(a). For the second map, the maze,
the robot has more difficulties to reach the goal there are more collision areas, again,
mainly when turning.

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 64

This problem can be countered by increasing the temporal deadline and allowing
the robot to move using slower maneuvers. Indeed, as shown in Table 5.1 for the
maze a2 with a higher temporal deadline, we achieve, exactly, the expected Pf . We
can also observe that because the robot does not have the possibility to go perfectly
straight, it tries to find the path where turning is more suitable to arrive to the goal,
but this causes collisions with the walls of the map and other obstacles.

(a) (b)

Figure 5.16: Trajectories showing failures when going to the goal. Zones marked by
a red ellipse show where the trajectories collided with the obstacles. (a) Red lines
correspond to Maze a, and blue lines to Maze a1. (b) Red lines correspond to Empty
map b and blue lines to Empty b1.

In Fig. 5.17(a) and 5.17(b) we see how the same environment with two different
starting points and the same settings for Tf and Pf will lead to different failing
trajectories. It is interesting to note that for both cases the success rate is higher than
most of the other maps. Similarly, important is to see that, despite the possibility to
take the shortcut to reach the goal in Fig. 5.12(b) the robot decides to always take
the path that is safer with the wider corridor. Our expectations for these two maps
were confirmed by the experiments, and the policy shows awareness of the risk of
taking the narrowed path over the wide one.

All these results may vary if we change the shape of the maneuvers, for example,
including a PID controller to have more precise control over the robot’s movement.
With this controller we will avoid the amount of discrepancies we see for the same
maneuver under the same conditions. We did not include any controller, and instead
we had an speed wheel-control open loop system just to show the robustness of the
solution and the strength of a policy that used the stochastic primitives from the
stochastic model of the robot. Despite having a very noisy set of maneuvers, the
robot still manages to reach the goal and predict correctly for each state, the best
possible action.

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 65

(a) (b)

Figure 5.17: Trajectories showing failures when going to the goal. Zones marked by a
red ellipse show where the trajectories collided with the obstacles. (a) Two different
failing trajectories. (b) One failing trajectory.

A second set of experiments aims at assessing the sensitivity to the number of
samples used to derive the stochastic model (input), and the number of trajectories
generated by the model (output). In particular, it is of interest to determine how these
values influence the transition probabilities used in the CMDP. In the following, our
reference set of transition probabilities are those obtained with 200 data samples
(input) and 500 generated trajectories (output) because these are the values used in
the experiment described above.

In Table 5.2 we show the results obtained varying the size of the input, while
keeping the output size fixed at 500. In Table 5.3 we vary the size of the output while
keeping the size of the input fixed at 200. The resulting transition probabilities are
contrasted against the reference ones using the KL divergence to assess similarities
and differences between the distributions.

We can observe that in terms of KL divergence the sensitivity is modest.

5.6 Conclusions
We presented an integrated method combining theory and practice to compute and
execute motion policies by using motion primitives while being subject to multiple
constraints. We established how a differential robot can be modeled stochastically,
and the same model utilized to solve a multi-objective plan with constrained
Markov Decision Processes. The calculated policies for multiple scenarios prove that
the pipeline to estimate a functional policy with the real, low-cost robot, is possible
and successfully achieved. Through experiments and data analysis, we studied the
robustness of the solution and the general performance when varying different

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 66

map input size KL-div
Maze a 50 2.0630
Maze a 100 2.0851

Empty b 50 2.0548
Empty b 100 2.0797

Two ways c 50 2.0564
Two ways c 100 2.0805

Table 5.2: Comparison of transition probabilities P for different amount of data
samples taken from the real robot and generating 500 modeled samples.

map output KL-div
Empty b 50 2.1792
Empty b 250 2.0820
Maze a 50 2.1717
Maze a 250 2.0883

Two ways c 50 2.1673
Two ways c 250 2.0855

Table 5.3: Comparison of P distribution for different amount of modeled samples
taken from the stochastic model against the 500 modeled samples successfully used
in table 5.1

Chapter 5. Motion Planning Under Temporal Constraints with Stochastic Motion Primitives:
Theory and Practice 67

parameters that include a temporal deadline, a failure probability, the number of
samples used to generate the stochastic model and the number of realizations or
simulated trajectories.

For a future work it, would be interesting to study how multiple parameters can
vary and how these variations affect the final performance of the robot.

Chapter 6

Time-Constrained Exploration
Using Toposemantic Spatial
Models

6.1 Introduction
In this chapter we will go over one of our published papers called
”Time-Constrained Exploration Using Toposemantic Spatial Models: A
reproducible approach to Measurable Robotics” [159]. In the previous chapters we
studied the problem of rapid deployment, how a CMDP model can help to navigate
a known environment, and how to empirically extract the transition probabilities to
model the stochastic behavior of a robot. This chapter aims to expand the
application of CMDPs for mobile robots, and specifically, it deals with the case of
unknown environments. In the past, we assumed that we had an available map of
the place we wanted to navigate. In this chapter we drop this assumption to explore
and navigate a new unknown environment.

Exploration is a fundamental ability in mobile robotics and has been extensively
studied in the last three decades. With the current explosive growth in robotics
applications, interest in this area continues to grow, in particular by considering
extensions and special cases not studied in the past. As robots become more
integrated into our everyday activities in applications such as deliveries, home and
hospital care, logistics, and mobility, new paradigms emerge by exploiting novel
sensors and robot platforms. Consider a service robot that must deliver an item in
an unknown environment, say an office floor it has never entered before, and for
which it has no prior knowledge other than the fact that it is an office environment.
For example, the robot may have to deliver an envelope in the copy room, or put a
package on the desk in Mr. Chairman’s office. Not having preliminary knowledge
about where these places are located, the robot should, therefore, explore the
environment until it recognizes it has reached the desired place. At that point, it
shall deposit the goods it is supposed to deliver, travel its way back to the entrance,

68

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 69

and leave. Exploration is an integral component of this task, and if the robot is
doing this job as part of a series of deliveries, it is important to complete the task
quickly to increase the number of tasks completed in a set amount of time.

Exploration, in its most studied form, aims at building a spatial model of the
environment it operates in. Central to the exploration task is the decision process
determining “where to move next”. A classic early solution to this problem is frontier-
based exploration [182], an approach inherently tied to using occupancy grid maps to
represent space. In this case, a frontier is defined as the boundary between explored
and unexplored space, and the intuition is that by moving towards large frontiers, a
robot will manage to complete its task more quickly by discovering more unknown
areas. Other possible approaches are based on random exploration, or variations of
the frontier based approach. For example, distance to frontiers may be considered to
break ties between equally large frontiers. In these approaches the temporal dimension
is not explicitly considered. That is to say, that while heuristics are introduced to
expedite the exploration process, time is not an explicit metric or constraint.

In this work, we deviate from existing literature in robot exploration by considering
three modifications to the basic setting.

• First, we assume the robot does not build a metric model of the environment,
like an occupancy grid map, but rather a topological model with semantic
annotations. This is called Oriented Topological Semantic Map (OTSM). The
characteristics of these maps, how they are built, and used for navigation are
presented in section 6.3. There, we formally defined OTSM and set the rules
for creating them.

• Second, the objective of the robot is not to build a spatial model per se, but
rather to explore the unknown environment until a target location is discovered.
The model is functional to this objective, e.g., to avoid revisiting areas already
explored. To this end, we assume that the target location is provided in a
format compatible with the sensorial capabilities of the robot, so that it can
detect when the desired place has been reached.

• Finally, we introduce a temporal constraint, i.e., a time T such that the
exploration task is considered not solved if after time T the robot has still not
reached the location it is looking for1.

In this chapter we consider the topic of efficient exploration using Oriented
Topological Semantic Maps (OTSM). Efficient, in this case, means that robots are
expected to complete their assigned task within a given temporal deadline. To be
specific, the goal is to deploy a robot in an unknown environment with the objective
of reaching a target location by a given time. For this task to make sense, the robot

1One could object that the task we are describing is in fact search, because the robot is looking
for a specific location. However, our problem is more akin to exploration because the robot builds
a spatial model to avoid revisiting already visited areas and to leave the area once the task is
completed. Ultimately, however, it is just a matter of agreeing on the terminology.

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 70

has to be able to recognize it has reached the desired place. For example, a delivery
robot may be tasked with delivering, within two minutes, a package to the copy
room of a previously unvisited office floor. The exploration task is unsuccessful if
the robot either collides with the environment or does not reach the desired location
by the assigned deadline. To accomplish this task, the robot does not build a metric
map, but rather incrementally builds a topological model where the environment is
represented by a graph.

We opt for topological maps for various reasons. First, there is evidence that
humans make use of topological models for spatial awareness and navigation [93].
By developing robots using comparable models, there is the expectation that more
intuitive human-robot interfaces will be possible. Moreover, as robots rely less and
less on sensors providing accurate metric information (e.g., laser range finders), there
is an interest in moving away from representations such as occupancy grid maps that
are tightly integrated with range finders. Finally, topological maps are more compact
and less memory intensive.

To introduce temporal deadlines in the exploration strategies, we rely on planning
algorithms using CMPDs to consider multiple objectives at once. This approach
allows to balance, in a principled way, the unavoidable trade-off between efficiency
and safety, whereby a robot moving faster to quickly reach a location is also more
likely to incur in motion inaccuracies and collisions. The planner produces a plan
by composing maneuvers from a preassigned set of motion primitives characterized
by different velocity of execution as well as different success probabilities. Available
maneuvers are of the type, traverse corridor slowly, or enter door fast, and the like.
In an effort to meet the assigned deadline, the exploration strategies we propose rely
on more aggressive maneuvering as the temporal deadline approaches. To the best of
our knowledge, this is the first study combining topological exploration with planning
under temporal constraints. As the focus of this algorithm is on the algorithmic side,
proposed strategies are only studied in simulation, but in the following chapter we
transition onto a mobile platform.

The objective of this chapter is twofold. First, we revisit the classic exploration
problem, introducing temporal constraints in the task and embracing a
toposemantic spatial representation that includes no metric attribute. To assess the
strengths and weaknesses of the various exploration methods abstracting from the
underlying technical implementation, we perform a set of massive simulations in the
Robot Operating System (ROS) using its Gazebo simulation environment. This
simulation-based approach leads to the second objective of this contribution,
namely, presenting a set of findings that are reproducible by a third party. In light
of the increasing attention measurable robotics is attracting, this article represents a
first attempt to present a reproducible study based on Gazebo.

The original contributions of this chapter are the following:

• In section 6.3 we present a new spatial model dubbed Oriented Topological
Semantic Map (OTSM) that extends classic topological maps in a way that is
amenable to implementation by robots with minimal sensor payload;

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 71

• In section 6.2 we discuss the creation of the new standard for robotics papers
as Reproducible Articles or R-articles.

• We integrate the proposed spatial model with our recently developed planning
method using CMDPs to assign actionable temporal deadlines to the robot;

• In section 6.5 we propose and experimentally compare multiple exploration
strategies operating on semantic topological oriented maps. More than 3000
runs were executed to assess the relative strength of the proposed methods.

• We present a new framework to enable other researchers to reproduce our study
based on ROS.

6.2 Replicability
One of the main contributions of this chapter is in ensuring complete replicability of
the proposed methods. In [149] a set of guidelines for good experimental
methodologies in robotics is given. According to such guidelines, this work should
be characterized as “experimental” and shall be furthermore classified as research in
“Autonomy/Cognitive Tasks”. The experimental part of this paper is based on
ROS/Gazebo and is therefore particularly suited for being replicated by a third
party. Indeed, replicability would be much more challenging if results were obtained
on a physical P3AT robot, because of the countless variables influencing the final
results. While the robotics community is becoming increasingly aware of the
necessity to ensure repeatability in robotics research, “best practices” are still being
defined, and standard tools to promote code replicability (e.g., Code Ocean) are not
necessarily best suited or ready for all robotics research. This is particularly
relevant when considering an end-to-end system relying on multiple external
libraries to perform heterogenous operations like mathematical computation,
navigation, and more.

Considering these challenges, we have provided an image for a virtual Linux
machine including our code, all libraries necessary to run it, and a set of scripts to
rerun all of the experiments to produce the results presented in this article in the
supplementary materials section on IEEE Xplore: Download Sources Here. 2 .

The virtual machine image is based on Virtual-Box (www.virtualbox.org), a free
software available for a variety of operating systems, including Windows, OsX, and
Linux. In addition, we have also developed a technical document with step-by-step
instructions to download and boot the virtual image, and run all experiments
described in this paper.

As noted in [135], “A study is reproducible if you can take the original data
and the computer code used to analyze the data and reproduce all of the numerical

2Available on IEEE xplore: https://ieee-dataport.org/open-access/
time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach

https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducibleapproach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 72

findings from the study.” Accordingly, the resources we provide in the following aim
at making our study reproducible. With these premises, the experimental process
that led to the results that we present is fully replicable by a third party. It is
however, worthwhile to mention that a third-party will not necessarily obtain the
same numerical outcomes because of two sources of randomness. First, the algorithms
themselves feature various steps relying on randomized choices, e.g., to break ties.
Second, the simulation environment is influenced by the underlying platform and will
therefore not produce exactly the same results. The best one can expect is that results
average over a very large number of trials will converge to a steady value. To the best
of our knowledge, this is the first example of a fully replicable study of exploration
algorithms.

6.3 Oriented Topological Semantic Maps
Oriented Topological Semantic Maps (OTSMs) can be understood as an extension to
the classic definition of topological maps augmented with semantic and orientation
information. As we studied in section 2.3, there are multiple approaches to create
maps that represent an environment, among them, only few can be used in run-
time with a CMDP due to the fact that solving a linear program can be very time-
consuming for a high number of optimization variables ρ(x, a). OTSMs enable the
use of CMDP in run-time for navigation of an environment.

Topological maps model space as a graph G = (V,E) with vertices representing
places and edges modeling the ability to move between the places represented by the
corresponding vertices. A “pure”topological map does not include any metric
information, like for example the distance between two adjacent vertices, although
various extensions adding this or comparable attributes have been proposed. Our
model builds upon two assumptions. First, indoor environments are normally
subdivided into corridors and rooms arranged along orthogonal directions. This
observation was already made and exploited in [143]. Second, we assume that the
robot is equipped with a device providing absolute orientation. Such sensor will, in
the following, be generically called compass and nowadays there is a variety of
inexpensive devices that can implement this functionality. Starting from these two
hypotheses, without loss of generality, we assume that the walls and corridors of the
building that the robot is exploring are arranged along the four cardinal directions,
that will be in the following abbreviated as N (north), S (south), E (east), and W
(west). An oriented topological map exploits these assumptions to define the
relations ”to the right of” and ”to the left of” between vertices in the graph.
Vertices in a graph may have different degrees:

• Degree 1: rooms, or corridor dead ends.

• Degree 2: corridors or two aligned ways.

• Degree 3: T junction or three way.

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 73

• Degree 4: Four way intersection.

Thanks to the compass, each edge can then be labeled as E-W or N-S, depending
on the direction faced by the robot while moving along the edge. Accordingly, two
adjacent vertices are said to be along the N-S (north-south) direction if the edge
connecting them has the N-S label and we similarly define adjacent vertices along
the E-W direction. Throughout the remainder of this work we make the following
assumption. To define the relationships ”to the right/left of” for elements aligned
along the N-S direction, we assume that the robot faces W, whereas for elements
along the E-W direction we assume the robot faces N. Figure 6.1 illustrates this
approach. The three vertices on the left are along the E-W direction. Based on our
assumption that the robot points north to define left/right relationships, vertex c1a
is to the left of c1b and c1b is to the right of c1a. On the right, c2b is on the right of
c2c and on the left of c2a.

Figure 6.1: On the left: three adjacent vertices along the E-W direction. c1a is on
the left of c1b, and c1c is on the right of c1b. On the right: three vertices along the
N-S direction with c2a on the right of c2b and c2c on the left of c2b.

For more complex topologies we can also create OTSMs, for example, when two
corridors meet on a corner we can still use our convention for the direction to assign
it to this vertex, however because some of the vertices are common for both corridors,

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 74

only one label will be given. Each vertex will have only one semantic label that will
describe, in human language, the location, thus the fact that one vertex is shared by
two corridors will not affect the navigation. Figure 6.2 presents this case for three
corridors c1, c2, and c3. where a OTSM can be defined.

Figure 6.2: Three corridors are connected. For corridor 1 we have two adjacent
vertices along the E-W direction. c1a is on the left of c1b. For corridor 2 we have
two adjacent vertices along the N-S direction with c2a on the right of c2b. The third
corridor have two adjacent vertices along the E-W direction. c3a is on the left of c3b.
c3b is on the left of c2b, and c2a is on the left of c1b

Because buildings have more than corridors, and we are interested in using the
robot to find specific rooms or offices, we show in figure 6.3 the case where two

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 75

corridors are common to one room. Although we know this case is very hypothetical,
it serves to illustrate the flexibility of OTSMs for complicated and unusual topologies.
The room again has only one label, but in the same way as two corridors, the reference
to indicate the direction where a corridor is varies. The edge that connects Room 1
to c1 will have a direction North, and the edge that connects Room 1 to c2 will have
direction West. If we want to move from the room to the corridor c2 we will turn
right, and the robot will be pointing North. To go to corridor c1, we will point the
robot West and we will turn Right. Both corridors are on the right of the room but
the reference direction is the key to know where to go correctly.

Figure 6.3: Two corridors and one room in the middle. For corridor 1 we have two
adjacent vertices along the E-W direction. c1a is on the left of c1b. For corridor 2 we
have two adjacent vertices along the N-S direction with c2a on the right of c2b. The
Room 1 is on the left of c2b and on the left of c1b

6.3.1 OTSM Formulation
The following definition formalizes the structure of a map.

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 76

A semantic topological oriented map is defined as M = (V,E,L,D,S) where:

• (V,E) are the vertices and edges of a directed graph.

• L : V → L assigns a unique semantic label to each vertex.

• D : E → {E-W,N-S} is a function assigning a direction to each edge. Note that
to the same direction we can associate two orientations, e.g., an edge along the
N-S direction can be traversed from North to South or from South to North.

• S : E → {L,R} is a function assigning a label L (to the left of) or R (to the
right of) to each edge.

• If e = (vi, vj) ∈ E is an edge from vi to vj and S(e) = L, then e′ = (vj, vi) ∈ E
and S(e′) = R. Likewise, e(vi, vj) ∈ E ∧S(e) = R⇒ e′ = (vj, vi) ∈ E ∧S(e′) =
R.

• For each couple of adjacent vertices, D(vi, vj) = D(vj, vj).

The last two conditions establish two consistency constraints. First, if it is possible
to go from vi to vj along one direction (say N-S), then it is possible to go from vj to
vi along the same direction but opposite orientation (say S-N). Second, if there is an
edge from vi to vj indicating that vj is to the left of vi, then there must also exist the
opposite edge from vj to vi indicating that vi is to the right of vj.

To account for the fact that a map M is incrementally expanded during the
exploration stage, we introduce a special vertex v∅. Such a vertex represents an
unknown place and is introduced when the robot reaches a place like a four way
intersection represented by a vertex v from which there are outgoing edges towards
still to be explored locations. These edges are, therefore, between the current vertex
v and v∅ and can be considered as unexplored by the exploration algorithm. These
edges are also subject to the constraints given above.

One last comment is in order regarding the labeling functions L,S and D.
Assigning a label D to an edge is simple because of the compass assumption.
Likewise, as we will show in the following, while incrementally building a map M,
we will ensure that S labels are assigned to the edges consistently with the
constraints we introduced. For the semantic label L assigned to vertices, we make
two assumptions supported by contemporary algorithms for machine learning and
computer vision (see e.g. [52] and [109]). First, it is possible to train an image
classifier capable of distinguishing a room from a corridor. If the robot is in a
corridor, the image processing algorithm can furthermore, determine if the robot is
facing an intersection (three way or four way), or a ninety degree turn (left or
right). Second, the classic place revisiting problem typical of SLAM can be solved,
i.e., through computer vision the robot is capable of determining if it is visiting a
place for the first time, or of it is revisiting a formerly explored area (and which).
The algorithms providing L,S and D will be in the following, indicated as Labeling
System (LS) and the Intersection Detection System (IDS) respectively. One will

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 77

provide the labels and the second, the edges for each vertex, but both work as one
every time for each vertex. Figure 6.4 shows how an oriented topological semantic
map can be used to represent the interior of a building. In this figure we can
observe the edges with two different colors, that symbolizes the direction (left/right)
to reach the nodes, and we see how each vertex correspond to a room or an
intersection between rooms and corridors. The topology is rather simplistic for
orthogonal environments like office buildings, but it is still an open question to
know how OTSMs can be adapted to other topologies.

Figure 6.4: Oriented Topological Semantic Map - OTSM. Vertices with a label Rx are
rooms, while corridors have labels of the type Cx. Edges with a R label are purple,
while edges with a L label are green.

As an example of OTSMs, figure 6.5 shows three different floors from the
University of California Merced. From the CAD file we manually created the OTSM

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 78

as a way to exemplify how they can look in different real scenarios.

6.3.2 Incremental Map Construction, Navigation, and
Exploration

We now describe how an oriented topological semantic mapM can be incrementally
built and used for navigation by a robot exploring an unknown indoor environment
while attempting to reach a destination within a given deadline. Here we provide
the way how we include CMDPs with OTSMs. The input provided to the robot
consists of two elements: a goal location that can be recognized by the LS module
(indicated as G in the following), and a global temporal deadline T . Here we assume
that formerly outlined hypotheses regarding the availability of a compass and the
orthogonal structure of the environment hold. The LS module determines when a
robot has reached a vertex (either new or formerly visited) and the IDS determines
how many outgoing edges are emanating from the vertex. From our former
assumptions, this is a number between one and four. The createNewNode
(sketched in algorithm 6.2) is called every time LS identifies a corridor intersection
or a room that was not formerly visited.

Since the robot starts with an initially empty map, the initialization process
sketched in Algorithm 6.1 is preliminarily run to bootstrap the exploration and
mapping process. The robot randomly moves around until it has K vertices in the
graph (in our following experiments, K is fixed to 3).

1: Algorithm InitializeGraph()
2: M← empty map
3: Get vertex v and edges from LS and IDS
4: Insert v, v∅ in V
5: Insert edges between v, v∅ in E
6: while size of |V | < K do
7: Select random edge outgoing from current vertex
8: follow edge until LS return new vertex v
9: createNewNode(v, edges)

10: end while
11: return M

Algorithm 6.1: Map Initialization

The function createNewNode(v′, edges) takes, as parameters, the new vertex v′

to be added and the set of edges emanating from it, and it updates the set of vertices
and edges assigning the appropriate labels. Unvisited edges, i.e., edges towards parts
of the graph still to be explored, are of the type (v′, v∅), to indicate they lead to
unexplored areas. In the function, labels for vertices and edges are set to satisfy the
constraints listed in subsection 6.3.1.

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 79

1st Floor

2ndF loor 3rdF loor

Figure 6.5: Examples of OTSM taken from CAD designs from the University of
California Merced.

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 80

1: Algorithm createNewNode(v′, edges)
2: Let v be the vertex the robot came from
3: V ← V ∪ {v′}
4: E ← E ∪ {(v, v′), (v′, v)} using IDS.
5: Set L(v′) as per LS (room or corridor)
6: Set D(v′, v) and D(v′, v) as per compass
7: Set S(v′, v) and S(v′, v) as per compass
8: for all unvisited outgoing edges from v do
9: Add edges of type (v′, v∅) and set labels S,D

10: end for
Algorithm 6.2: Adding a new node to the map

The algorithm to navigate from the current vertex v to an assigned target vertex
v′ is sketched in algorithm 6.3. The algorithm takes two parameters, i.e., v′ and a
temporal deadline td. Later on we discuss how these are selected. To navigate to the
vertex, a CMDP is built considering the given temporal deadline and a probability
of failure Pf (assumed constant in the following). The temporal deadline and the
probability of failure are the additional costs to be bounded in the CMDP formulation.
The CMDP is then solved, producing an optimal policy π∗ that is followed until a
termination condition occurs. At each step, the policy π∗ is used to determine the
primitive a to be executed from the current vertex. Termination may happen because
the global temporal deadline expires, and in such a case the robot reports failure
because it has failed its overall task. Alternatively, the robot may report a local
success when it reaches the given vertex v′ but still has not reached the global target
vertex G, or global success if it reaches it. It is at this stage that the orientation
in the map becomes relevant because it will influence which actions (maneuvers) are
selected by the planner.

Finally, in algorithm 6.4, we show how the overall exploration task is solved.
After creating the initial mapM, the robot enters a loop that will be continued until
either the global temporal deadline T expires, or the robot succeeds in reaching G.
At each iteration, the function ExplorationNext, returns the vertex v to move to
and a temporal deadline td, i.e., how much time the robot should spend to reach
v. To determine these two quantities, ExplorationNext needs the current map, as
well as the variable time, indicating how much time passed since the exploration
task started. As time grows, more stringent temporal deadlines td will be returned.
Details about how vertices and deadlines are computed are discussed in the next
section. The robot then attempts to navigate to the assigned vertex v and once
there, it randomly picks an outgoing edge and follows it, until LS indicates that a
new vertex has been reached. The maneuver chosen to traverse the edge e depends
on the relative orientation between the edge and the robot.

In the next section we will present how we used all the previous algorithms to
explore an office building using several exploration strategies and exploiting the

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 81

1: Algorithm NavigateToV ertex(v, td)
2: CMDP ← BuildCMDP (M, v, td, Pf)
3: π∗ ← Solve(CMDP)
4: while time < T do
5: vc ← current vertex
6: if vc = G then
7: return Global Success
8: end if
9: if vc = v then

10: return Local Success
11: end if
12: a← π∗(vc)
13: execute a
14: end while
15: return Failure

Algorithm 6.3: Navigation Algorithm

1: Algorithm ExplorationTask(T ,G)
2: M← InitializeGraph()
3: while time < T do
4: v, td ← ExplorationNext(M, time)
5: flag ← NavigateToV ertex(v, tf)
6: if flag = Local Success then
7: Pick random edge e out of v
8: follow e
9: CreateNewNode(v, edges)

10: else
11: return flag
12: end if
13: end while
14: return Failure

Algorithm 6.4: Global Exploration Algorithm

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 82

information provided by OTSMs.

6.4 Exploration Algorithms
As we mentioned, OTSMs contain different type of information, that is available for
the robot to exploit in different ways. We can think about using only the topology, or
only the semantics, or a combination of both. In this section we present five different
strategies that can be used to guide the robot through its exploration task. Each
of these strategies represents a different way to select the vertex v returned by the
function ExplorationNext used in algorithm 6.4. At the end of the section, we also
discuss how we set the temporal deadline.

6.4.1 Random Strategy Exploration
The random exploration strategy is our baseline approach. The function returns a
random vertex among all vertices with one or more outgoing unvisited edges, i.e.,
edges towards v∅. If there is more than one vertex with unvisited edges, a uniform
probability distribution is used to make a choice. It is easy to show that this strategy
will eventually explore the whole environment, provided that the robot does not
terminate earlier due to a collision. This exploration approach is the topological
equivalent of the classic random exploration when using metric maps or other spatial
models.

For this exploration method, after we selected a random node with unvisited edges,
we set this node as a localtarget, set a temporal deadline and solve the CMDP to
obtain the policy to reach it. After navigating and arriving to the localtarget the
robot can choose, again, randomly where to go from all the unvisited edges of the
current node. This strategy, although very inefficient, will assure exploration of the
whole environment or until finding the GlobalTarget.

6.4.2 Topological Frontier
Topological frontier is the analogue of the well-known frontier based exploration
algorithm [183]. In frontier based exploration, frontiers are defined as the regions on
the boundary between explored and unexplored space, and the robot then moves to
one frontier to expand the explored space. When multiple frontiers are present,
various selection criteria can be used to make a choice. In our topological domain,
the boundary between known and unknown parts of the environment are identified
by unexplored edges. Accordingly, the topological frontier algorithm sorts all nodes
by the number of outgoing unexplored edges, and it randomly selects one among
those with the highest number of outgoing edges. In this latter case a uniform
distribution among all candidates is used. This technique ensures that the robot
always moves towards the largest frontier.

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 83

6.4.3 Topological Frontier with Normalized Distances
The next strategy also translates in the topological domain another of the features of
basic frontier exploration, i.e., when multiple frontiers are present, the cost to move to
a frontier is also factored in when selecting where to go. In the topological case the cost
to move is set to the number of edges in the path connecting the current vertex to a
target location. The rationale is to choose a closer vertex when one or more equivalent
ones are present. Since we need to combine together heterogeneous quantities (number
of outgoing unexplored edges and distance), we use a linear combination of normalized
quantities (see e.g., [32]) to assign a value to each vertex in the map, and we then
select the vertex maximizing this metric. To be specific, let V ⊂ V be the set of
vertices with one or more outgoing unexplored edge. For each vertex v ∈ V we
compute the following quantity

S(v) = γ
deg(v)

maxv′∈V deg(v′) − (1− γ) d(v)
maxv′∈V d(v′) (6.1)

where deg(v) is the number of outgoing unexplored edges and d(v) is the distance
in the topological map, defined as the number of edges in the shortest path in the
graph. The function then returns the node in V with the highest value for S(v) with
ties arbitrarily broken, if any. In the experiments presented in the following section
we set γ = 0.5. This approach then tries to drive the robot to frontiers that are large
and near.

6.4.4 Semantic: Explore Corridors First
The first semantic exploration strategy relies on the labels attributed to vertices in the
graph. In particular, it exploits the assumption that we can distinguish between rooms
and corridors. Inspired by the work by Quattrini et al. [143], the robot prioritizes
corridors when selecting where to go next. That is to say that if among the vertices
with unexplored outgoing edges there are both corridors and rooms, the robot always
selects corridors first. Rooms are selected only when no coorridor vertices can be
selected.

6.4.5 Semantic: Complete Corridors First
The last exploration strategy is somewhat complementary to the previous one. This
time, before moving to a different corridor, the robot finishes exploring the corridor it
is located in. To accomplish this, the semantic label L of a vertex and the directions
of its adjacent edges are considered. Here, a corridor is defined as a path along the
graph G = (V,E) such that all vertices are labeled as corridor vertices by the function
L, and all edges connecting the vertices have the same label D, i.e., they are all along
the N-S or E-W direction. For example, in figure 3.1 c1a−c1b−c1c−c1d is a corridor
along the E-W direction that cannot be further extended because other vertices of
type corridor can only be reached traversing edges along the N-S direction. The robot

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 84

enters a new corridor only once the previous corridor can no longer be extended. This
approach further capitalizes one aspect in algorithm 6.3, i.e., once a vertex is reached,
a random outgoing edge is picked and traversed, too. This has the effect of exploring
rooms connected to the corridor while this is being explored. In this case, too, rooms
are selected when all corridor vertices have been explored already.

6.5 Experimental Validation

6.5.1 Setup
As a preliminary step towards evaluating strengths and weaknesses of the proposed
approach, we perform an extensive set of tests using ROS and the associated Gazebo
simulation environment. The advantage of this initial simulation study is that it
allows us to easily perform hundreds of runs with moderate effort. This will provide
preliminary insights about weaknesses and strengths of the approach to then perform
more meaningful tests on the real platform. Our plan to migrate our code to a real
robotic platform is sketched in the final section. The simulated environment is a
faithful replica of one of the engineering buildings of the University of California,
Merced, and its model in Gazebo was built from its architectural CAD design (see
Figure 6.6).

Figure 6.6: Engineering building at the University of California Merced.

The simulated robot is a Pioneer 3AT with limited sensing capabilities

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 85

compatible with our former assumptions. In particular, the robot is equipped with
only a compass, a laser range finder to avoid obstacles, and a logical camera to
detect features in the environment. The logical camera is a ROS plugin that returns
the position and orientation of any object in its cone of vision with respect to the
robot.3 The logical camera abstracts the implementation of the IDS system based
on computer vision. This is obtained by embedding unique features in the
environment that can be detected by the camera (these are displayed as green and
blue tags in Fig. 6.6). It shall be noted that even though the simulated robot is
equipped with a laser range finder, it does not use it to extract any sort of metric
information, and it is only used for obstacle avoidance when moving along corridors
or entering doors. In fact this could be replaced by other sensors providing proximal
information to avoid collisions such as sonars or depth-sensing cameras. To test our
navigation system under realistic conditions, a 25% error is added to linear and
angular velocity commands, and a 5% error is added to orientation readings.

6.5.2 Maneuvers
To navigate the environment, the action set A for the CMPD includes six maneuvers.
Specifically, there are three elementary motions, and each can be executed fast or
slow. The first maneuver is go through a corridor. This maneuver moves the robot
forward (i.e., keeping the same orientation) while trying to keep an equal distance
from the walls on either side. The second maneuver is go through door on the right.
This will turn the robot to its right (relative to its current location and orientation)
and move through a door, as identified by the IDS system. The third maneuver is
the symmetric go through door on the left.

To calculate the transition probabilities for each of the six maneuvers, we ran a
series of experiments in which the maneuvers are repeated 500 times while we varied
the initial position and orientation. The robot had to go either through a corridor or
pass through a door on the left/right. For each trial we recorded the time spent, as
well as if the robot was successful or not, with failure defined as a collision with the
wall. This gave us the transition probability value to be used with the CMDP for
that specific pair maneuver/speed. The variation of position was ± 8 meters and for
the orientation of 30 degrees for the initial pose of the robot.

6.5.3 Calculating the Failure and Temporal deadline
Every time the robot takes an action, it will use a certain amount of time until it
reaches the next node and this is the time is saved and stored in the structure that
contains the semantic topological map. This data structure records the discovered
nodes, the visited and unvisited edges of each node, the direction where the edges are
located (N,S,W,E), the connected nodes to each edge and finally, the times measured
in seconds to reach that specific node from that specific edge. We calculate the

3http://wiki.ros.org/ariac/Tutorials/SensorInterface

http://wiki.ros.org/ariac/Tutorials/SensorInterface

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 86

number of nodes between the starting location and the local target using the Dijkstra’s
algorithm, and with this number, we define the number of actions that are necessary
to reach that local target. Because we know that the action was always a slow one
during the exploration, we can assume that, for example, if there are four nodes in a
path to reach a local target, we will spend a maximum of four slow actions to reach
the target. At most, the CMDP will receive a temporal deadline four times the time
of a slowest action.

As mentioned, the navigation algorithm uses a CMDP to find the optimal path
while balancing two constraints. For the CMDP we need to define a failure state
when the robot fails to reach the target. Two cases are considered as a failure. First
we have the case when the robot collides with an obstacle. This is considered an
immediate failure and during the experiments it will be counted as such. The second
case is when a temporal deadline is not respected locally or globally. We define the
global temporal deadline experimentally: the robot will use a random exploration
strategy, with the lowest speed for each action, to define the baseline of how much
time the robot takes to reach the target. The actions, on the other hand are defined
as “go through corridor” and “cross a door”, each one with two different speeds and
two different failure probabilities. The time spent to go from one node to another
is variable, depending on the physical distance and the speed. We executed each
action 50 times to estimate the average time used to move between nodes. The time
we obtained, measured in seconds, for the “fast go through corridor” was 4.8378, for
“fast cross a door” was 13.8409, for “slow go through corridor” 9.1266 and finally for
“slow cross a door” was 36.6746.

When the global temporal deadline is above 80%, the local temporal deadline
is the maximum, which for our example, it would be four times the cost of the
slowest action (4x36.6746s). If the global temporal deadline goes lower than 80%,
but higher than 50%, then we will use 50% of the maxmimum temporal deadline as
a local temporal deadline. If the global time goes lower than 50%, then we will use
30% of the maxmimum temporal deadline as local temporal deadline for the CMDP.
The variation of local temporal deadline will force the planner to chose between fast
and more risky actions or slow and safer actions. The safety of each action will
be calculated with the failure probability determined by the speed of such action.
Because we set a very low failure probability constraint of 1%, it is possible that
for the minimum temporal deadline, and using the fastest actions a policy cannot be
calculated and therefore the robot will report a failed mission. If, by the contrary, the
policy is possible, then the planner will return a solution and the robot will execute the
solution. Each time the robot executes an action from the policy the time is measured
again in seconds and discounted from the established global temporal deadline at the
beginning, which will affect the decisions and planning of the next local target.

In summary, one possible way to pick the temporal deadline assigned to reach
a given vertex is the following: The rationale is that as the global deadline T is
approaching, the robot should speedup. While there are evidently countless ways
to implement this, we currently opt for a very simple schedule. Once a vertex v is

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 87

selected, we define a preliminary deadline B equal to the number of edges between
the current vertex vc and v multiplied by a constant. Then, if the time available to
complete the task is larger than 0.8T , we set td = B. If instead the time to complete
the task is between 0.5T and 0.8T we set td = 0.5B. Finally, if the time to complete
the task is less than 0.5T , we set td = 0.3B.

6.5.4 Software Architecture
We used ROS Kinetic to create a modular software easily adaptable, exportable and
executable for any device that can run ROS Kinetic. The ROS nodes were created in
C++ and a few in python to show the adaptability of the platform. The map building
mechanism and the simulation were all developed with ROS Kinetic and Gazebo 7.0.
A general idea of how the software is structured is shown on the Figure 6.7. Five
general blocks communicate to test different exploration strategies. The first block
corresponds to the robot itself. This is a pioneer 3AT robot. The robot is equipped
with 3 sensors: a LIDAR, a logical camera, which identifies objects in the simulated
environment, and a compass to get the global orientation. To exchange information,
we used a folder where text files will be shared by the map manager and the CMDP
solver. The topological map is represented as an adjacency matrix with all its nodes
and edges, and the solution for the CMDP will be saved and used by the map manager
to control the robot based on the calculated policy. Once a node is added to the map,
and the chosen exploration strategy decides the next local target, this information is
passed through the shared folder to the CMDP solver to obtain the optimal solution
while respecting the temporal and failure probability constraints. Then, the CMDP
solver will calculate and generate a policy that will guide the robot towards the local
target.

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 88

Figure 6.7: Software Architecture.

6.6 Results
We here compare the five exploration strategies on an exploration task where we
vary the complexity of the navigation task, defined as the distance between the robot
start location and the target location, and the assigned temporal deadline. The
environment is shown in figure 6.8, where the goal location G is the room marked
with the green star, whereas the three different places marked A,B and C identify
the different start points considered. Throughout the simulation, the probability of
failure when computing the CMDP policy was set to 0.01. For each starting point
we consider four different temporal deadlines, and we then execute 500 trials. A
trial is considered a failure if the robot has not reached the target location by the
given deadline, or collides with the environment while navigating. Overall, 3000
independent tests were executed to evaluate the five exploration strategies.

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 89

Figure 6.8: Three starting points (A, B, C) and one target

Table 6.9 summarizes the performance for the five exploration methods we
propose. The columns give the starting location, temporal deadline expressed in
seconds, time spent, and success rate for each type of exploration: Random,
Frontier, Normalized Frontier, Semantic Strategy: Explore Corridors First, and
Semantic Strategy: Complete Corridors First. For each combination of start
location and temporal deadline, we provide the success rate and the average time
spent to reach the target. The average time is given for successful runs only,
because unsuccessful runs may result from exceeding the temporal deadline or
because of collisions with the environment; therefore it would not be meaningful to
average over unsuccessful runs, too. Instead, Table 6.10 analyzes, in greater detail,
the causes of the failures for each strategy.

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 90

Figure 6.9: The performance of the five exploration strategies.

Figure 6.10: An analysis of the failures for the five exploration strategies.

6.6.1 Random Strategy Exploration
For the first experiment, we varied the temporal deadline and we kept the failure
probability constraint to 1% because, at this time, we only want to establish the base
line to know the success of our task without affecting the speed of the maneuvers.
Because the random strategy is very inefficient, the robot has to travel, sometimes
multiples times, through the same corridor when going to the chosen random node
that was selected as a local target. This makes the robot more prone to fail and hit

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 91

a wall because more maneuvers implies more risk of collisions and mistakes. After 50
tries from each starting point, we obtain the highest success rate of 96% for point A,
54% for point B, and 14% for point C. This supports our initial idea that the robot
has more chances to fail when it is located far from the target. We can also observe
how the reduction of the temporal deadline has a negative impact in the success rate.

6.6.2 Topological Frontier Exploration
For the topological frontier we observe that, in general, we can always reach the global
target despite the starting point. These results differ those from the random strategy
when the robot had low success reaching the goal with low temporal deadlines and
long distances to the target.

6.6.3 Topological Frontier with Normalized Distances
Exploration

The normalized topological frontier did not improved the previous results, and even
when we can reach the target from point C, we have a low rate of success when the
target is close to the starting point A. In general this strategy seems only adequate
when the target is far from the starting point C.

6.6.4 Semantic Strategy Exploration
Unsurprisingly, the random strategy is the most effective when starting from
location A, except when the shortest deadline is enforced. This is somewhat
expected, given that other strategies tend, instead, to expand the map in a
principled way that may push them far from the target location that is relatively
close to A. However, in the other cases this strategy is less effective, and performs
very poorly for the most challenging case C. All things considered, the topological
frontier with normalized distances appears to be most effective when the temporal
deadline is not too demanding. However, as the deadline becomes more stringent,
its advantage seems to vanish and it becomes more or less comparable to the
topological frontier.

The semantic strategies, on the contrary, appear to have a performance that is
less dependent on the start location. None of the two clearly outperforms the other,
but the second one seems, in general, better than the first. It remains an interesting
question whether by using additional semantic information their performance could
be improved. For example, having a prior about typical spatial relationships (e.g.,
receptionist desks are typically near the entrance), could lead to increased success.

One final comment should be made regarding the success rates, as they may appear
to be on the low end. This is due to the fact that the temporal deadlines are strict,
and this boosts the failure rates for all of the algorithms. A strict temporal deadline is
not only harder to meet but also forces the CMDP planner to utilize more aggressive

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 92

maneuvers, thus possibly also increasing the number of failures due to collisions with
the environment.

To facilitate the comparison, the results are also visually compared in Figures
6.11 and 6.12 . Unsurprisingly, the random strategy is the most effective when
starting from location A, except when the shortest deadline is enforced. This is
somewhat expected, given that other strategies tend instead to expand the map in a
principled way that may push them far from the target location that is relatively
close to A. Moving farther from the target increases the time to complete the
mission and, ultimately, the failure rate, as this translates into increased chances to
miss the temporal deadline or collide with the environment. However, in the other
cases, the random strategy is less effective and performs very poorly for the most
challenging case, which is C.

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 93

(a)

(b)

(c)

Figure 6.11: The success percentage for all of the exploration strategies.

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 94

(a)

(b)

(c)

Figure 6.12: The time spent for all of the exploration strategies.

Chapter 6. Time-Constrained Exploration Using Toposemantic Spatial Models 95

6.7 Conclusions
In this chapter we have studied an exploration task with temporal constraints. The
objective for the robot is to enter an unexplored area and reach a target location
within a given temporal deadline. Our system incrementally builds a spatial model
called oriented topological semantic map. The model enhances classic topological
maps by adding semantic labels (corridor/room) and relationships of the type
to-the-right-of and to-the-left-of. Key to our approach is the assumption that walls
in the environment are aligned along orthogonal directions. This assumption is very
common in most buildings. The proposed spatial model has been coupled with our
recently proposed planner based on CMDPs and on top of this we proposed and
analyzed five different exploration techniques exploiting the proposed model.
Through thousands of simulated runs, it appears that our method dubbed
topological frontier with normalized distances works best. In their current
formulation, methods on semantic information are slightly less competitive,
although it ought to be acknowledged that only very limited semantic information
was used. Finally, we have provided all resources to ensure a third party to fully
replicate our results – a first in the are of replicable robotics.

In the next chapter we will show the implementation of our method on a Pioneer
P3AT robot closely resembling the one used in the simulation. Through a computer
vision pipeline exploiting a pre-trained deep constitutional neural network, we are
perfecting the software component indicated as IDS. In particular, the network can
distinguish corridors from rooms.

Chapter 7

OTSM Implementation

7.1 Introduction
In the previous chapter, we introduced Oriented Topological Semantic Maps
(OTSM). We also presented and simulated a solution to explore an unknown indoor
structured and orthogonal environment, while we built an OTSM. We also created a
framework composed by individual functional blocks that is flexible and reusable by
other researchers, and can be used to replicate our own results.

In this chapter, we demonstrate how this open-source framework can be used in
a real robot. We focus on how we can implement the three main systems
(topological, semantic, and orientation) to create a functional OTSM. In this
particular work we present one possible implementation for our three systems, but
the proposed framework is sufficiently flexible to allow for components to be
swapped. We also tackle the problem of loop closure and test the performance of
our solution in a real building from the University of California, Merced. The
software and hardware used to implement the solution are the Robotics Operative
System ROS Kinetic, and a Pioneer Robot 3AT.

There are multiple components to be specified to switch from the simulated
world to the real world. We need to be able to obtain each of the elements from the
OTMS with the real robot. To obtain the orientation O, we fused odometry and
inertial information, from encoders and IMUs. We create a ROS node called
Orientation System (OrS), that provides a measurement of robot’s rotation and
assign this orientation information to the OTSM’s. To obtain the building’s
topology T , as we previously explained, we build a graph where each of the
locations and intersections correspond to a vertex. We develop an Intersection
Detection System (IDS) that is capable of recognizing, in run-time, each of the five
different types of intersections.

Because the main algorithm incorporates semantics S to label and describe
locations in a building, it was necessary to use an automatic system to learn how to
recognize each location and associate a label to them. We defined a Labeling System
(LS), that uses a residual neural network resNet[75], to visually learn to recognize a

96

Chapter 7. OTSM Implementation 97

location. Using the same resNet, we were also able to recognize already visited
locations and detect loops in the environment.

The contributions of this work are:

• In section 7.2 we provide an overview of the necessary technical preliminaries to
implement each of the systems to extract topological and semantic information
from an environment.

• In section 7.2.1 we implement a method to detect intersections using a LIDAR
sensor called Intersection Detection System .

• In section 7.2.2 we implement a vision system to learn to recognize locations in
a building called Labeling System.

• Section 7.2.3 shows the proof of concept of how to solve the loop closure problem
with a regular ResNet network.

• Section 7.3 discusses how we set up the experiments to test the different systems
of our robot.

• Experimental results are presented in section 7.4.

7.2 Systems Implementations

7.2.1 Intersection Detection System (IDS) using 2D LIDAR
As we discussed in the previous chapter, the rooms and locations in a building where
the robot can change its trajectory are considered intersections. Depending on the
number of possible ways or paths where the robot can go, we define one of the five
different types of intersections. To create a system that detects free space, walls
and intersections, we proposed the use of a LIDAR sensor together with the method
described in [125] and [26] for line segment extraction.

Figures 7.1(a), 7.1(b), 7.2(a), 7.2(b) show the four of the five types of intersections
that the Intersection Detection System (IDS) can identify. The fifth intersection is the
”dead end” intersection where there are walls all around the robot. The solution that
is presented here is one possible implementation, but ultimately this is a classification
problem that can be solved in different ways.

Chapter 7. OTSM Implementation 98

(a)

(b)

Figure 7.1: Intersections in the real world and corresponding laser scan as seen in 2D
LIDAR. (a):Left Intersection. (b): Right Intersection.

Chapter 7. OTSM Implementation 99

(a)

(b)

Figure 7.2: Intersections in the real world and corresponding laser scan as seen in 2D
LIDAR. (a): Four-way Intersection. (b): T Intersection.

The IDS consists of three main functionalities: (a) extracts line segments from
a point cloud, (b) establishes relations between different line segments (c) classifies
and identifies the midpoint of the intersection. The point cloud is pre-processed by
converting the points represented in polar coordinates to Cartesian coordinates and
the rupture points are identified.

Chapter 7. OTSM Implementation 100

A point is considered as a rupture point if:

ri+1 > rmax and rmin <= ri <= rmax (7.1)

rmin <= ri <= rmax and ri−1 > rmax (7.2)
Where rmax and rmin are fixed thresholds to define the distance between points.

All the points between two rupture points are processed to identify the break-point,
which is defined as a discontinuity during the laser measurement, and extract the
parameters of the line segment (start and ending point of the line segment, see figure
7.3). These break points are identified by comparing two successive laser scans. This
means that i and i− 1 are the break points if:

‖(r, φ)i − (r, φ)i−1‖ > ri−1fracsin∆φsin(λ−∆φ) + 3σr (7.3)

where δφ is the laser angular resolution, λ is an auxiliary constant parameter and σr
is the residual variance.

Figure 7.3: Visualization breakpoints, line segments obtained from a single laser scan
using a 180 degrees LIDAR. Taken from [125] .

Once the break points are identified, each set of points are again processed to
identify if they belong to a line segment using the following algorithm:

Chapter 7. OTSM Implementation 101

Result: List of line segments between bp1, bp2
1 linelist ← ∅;
2 while bp1 ≥ i ≤ bp2 do
3 Kf [i]← 0 Kb[i]← 0
4 while ecd(i, i+Kf [i]) ≥ rd(i, i+Kf [i])− Uk do
5 Kf++;
6 while ecd(i, i+Kf [i]) ≥ rd(i, i+Kf [i])− Uk do
7 Kf++;
8 Compute forward vector ~f = (xi+Kf [i] − xi, yi+Kf [i] − yi) = (fxi

, fyi
);

9 Compute forward vector ~f = (xi+Kf [i] − xi, yi+Kf [i] − yi) = (fxi
, fyi

);
10 if Θi ≤ Θmin||(Θi − π) ≤ Θmin then
11 start← xKf [i], yKf [i];
12 end← xKf [i], yKf [i];
13 linelist ← linelist+(beg, end);
Algorithm 7.1: Compute line segments between any two break-points bp1, bp2

The list of line segments extracted is traversed clockwise in the order the laser
scan was processed and the relation between the adjacent line segments are established
and placed in a de-queue, whose order is used in determining the type of intersection
immediately in front of the robot. For the case of the left and right intersection, it
will depend on the orientation of our robot. However, we can add one more if we
count rooms and no-end locations where there are no outgoing paths but only a dead
end.

The lines are considered perpendicular to each other if the angle between the two
line segments is π/2, plus a tolerance value, and parallel if the angle is either 0 or
π. The adjacent line segments are then checked if they intersect or are separated by
a distance. Based on the relation between the line segments, the intersections are
classified into various types, whose line segments serve to characterize them. Figure
7.4 shows the four types of intersections with middle points.

Chapter 7. OTSM Implementation 102

(a)

(b)

(c)

(d)

Figure 7.4: Example line segments identified and middle points for a) Left
intersection, b) Right intersection, c) T intersection, d) Four way intersection.

Chapter 7. OTSM Implementation 103

(a) (b)

Figure 7.5: Last three layers of resNet-101 changed.

The midpoint in the laser frame is computed by using the parameters of an
intersection (end point of the first(right) line and the beginning point of the
last(left) line) previously identified:

(x, y)mid = ((x+ σx, y + σy)rightend + (x+ σx, y + σy)leftbeg)/2 (7.4)

Here σx and σy are fixed thresholds that needs to be adjusted based on the average
space of the gap/door between the walls. The midpoint, or from now, anchor point,
is then transformed into the global frame, and used as the center of the intersection.

7.2.2 Labeling System (LS) using 2D images
Once an intersection and its middle point is identified, it is necessary to learn to
visually differentiate this intersection from others. Because we want the robot to be
able to learn and identify, using semantic labels, different locations in the building,
we use a deep neural network resNet [75] implementation with 101 layers to learn
and store the labels of each of these locations. We use the resNet provided in
MATLAB as part of the deep learning toolbox. This neural network is pre-trained
with the database obtained from [47]. Once the robot reaches the anchor point of
the intersection, the robot is rotated in place and starts capturing images using a
RGB camera.

7.2.3 Loop closure problem
The loop closure problem, as we mentioned in the section 2.3.3, is an important
problem that a majority of the SLAM and VisualSLAM algorithms try to solve.

Chapter 7. OTSM Implementation 104

The objective is to recognize if a certain point in an environment corresponds to a
previously-visited location. If this identification fails, we are creating a disconnected
map that, with a graph representation, will create new vertices infinitely every time
the same loop is visited.

To elaborate in our particular case, let’s say the robot starts and reaches a first
intersection to be learned. Information about the images of this intersection are
collected and the last three layers: fully connected layer, softmax layer and
classification layer, are replaced to reflect just one label and classified into this one
label. The robot moves further and reaches a second intersection. Then the network
is re-trained through the same process and now the network is able to identify two
intersections. Note that the first two intersections are always considered new. Once
the robot traverses to the third intersection, the same procedure of capturing the
images and training the network is performed. If in this case, the confidence or
accuracy of the network reduces below a pre-defined threshold, the third
intersection is assumed to be one of the previous ones. The images are the input to
the old trained network and the newly trained network is discarded, the label
provided by the old net is the label for the intersection to which the robot has
traversed to. If the confidence is more than this aforementioned threshold, the
intersection is considered new and the newly trained network is retained. This
provides a functional approach to solve the loop closure problem using 2D images.
These thresholds were selected after running a series of preliminary tests and
analyzing the thresholds that gave constant success recognizing the locations.

Chapter 7. OTSM Implementation 105

Figure 7.6: Sketch of the floor at the University of California Merced, with
intersections (blue zones) and rooms (Orange zones).

Figure 7.6 shows the real case we are dealing with when we have a loop. In this
case, after the robot learns the intersections Int 1, Int 4, Int 6 and Int 7, it must
recognize them every time the robot visits them again. Otherwise if one of these
intersections is labeled incorrectly the loop would break and the topology would be
incorrect.

7.3 Experimental Setup
In this section we present how we setup the experiments to test the different systems
on our robot. We go over the main characteristics and parameters of the robot, the
environment, the semantic, the topological and orientation system.

We use a Pioneer robot 3AT, similar to the one we used in simulation, that is
controlled by the ROS 1 package RosAria. This robot has a Lidar, infrared sensors
on the front and on the back, a RGB camera, and four wells encoders. We installed
a Dell Latitude 7280 with ROS Kinetic to help run many nodes directly from our
framework Download Sources Here. 1 . These nodes control the robot, run the

1Available on IEEE xplore: https://ieee-dataport.org/open-access/

https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducibleapproach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach

Chapter 7. OTSM Implementation 106

CMDP solver, the OTSM builder, extract the semantic information, the topology
from the environment, and orientations for the vertices and edges. Figure 7.7 shows
the robot.

Figure 7.7: Pioneer Robot 3AT mounted with a Laptop, a LIDAR, a RGB camera
and two IMU um7.

We chose a real building from our campus at UC Merced, with an orthogonal
environment with multiple rooms, and corridors to test our solution. Figure 7.6
shows the sketch of the floor where six rooms were used for the tests in a closed loop
with four corridors and all five types of intersections.

We used a standard 1080p Logitech camera to acquire 2D RGB images of a
location. In order to get consistent intersection identification results, we used an
in-place rotation plan for the robot to collect images. This helped in identifying the
features of a particular intersection when the robot enters an intersection in any of
the directions pertaining to that location. We also set the learning rate at 0.001
gradient step. Even though the time required for training an intersection was high, a
smaller learning rate led to lower accuracy. The number of images collected at each

time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach

 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach
 https://ieee-dataport.org/open-access/time-constrained-exploration-using-toposemantic-spatial-models-reproducible-approach

Chapter 7. OTSM Implementation 107

Inters W-E (%) E-W (%) N-S (%) S-N (%)
Int1 100 100 90 100
Int2 NA 100 NA NA
Int3 100 100 80 NA
Int4 100 100 100 90
Int5 100 NA NA NA
Int6 100 NA NA NA
Int7 100 100 NA 80
Int8 NA 100 NA NA

Table 7.1: Average performance for the intersection detection system over 10 runs for
8 different type of intersections.

location was set at 84 with a split of (60/20/20) for the train, validation and test
set. Again this provided the desired accuracy of 90% - the threshold that we used to
distinguish a location that was identified earlier. We could improve these numbers if
one were to spend time fine tuning everything, but this is not the focus of this work.

A 2D LIDAR SICK LMS200 was used for the intersection detection node. Based
on the resolution of the LIDAR of 0.25 deg and the average width of the corridor being
0.75m, the threshold used to identify the rupture points was set to 0.1m, threshold
used to identify a breakpoint was set to 0.25m and the Θmin used to consider a
particular point part of the line was set to 10 deg.

To obtain the orientation for our robot, we use two IMU um7 connected through
USB ports and the data is fused together with the odometry from the robot. For
the data fusion we use the robot localization package from ROS, that implements an
extended Kalman Filter using the ekf localization node.

7.4 Results
Here we evaluate the performance of our solution. First, we measure the
effectiveness of our Intersection Detection System (IDS). For this purpose we tested
different intersections in our building section 80 times, varying the orientation of the
robot from where the intersection could be identified. Table 7.1 shows the
percentage of success recognizing the correct intersection. We reached more than
90% rate of success for all five types of intersections. Because the system is based on
a LIDAR that cannot detect transparent surfaces correctly, we had to cover some
windows and glass to avoid incorrect detection.

Table 7.2 shows the six different columns that describes the performance of our
Labeling System (LS) and its ability to differentiate locations already visited and new

Chapter 7. OTSM Implementation 108

locations. Two different sequences were produced randomly to analyze the general
performance, one with nine steps and a second one with eleven steps. For each step
an intersection is analyzed as either visited or unvisited and then, the neural network
assigns a new label if it is a new intersection or returns a previously learned label.
On the first column we show how incrementally we save pictures for each of the
intersections. Because the number of pictures is proportional to the Neural Network
training time, the second column shows an increase over time of different steps. The
last two columns show the final label and the confidence of this result. We accepted,
as a valid label, the result when the confidence level is over 80%. A lower confidence
level increases the uncertainty about the label, however, even for lower confidence
levels the final label is the one we are expecting.

We observed during the tests that even when the resNet performs relatively well
most of the time, it is sensitive to changes in the environment; people walking, changes
in the light, or changes of the surrounding objects, creates a higher uncertainty and the
confusion matrix spreads the values outside the diagonal. This needs to be addressed
when a dynamic environment is used and a different Labeling System must be used.
A possible solution would be to use the previously mentioned solution from [174].

Finally, we observed during all the tests that the orientation was always correct.
This is due to the fact that we are dealing with a very wide range of angles to define
if it is N,S,E,W. The Odometry and compass errors were not significant during the
experiments.

We are aware that the size and extension of these experiments can be improved and
indeed they were planned and scheduled. However, due to unforeseen circumstances
and closure of the campus, we lost access to the facilities.

7.5 Conclusions
In this chapter we presented an implementation with a Pioneer Robot of the different
systems showed in simulation in our former work [159]. Our solution is able to
recognize intersections with a accuracy of 100% based on the tests. However a wider
set of tests could be done to expand these results. We also showed that it is possible to
use a modified resNet architecture to classify visually locations in a building and even
solving the problem of loop-closure with confidence rates over 75.5%. This last value
definitely can be improved in an environment with more unique characteristics at
each location. The similarity between locations definitely played against the success
of the Neural Network.

Equally, we proved that the architecture used for simulation can be used with a
real robot and it is only necessary to modify a few ROS nodes to create an OTSM with
any implementation of an IDS, LS or OS. We hope this flexibility can be exploited by
the robotics community to try difference approaches and test different vision systems
that improve our initial solution. Finally, we expect this framework to be used to test
more in depth, different exploration and navigation strategies with real robots that
use ROS as their main operative system.

Chapter 7. OTSM Implementation 109

Step Inters # Img Train. Time (min) Label Confidence %
1 Int1 84 1.29 Int1 100
2 Int10 84x2 4.21 Int10 100
3 Int7 84x3 4.31 Int7 96.3
4 Int8 84x4 11.18 Int8 100
5 Int7 84x5 14.54 Int7 80
6 Int1 84x5 14.59 Int1 98
7 Int3 84x6 19.34 Int3 93.94
8 Int4 84x7 26.05 Int4 97.14
9 Int3 84x8 39.15 Int3 88.5

1 Int1 84 1.29 Int1 100
2 Int2 84x2 4.41 Int2 100
3 Int1 84x3 7.58 Int1 60.61
4 Int1 84x3 7.23 Int1 78.12
5 Int2 84x3 7.23 Int2 87.88
6 Int2 84x3 7.36 Int2 75.76
7 Int1 84x3 7.23 Int1 100
8 Int7 84x4 10.49 Int7 100
9 Int8 84x5 13.39 Int8 94.23
10 Int7 84x6 17.51 Int7 90.48
11 Int8 84x6 22.15 Int8 77.78

Table 7.2: Performance of the accumulative training with multiple steps. It shows
the number of images taken, the time to train the Neural Network, the final identified
label and the light conditions.

Chapter 8

Map Merging of Oriented
Topological Semantic Maps

8.1 Introduction
In previous chapters, we dealt with multi-robot algorithms for navigation under
temporal and failure probability constraints. We also developed our own type of
map, OTSM, to be able to use it in run-time with our CMDP model. In this
chapter we are interested in expanding the usability of our OTSMs when, instead of
one robot building a map, we have a team of robots. In this chapter we will go over
one of our published papers called ”Map Merging of Oriented Topological Semantic
Maps” [158] that describes the solution for this problem.

Multi-robot research has been on the rise because, in many instances, multiple
robots offer inherent advantages over solutions relying on a single robot. Continuing
with our exploration task, we can intuit that a group of coordinated robots would
explore an unknown environment much faster than a single robot. This is a specific
problem where the multi-robot solution introduces new challenges not found in the
single robot approach. For individual robots, continuous progress in SLAM research
has generated sophisticated solutions and, in some instances, this can be considered to
be a solved problem. However, when a group of robots cooperatively explore and map
an unknown environment, two approaches can be undertaken to combine the partial
results. The robots can either jointly build a spatial model “on the fly,” or they can
individually build a single map, and then combine their partial models together a
posteriori.

This last problem, known as map merging, is not a direct extension of a single
robot problem and is tackled in this chapter. Map merging relates to other
problems such as structural graph matching or sub graph isomorphism, depending
on the type of model considered [61]. The most common practice is to create metric
maps and use different techniques to merge them together [31, 100, 169, 28].
However, when the maps utilize a topological or semantic representation, a different
approach is needed. In chapter 6, we introduced a new type of maps called Oriented

110

Chapter 8. Map Merging of Oriented Topological Semantic Maps 111

Topological Semantic Map (OTSM). The purpose of this chapter, in particular, is to
study how multiple partial OTSMs can be combined when a team of robots
cooperatively explore a common indoor environment. Our solution is inspired by
the Warrington’s object recognition model [180], a cognitive model that describes
how humans recognize objects using a two layer system of perceptual and semantic
categorization.

In their everyday activities, humans do not rely on metric maps to complete their
tasks. Instead, a more concise representation to store the structural organization of
buildings or other relevant structures is computed quickly and shared, arguably with
little effort, with other humans for immediate use. Even in the absence of visual
information, humans can still use the same efficient representation and interact with
their environment and peers [101]. As we expect robots to operate side-by-side with
humans, it makes sense to envision the same capabilities for robots, both for robot-
robot inter-operation, and to smooth the human-robot interface.

In the past, some attempts to merge topological maps have been considered, but
due to the novelty of OTSMs this is the first bio-inspired model used to merge a these
maps. Although, some authors like Huang et al. [77] or Bonanni et al. [22] show
similar solutions for merging topological maps, and Erinc et al. [14] studied how to
combine hybrid maps including some visual or semantic information, we offer here a
method applied to OTSMs, where we expande the topological-semantic map merging
with orientation information.

We can classify map merging solutions into two different categories: an online
and an offline map merging. In the first case the challenge is to merge two or more
maps while they are being built. Complex and memory consuming maps, like metric
maps, are difficult to share and many considerations need to be taken into account to
assure the correct transmission of the information either as a centralized architecture,
where all the robots send their discoveries, or a distributed architecture, where each
robot communicates with the rest of the team. The second type of map merging is
offline, where the sub-graphs or sub-maps are stitched after the robots complete a
distributed exploration of the environment. In this chapter we focus on the second,
where we will process partial maps after they were generated by the robots.

The contributions of this chapter are:

• We propose a new two-stage method to compare vertices in different OTSMs
and measure their resemblance.

• We present a new merging technique to stitch OTSMs using a semantic and
perceptual categorization.

• We study (in simulation) four different types of errors that affect OTSMs and
their impact when merging together partial maps.

Chapter 8. Map Merging of Oriented Topological Semantic Maps 112

8.2 Inverse Warrington’s Object Recognition
Model (IWORM)

The model presented by Warrington [180] inspires our strategy for merging together
two or more OTSMs. Warrington hypothesized two post-sensory categorical stages
that work together for object recognition (see figure 8.1). This research showed
evidence of how different patient groups presented a deficit in recognizing objects
because of left-posterior and right-posterior cerebral lesions. These patients were
suffering from different levels of visual agnosia, defined as [180], “the inability to
recognize or identify common objects that cannot be accounted for by sensory
impairment or more generalized cognitive deficits”. Warrington’s hypothesis of how
the human brain processes the visual information proposes that, although both sides
of the brain do a visual analysis, the right side of the brain’s job is to judge the
matching as same or different stimuli, while the left side’s function is to match
objects to pictorial representation for an a posteriori word matching. Visual stimuli
are interpreted by the brain to form a shape/contour of an object. This shape can
match with at least one shape already stored in the memory that will eventually
receive a semantic label that corresponds to a word that has a meaning or
significance.

Starting from this work, we posit that in order to effectively evaluate and
measure the similarities between two sub-maps and find their matching vertices, we
require a two-sided function that can sequentially process their perceptual and
semantic information. Inspired by how our brain finds the match of shapes/contours
and assigns semantic labels to them, we propose to match the shapes and labels of
different sub-maps to score their resemblance. Then, we will use the quality of the
resemblance to then merge them together. Since OTSMs embed semantic
information in our graphs, we propose to invert the information flow from a
semantic to a perceptual categorization, instead of perceptual to semantic as the
original Warrington’s work proposes for humans (see figure 8.2). Specifically, we will
take the semantic categorization as the comparison of labels and orientations,
followed by the perceptual (topological) categorization, that will compare the shape
of the graphs, analyze the number of neighbors and their respective connections
with other vertices in the map.

8.3 IWORM Inspired Map Merging of OTSMs
When considering spatial models featuring topological components, map merging can
be referred to problems like graph structural matching, and sub graph isomorphism.
However, for our problem these approaches cannot be applied directly due to the fact
that OTSMs extend the basic graph structure embedding semantic information into
the topological map. When merging topological maps, the objective is to obtain a
complete map of an environment by stitching together multiple sub-maps. We now

Chapter 8. Map Merging of Oriented Topological Semantic Maps 113

Figure 8.1: Diagram of the Warrington’s Object Recognition Model inspired by the
[180]

describe how multiple OSTMs can be consolidated into a unique map.
Definition 1. A sub-map of certain environment is represented by a graph
gi = (Vi, Ei) ⊆ G = (V,E), whose vertices V and edges E can be compared with
vertices and edges of other sub-maps using a scoring function called IWORM. This
will serve to determine the likelihood that a vertex vi in gN corresponds to a vertex
vj in gM (with N 6= M).

Without loss of generality, in the following, we consider the case where just two
sub-maps must be merged. When three or more maps must be combined,
subsequent pairwise mergings can be used. Definition 1 establishes that two
sub-maps can be compared and the IWORM function (to be define later) can help
to determine correspondences between common vertices. We say that two sub-maps
overlap if they share one or more common vertices. These shared vertices are then
used to establish a fully connected map. As for other map merging problems, if

Chapter 8. Map Merging of Oriented Topological Semantic Maps 114

Figure 8.2: Diagram of the Inverse Warrington’s Object Recognition Model

there is no overlap between the two sub-maps, then no merging can occur and this
situation must be properly detected and handled. While an initial analysis of this
case will be presented in the results section, it is still an open question to find a
robust way to deal with this problem.

As presented in section 8.2, we aim to find a map matching algorithm following a
method inspired by the same cognitive process that our human brain does. IWORM
is a pattern classifier that uses two types of inputs to match two given sub-maps. The
first layer, called Semantic Categorization, compares two sub-maps g1 and g2 in terms
of the semantic label and the orientation of each of the vertices. This is a high level
matching providing only a limited level of differentiation between vertices. However,
as it will be presented later, there are different sources of errors that make it too
brittle to rely only on these two features to classify and match vertices. To mitigate
this limitation, a second layer is introduced. Perceptual Categorization compares the
local structure of the sub-maps. The structure we are looking to match will be the
topological properties describing the connections between vertices. Specifically, we
examine how many neighbors a vertex has, and how these neighbors, in turn, are
connect to others. This structure can be described in terms of degrees of depth,
where level one corresponds to the immediate neighbors of a certain vertex, level two
corresponds to the neighbors of the immediate neighbors, and so on. Algorithm 8.1
describes the process to merge two sub-maps g1, and g2.

The main process iterates over each of the input sub-maps. First, it tries to
find correspondences between vertices. To this end, it makes a complete pairwise
comparison between all vertices1. Note that the first vertices of g1 are matched
against vertices of g2 and then vertices of g2 are matched against vertices of g1.
This is because the IWORM function is not symmetric, i.e., for vi 6= vj in general
IWORM(vi, vj) 6= IWORM(vj, vi).

1This step is typically not time-consuming because topological representations are compact and
maps have a small number of vertices.

Chapter 8. Map Merging of Oriented Topological Semantic Maps 115

1: Algorithm mergeGraphs(g1, g2)
2: for all Vertices vi from g1 do
3: for all Vertices vj from g2 do
4: Get [matchingPairsg1 , scoresPairsg1] from IWORM(vi, vj)
5: end for
6: end for
7: for all Vertices vj from g2 do
8: for all Vertices vi from g1 do
9: Get [matchingPairsg2 , scoresPairsg2] from IWORM(vj, vi)

10: end for
11: end for
12: mergeMaps(g1, g2);

Algorithm 8.1: Merging OTSMs

1: Algorithm IWORM(vi, vj)
F {Semantic Categorization}

2: ScoreL ← L(vi) is semantically similar to L(vj)
3: ScoreV D ← VD(vi) is equally oriented to VD(vj).

F {Perceptual Categorization}
4: ScoreNE ← ∀ ei ∃ ej Number of edges comparison.
5: ScoreED ← ∀D(ei) = D(ej) Edge’s direction comparison.
6: for all Vertices vik do
7: for all Vertices vjl do
8: if maxDepth is reached then
9: Create matching pairs with the maximum scores.

10: return matchingPairs, scoresEdges
11: else
12: Get scoresEdges from IWORM(vik, v

j
l)

13: end if
14: end for
15: end for

Algorithm 8.2: IWORM scores the resemblance of a pair of vertices vi, vj.

Chapter 8. Map Merging of Oriented Topological Semantic Maps 116

Because we assume that in the acquisition of each map there may be errors, the
labeling, orientation and neighbors cannot be assumed to be error free. Consequently,
we first create pairs of possible matching vertices and for each pair, a score is assigned.
To do this, the IWORM function performs the local analysis in the graphs to give
a value for each correspondence found when comparing labels, orientation, and the
number of neighbors for a certain degree of depth, that will be studied in the numerical
validation section. If the semantic label is the same for both vertices, the score will
be K, and if the label is different it will be −K, where K is a preassigned positive
constant (Algorithm 8.2, Line 2). A similar binary score is assigned when comparing
the orientation between the two vertices. This will be K when both vertices share
the same orientation or 0 otherwise (Algorithm 8.2, Line 3).

In this case a mismatch receives a 0 score, rather than −K, because as we
established previously, the orientation of each vertex is relative to the robot’s
orientation and will only be used to add a bias component that will increase the
score when two vertices were discovered the same way. For the number of edges
outgoing from a vertex, the score is assigned with the following function
ScoreED(vi), where diffEdges is the absolute value of the difference between the
outdegree of the vertices. The effect of changing the K function will be the subject
of future research:

K if diffEdges = 0(
1− diffEdges+1

K′

)
·K if diffEdges ≤ 2

−K otherwise
Finally, for line 5 of algorithm 8.2, a score of K is assigned if the number of edges
and orientations are the same in both vertices. From line 6, for each of the vertices
vi and vj we score their neighbors recursively, calling the same function IWORM on
the neighbors k and l, from vertices vi and vj, noted as vik and vjl , respectively. The
recursive calls to IWORM stop after a fixed number of recursive levels to ensure that
the analysis remains local.

After scoring the vertices of each sub-map, the next step is to validate if a label
is found in two different locations, understanding the location as where the vertex is
in the topological map and its neighbors.

Finally, we need to merge the two sub-maps, in line 8 of Algorithm 8.1. For this
purpose, we need to chose which pair of vertices have the same resemblance and, in
this case, decide which information to accept. When we obtain the scores matching g1
to g2 (lines 2 and 4), and g2 to g1 (lines 5 to 7), we are adding each of the individual
K values after comparing label, direction and edges of each pair of vertices, that
will result in a final score that is compared with the highest possible score of K.
If the final score corresponds to more than a threshold γ, which we set to 80% of
the highest K, we assume that those two vertices are the same. By the contrary,
if a pair of vertices is matched with γ less than 80% of the highest score, it means
that the semantic and topological information between those two vertices has some

Chapter 8. Map Merging of Oriented Topological Semantic Maps 117

discrepancies (it can be the labels, directions, or the edges). We chose 80% as our
threshold to try to evaluate the algorithm with a high error rate of 20%, similar to
the one we used for our tests. In the case where the semantic labels are different, we
cannot be certain which one is the correct one, so we arbitrarily pick the label from
g1 and save the label from g2 as an optional label. This optional label list will be used
when merging new maps to the existing final map that, perhaps, can confirm which
label is most likely the correct one. If the direction differs between vertices, again, we
pick the direction from g1 and save the direction from g2 as optional. For the edges we
combine the information from g1 and g2 together, where the outdegree of the vertices
from v1 defines how many possible vertices can be connected. We then complete this
list with the available information about the visited vertices that connect with v1 and
v2.

8.3.1 Sources of error
There are at least four different types of errors that can happen when building
OSTMs. Because we are not using metric maps, there are no errors associated with
rotation, alignment, or scale. However, we still have a possible translation problem:
the location of the same vertex can be different due to an incorrect labeling. To
address this issue, we propose to use the score function to calculate the likelihood of
where a vertex really is.

1. Error type 1: A semantic labeling error, i.e., a vertex is assigned the wrong label
when it is visited for the first time, or when it is revisited it is not recognized
as the same vertex and assigned a different label (see figure 8.3).

Figure 8.3: Error type 1: A semantic labeling error.

2. Error type 2: An error with the compass will lead to an incorrect assignment
of the direction of a vertex/edge (see figure 8.4).

Chapter 8. Map Merging of Oriented Topological Semantic Maps 118

Figure 8.4: Error type 2: An error with the compass.

3. Error type 3: A vertex in a sub-map can be mistakenly associated with a wrong
degree. For example, the vertex v1 in g1 is a four way intersection, but the same
vertex in g2 is detected as a three-way intersection due to a wrong intersection
detection (see figure 8.5).

Figure 8.5: Error type 3: A missing edge in a sub-map.

4. Error type 4: A vertex v1 in a sub-map g1 can be missing, but appear in a
second sub-map v2. This happens when the vertex is recognized like a previous
vertex (error type 1), that already exists in the sub-map or because the robot
passed by the location and never identified it. This is one of the most serious
types of error. If the robot misses a vertex, this means that the neighbors
will be connected incorrectly, their directions will not match, or we may have
unconnected graphs (see figure 8.6).

Chapter 8. Map Merging of Oriented Topological Semantic Maps 119

Figure 8.6: Error type 4: A vertex missing in a sub-map.

8.3.2 Understanding Errors
To understand the type of errors, it is useful to discuss how we are implementing
the solution on a real robot. While results presented here refer to simulation only,
our simulation is setup to mirror the real robot setup. The robot has 2 different
algorithms: one to recognize the type of intersection (i.e., the degree of the vertex),
and another one to assign a semantic label to each location.

Semantic labeling is performed using a neural network that can be either pre-
trained, or incrementally trained as new places are discovered. In our real robot we
are using resNet for this task. It is therefore foreseeable that the robot could make
the errors we identified earlier on.

• Error type 1: Based on the vision system, the robot mislabels a location, either
giving a wrong label from the pretrained list of labels or assigning a label that
was previously used for a different location by another robot. Then we will have
the same name for two different locations.

• Error type 2: Because the direction is obtained by an IMU orientation errors
are possible. However, if a vertex is discovered by two robots from two different
directions, this currently does not cause any problem during navigation because
the orientation of each vertex only serves as reference to rotate according to the
edges directions. A motor, for example, is a common source of this disturbance.
Because we will be using a couple of IMUs combined with the robot’s odometry
and filtered with a Kalman filter, the estimation of the orientation can fail.

• Error type 3: The intersection detection system, is based on a LIDAR sensor,
which detects gaps between walls and defines the type of intersection the robot
is facing. In the case of the intersection being obstructed by a person or another

Chapter 8. Map Merging of Oriented Topological Semantic Maps 120

object, this will cause a fail, correctly determining the right number of vertices
of this intersection.

• Error type 4: When this happens the graphs will not be updated and the new
vertex will not be added. There are also cases where the intersection system
simply passes by a location and cannot identify it as an intersection, and the
robot will just keep moving. This happens when the robot gets too close to
one of the walls or its direction is not parallel to the walls and, instead, it is
pointing diagonally to the center of an intersection.

8.4 Simulations

8.4.1 Setup
To evaluate the solution we proposed, we studied the problem in Gazebo, so that
numerous tests with controlled error conditions could be performed. Consistent with
the hypotheses that we operate in an environment with orthogonal walls, we start
with the CAD models of one of the buildings in our university (see Figure 8.7).
We defined five start locations in the building as shown in figure 8.7. Each one
represents an initial position for a robot, and at each location the robot used the
exploration algorithm described in our former work [159] to build a partial map. To
assess robustness, the formerly identified four different types of errors were introduced
while building the partial maps. To evaluate the the IWORM algorithm we chose
a very high error rate, where each of these errors had an independent 20% chance
of occurring. Consequently, each vertex could be affected by more than one error at
once.

At each of the five locations we ran the exploration algorithm 20 times and
obtained 20 sub-maps. Since the full map contains 40 vertices in total, and we have
5 different regions, we chose maps with more than 8 vertices in order to have
overlapping regions. For our experiments we gave a 8+3 vertex gap to assure the
overlap between regions, but we just require any number bigger than 8. At the end
the exploration algorithm was stopped when 11 vertices were added. Colored
regions in figure 8.7 show the areas within which each robot wandered (red area for
red start point, and so on).

For each subgraph we exported seven different versions: one without any errors
and four with the four types of errors, plus two with all the errors combined with and
without error type 4. A good merging would mean that the topology of the resultant
merged map closely resembles the ground truth. Similar to what was done in [31],
to assess the quality of a merging, we developed a score function to compare the
similarities of ground truth and the merged maps. The function assigns one point to
a quality value in four cases:

1. 1 point for each vertex that exists in the ground truth map and also exists in
the merged map and both have the topological label;

Chapter 8. Map Merging of Oriented Topological Semantic Maps 121

2. 1 point for each vertex that exists in the ground truth map and also exists in
the merged map with the same name and direction;

3. 1 point for each vertex that exists in the ground truth map and also exists in
the merged map with the same name and number of edges;

4. 1 point for each vertex that exists in the ground truth map and also exists in
the merged map with the same name and the direction of all edges is the same;

5. 0 for every other case.

Figure 8.7: Left: start locations. Right: overlapping regions.

8.5 Results
We first tested the merging algorithm with two non-overlapping maps to show how
much a map can be affected by the four types of errors when trying to merge them.
In this case we took the maps produced by the robot starting in position A and tried

Chapter 8. Map Merging of Oriented Topological Semantic Maps 122

to merge them with maps from position D (see figure 8.7 for the non-overlapping
footprints). Figure 8.9 compares the final map when merging non-overlapping error-
free maps against maps with errors 1,2,3, and 4. Blue and orange circles correspond
to discovered corridors and room locations, yellow circles indicate open edges that
lead to new undiscovered locations and green arrows correspond to the edges that
connect a pair of vertices. After merging a map from region A and D, we show how
the merging algorithm kept the correct structure of the sub-maps with little impact on
the vertices. On the left of the figure we observe how the algorithm correctly merged
both pieces of maps without misplacing, or incorrectly connecting the vertices, and on
the right, we can see that, despite adding errors, the final map did not suffer drastic
changes. Only 3 vertices were affected by the errors (blue circles with red letters).

Since the final map was qualitatively correct, we quantitatively analyzed the
performance of the merged maps for each type of error. Figure 8.8 shows a blue line,
labeled Max, representing the maximum score obtained with the error-free maps.
As we can observe, the maps with only errors in the direction have a very close
quality score to the error-free maps; results that validate the theory about the small
impact of this type of error when defining an OTSM that does not affect the
topology fundamentally. The maps that contained errors type 2 and 3 remain close
to the maximum. However, we see how the label error gives the lowest score,
together with the map of combined errors 1+2+3. This is due to how we score the
maps based on the label. This also corresponds to the idea that semantics plays a
main role when differentiating a vertex from others. It is also expected that the
maps with the lowest quality corresponds to the ones with error type 4 and all the
errors combined 1+2+3+4.

Figure 8.8: Comparison of quality from 20 full maps with different errors when maps
do not overlap A+D.

Figure 8.10 shows again the seven versions of the maps, but this time when we
combine all the regions. Similarly, as the previous case for no overlapping maps, we
observe that for errors 2, and 3 the quality is close to the maximum. The map built
in figure 8.11 shows a fully connected map. Once again, for error-free maps, the final

Chapter 8. Map Merging of Oriented Topological Semantic Maps 123

Figure 8.9: Left: OTSM Error Free No Overlapping. Right: OTSM Errors 1+2+3+4
No Overlapping

map is perfectly merged, showing how the IWORM function correctly recognized
the overlapping vertices and the matching score adequately served to correctly stitch
them together. When trying to merge the maps with all errors, we note that the
algorithm can merge the graphs, although as shown in Figure 8.11, there exist some
errors in the final map when we compare it with the error-free map. Red arrows
show an incorrect edge between two nodes. These issues come mainly from errors
type 1 and 4; a missing vertex heavily affects the connection between vertices and
this impacts the map’s connectivity.

Finally, we did a quantitative analysis when conducting the IWORM from 1 degree
up to 4 degrees of depth search. We found that there is no significant difference
between degrees 1 and 2, and only 2.19% difference between 2 and 4 for only the
maps with all errors. For all our tests we chose degree 3 to prove the intrinsic iterative
capacity of our algorithm, even when a degree of 2 would have been enough. However,
we believe this degree can play a more significant role when dealing with bigger
environments where there are locations in different parts of the map with similar

Chapter 8. Map Merging of Oriented Topological Semantic Maps 124

topologies and semantics that require more detailed differentiation.

Figure 8.10: Comparison of quality from 20 full maps with different errors when maps
overlap A+B+C+D+E.

8.6 Conclusions
In this chapter we presented a new algorithm to merge OTSM that is inspired by
the Warrington’s object recognition model [180]. The method was tested using
overlapping and no-overlapping pieces of a full map that contains four different
types of errors and we showed that it is possible to merge maps with errors in the
labels, directions, number of edges detected, and missing vertices. The proposed
technique proved to be robust to multiple concurrent errors, even when error rates
are much higher than what we observed in practice. For future work, we will explore
how different exploration strategies, similar to the ones presented, affect the overall
quality of the merged maps and how to assess how partial errors in map merging
affect the robots’ ability to use the combined map for autonomous navigation.

One possible outcome of the presented work will deal with the case of where the
sub-maps do not overlap and a new prediction system needs to be used to weigh the
probability of closeness between vertices. This will be based on an ordered list of
possible matches reinforced by a specific semantic of buildings and expected
topological structures of human environments, e.g. offices, houses or factories.

Chapter 8. Map Merging of Oriented Topological Semantic Maps 125

Figure 8.11: Left: Final OTSM error-free. Right: Final OTSM with errors 1+2+3+4

Chapter 9

Conclusions

9.1 Summary of Contributions
Here we present the summary of the multiple contributions of this dissertation. We
focused our work on navigation, exploration, and mapping algorithms for indoor
robots with uncertainties in motion and sensing. The unifying theme of our work
is the use of Constrained Markov Decision Process (CMDP) to compute policies
that balance risk and time for the different tasks and problems we studied. We used
CMDPs in different scenarios for single and multi robot problems, and we offered new
methods to create robust policies to control robots. We proved that having expensive
equipment is not always necessary to generate robust policies that compensate the
weaknesses of low-cost sensors.

We started studying the case of a single robot visiting multiple targets. This case
is challenging, since it generalizes the orienteering problem [21], that is NP-Hard, by
incorporating multiple costs and constraints. We showed how the simpler problem of
observing preassigned sequences of targets can be solved using the theory of CMDPs.
We combined the single robot solutions to solve the rapid deployment problem at
the team level. We also considered the problem of splitting the targets among the
robots. We formulate a sub-modular objective function leading to a greedy algorithm
achieving a 1− 1

e
approximation.

We closed the gap between reality and theory creating stochastic models to gain
a more realistic insight about the performance and behavior of real robots, we
demonstrated how a robot’s behavior can be extracted empirically, and expanded
with this stochastic model. We demonstrated the robustness of calculating an
off-line policy, using a novel approach to extract transition probabilities from a
stochastic model. Despite motion uncertainties, this stochastic model is able to
guide a robot from an origin state to a goal state.

We also proposed a new spatial model dubbed Oriented Topological Semantic
Map (OTSM) that extends classic topological maps in a way that is amenable to
implementation by robots with minimal sensor payload. We integrated the proposed
OTSM model with our recently developed planning method using CMDPs to assign

126

Chapter 9. Conclusions 127

actionable temporal deadlines to the robot. We demonstrated how it was possible
to overcome the challenges of implementing such solutions with a real robot. As
part of our publication [159] we offered a framework, based on ROS, to enable other
researchers to reproduce our results. This work was considered the first Reproducible
Articles or R-articles in robotics.

Based on the theory about OTSMs, we implemented a method to detect
intersections called Intersection Detection System (IDS) using a LIDAR. We
combined this IDS with a Labeling System (LS) that uses visual information to
recognize locations in a building. We proposed and tested the proof of concept of
how to solve the loop closure problem with a ResNet network.

Finally, we completed our research, obtaining inspiration from cognitive sciences
and applying it to robotics: solving the problem of map-merging. Our solution was
inspired by the human model to perceive objects, and with our experiments showed
it effectiveness. We proposed a new two-stage method to compare vertices in
different OTSMs and measure their resemblance. Finally, we presented a new
merging technique to stitch OTSMs using a semantic and perceptual categorization.

9.2 Future Work
The future of the work presented in this dissertation can be addressed in different
directions. We would like see the expansion of the applications of OTSMs for indoor
and outdoor scenarios. There is room to measure OTSMs’ robustness and flexibility.
We would like to use these maps in more complex environments, where the initial
assumption of an orthogonal environment is eliminated, and where we could increase
the amount of directions, and also a wider set of actions. Similarly, we wish to explore
the human aspect of these maps, and implement experiments where both, a robot
and a human, interact with each other to accomplish a mission. Collaborative robots
is a field that still remains young, and deserves deeper research.

It is possible to use the stochastic model from a robot and extract accurate
transition probabilities to solve a CMDP with them. However, more detailed
research needs to be conducted to study the variation of the results due to changes
in the discretization parameters. There is more to know about how to improve this
method including more precise control techniques to reduce motion uncertainty.

For artificial vision there are constant developments that improve the previous
state of art; new methods to label and understand the environment can be applied
and used together with the presented techniques in this dissertation. New modules
developed in ROS or other operative systems can be combined into one whole
framework to expand the capabilities of our current robot.

Finally, we hope that our initial contribution to create a reproducible standard
for robotics papers can be improved, and become, in the near future, the common
method to share knowledge, software, and algorithms. Combining everyone’s efforts,
we will help each other to reach our goals in robotics more efficiently.

Bibliography

[1] P. Abeles. Robust local localization for indoor environments with uneven floors
and inaccurate maps. 2011.

[2] M. Al Khawaldah and S. Livation. Line-of-sight exploration of unknown
environment by a pair of mobile Robots. 2018 Advances in Science and
Engineering Technology International Conferences, ASET 2018, pages 1–5,
2018.

[3] K. Albina and S. G. Lee. Hybrid Stochastic Exploration Using Grey Wolf
Optimizer and Coordinated Multi-Robot Exploration Algorithms. IEEE Access,
7:14246–14255, 2019.

[4] M. Althoff, M. Koschi, and S. Manzinger. CommonRoad: Composable
benchmarks for motion planning on roads. IEEE Intelligent Vehicles
Symposium, Proceedings, (Iv):719–726, 2017.

[5] E. Altman. Constrained Markov decision processes with total cost criteria:
Occupation measures and primal LP. Mathematical methods of operations
research, 43:45–72, 1996.

[6] E. Altman. Constrained Markov Decision Processes. Stochastic modeling.
Chapman & Hall/CRC, 1999.

[7] F. Amigoni, V. Castelli, and M. Luperto. Improving Repeatability
of Experiments by Automatic Evaluation of SLAM Algorithms. IEEE
International Conference on Intelligent Robots and Systems, pages 7237–7243,
2018.

[8] F. Amigoni, M. Luperto, and V. Schiaffonati. Toward generalization of
experimental results for autonomous robots. Robotics and Autonomous Systems,
90:4–14, apr 2017.

[9] S. Y. An, L. Kyoung Lee, and S. Y. Oh. Fast incremental 3D plane extraction
from a collection of 2D line segments for 3D mapping. In IEEE International
Conference on Intelligent Robots and Systems, 2012.

128

Bibliography 129

[10] T. Andre and C. Bettstetter. Assessing the value of coordination in mobile
robot exploration using a discrete-time Markov process. IEEE International
Conference on Intelligent Robots and Systems, pages 4772–4777, 2013.

[11] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Concorde tsp solver, 2016.

[12] S. Arora. Polynomial Time Approximation Schemes for Euclidean Traveling
Salesman and Other Geometric Problems. J. ACM, 45(5):753–782, sep 1998.

[13] A. Bais, R. Sablatnig, and J. Gu. Single landmark based self-localization of
mobile robots. In Third Canadian Conference on Computer and Robot Vision,
CRV 2006, 2006.

[14] B. Balaguer, G. Erinc, and S. Carpin. Classification and regression for
wifi localization of heterogeneous robot teams in unknown environments. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3496–3503, 2012.

[15] R. Bellman. The Theory of Dynamic Programming. Bulletin of the American
Mathematical Society, 60(6):503–515, 1954.

[16] E. Berhan, B. Beshah, D. Kitaw, and A. Abraham. Stochastic Vehicle
Routing Problem: A Literature Survey. Journal of Information & Knowledge
Management, 13(03):1450022, 2014.

[17] D. P. Bertsekas. Dynamic Programming & Optimal Control, volume 1 and 2.
Athena Scientific, 2005.

[18] D. J. Bertsimas. A Vehicle Routing Problem with Stochastic Demand.
Operations Research, 40(3):574–585, 1992.

[19] J. L. Blanco, J. González-Jiménez, and J. A. Fernández-Madrigal. A robust,
multi-hypothesis approach to matching occupancy grid maps. Robotica,
31(5):687–701, 2013.

[20] F. Blöchliger, M. Fehr, M. Dymczyk, T. Schneider, and R. Siegwart. Topomap:
Topological Mapping and Navigation Based on Visual SLAM Maps. Proceedings
of the IEEE International Conference on Robotics and Automation, pages 3818–
3825, 2018.

[21] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and M. Minkoff.
Approximation Algorithms for Orienteering and Discounted-Reward TSP.
SIAM Journal on Computing, 37(2):653–670, 2007.

[22] T. M. Bonanni, B. Della Corte, and G. Grisetti. 3-D Map Merging on Pose
Graphs. IEEE Robotics and Automation Letters, 2(2):1031–1038, 2017.

Bibliography 130

[23] F. Bonsignorio. A New Kind of Article for Reproducible Research in
Intelligent Robotics [From the Field]. IEEE Robotics and Automation Magazine,
24(3):178–182, 2017.

[24] F. Bonsignorio and A. P. Del Pobil. Toward Replicable and Measurable Robotics
Research [From the Guest Editors]. IEEE Robotics and Automation Magazine,
22(3):32–35, 2015.

[25] F. P. Bonsignorio, J. Hallam, and A. P. del Pobil. Defining the Requisites of a
Replicable Robotics Experiment. Good Experimental Methodology in Robotics.
An RSS 2009 Workshop, 2009.

[26] G. A. Borges and M. J. Aldon. Line extraction in 2D range images for mobile
robotics. Journal of Intelligent and Robotic Systems: Theory and Applications,
2004.

[27] E. Brunskill and N. Roy. SLAM using incremental probabilistic PCA and
dimensionality reduction. In Proceedings - IEEE International Conference on
Robotics and Automation, 2005.

[28] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider. Coordinated Multi-
Robot Exploration. IEEE Transaction On Robotics, 21(3), 2005.

[29] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid,
and J. J. Leonard. Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age. IEEE Transactions on Robotics,
32(6):1309–1332, 2016.

[30] D. Caltabiano, G. Muscato, and F. Russo. Localization and self calibration of
a robot for volcano exploration. Proceedings - IEEE International Conference
on Robotics and Automation, 2004(1):586–591, 2004.

[31] S. Carpin. Fast and accurate map merging for multi-robot systems. Autonomous
Robots, 25(3):305–316, 2008.

[32] S. Carpin, N. Basilico, D. Burch, T.H. Chung, and M. Kölsch. Variable
resolution search with quadrotors: theory and practice. Journal of Field
Robotics, 30(5):685–701, 2013.

[33] S. Carpin and A. Censi. An experimental assessment of the hsm3d algorithm
for sparse and colored data. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3595–3600, 2009.

[34] S. Carpin, T. H. Chung, and B. M. Sadler. Theoretical foundations of high-
speed robot team deployment. Proceedings - IEEE International Conference on
Robotics and Automation, pages 2033–2040, 2013.

Bibliography 131

[35] S. Carpin, M. Pavone, and B. M. Sadler. Rapid multirobot deployment with
time constraints. IEEE International Conference on Intelligent Robots and
Systems, pages 1147–1154, 2014.

[36] F. F. Carvalho, R. C. Cavalcante, M. A.M. Vieira, L. Chaimowicz, and M. F.M.
Campos. A multi-robot exploration approach based on distributed graph
coloring. Proceedings - 2013 IEEE Latin American Robotics Symposium, LARS
2013, pages 142–147, 2013.

[37] E. Cervera. Try to Start It! the Challenge of Reusing Code in Robotics
Research. IEEE Robotics and Automation Letters, 4(1):49–56, 2019.

[38] B. Chandrasekaran. Models versus rules, deep versus compiled, content versus
form: Some distinctions in knowledge systems research. IEEE Expert, 6:75–79,
1991.

[39] I-M. Chao, B. L. Golden, and E. A. Wasil. The team orienteering problem.
European Journal of Operational Research, 88(3):464–474, 1996.

[40] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki,
and S. Thrun. Principles of robot motion. MIT Press, 2005.

[41] Y. L. Chow, M. Pavone, B. M. Sadler, and S. Carpin. Trading Safety Versus
Performance: Rapid Deployment of Robotic Swarms with Robust Performance
Constraints. ASME Journal on Dynamic Systems, Measurement, and Control,
137(3):031005.1—-031005.11, 2014.

[42] A. Cosgun and H. I. Christensen. Context-aware robot navigation using
interactively built semantic maps. Paladyn, 9(1):254–276, 2018.

[43] C. Couprie, L. Najman, L. Najman, and Y. Lecun. Toward Real-time Indoor
Semantic Segmentation Using Depth Information. Journal of Machine Learning
Research, 2014.

[44] T Dang, C. Papachristos, and A. Kostas. Visual Saliency–aware Receding
Horizon Autonomous Exploration with Application to Aerial Robotics.
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 2526–2533, 2018.

[45] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. MonoSLAM: Real-time
single camera SLAM. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2007.

[46] M. P. Deisenroth and C. E. Rasmussen. PILCO: A model-based and data-
efficient approach to policy search. In International Conference on Machine
Learning (ICML), 2011.

Bibliography 132

[47] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009.

[48] J. Dichtl, L. Fabresse, G. Lozenguez, and N. Bouraqadi. PolyMap: A 2D
Polygon-Based Map Format for Multi-robot Autonomous Indoor Localization
and Mapping. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 10984 LNAI, pages 120–131, 2018.

[49] X. Ding, B. Englot, A. Pinto, A. Speranzon, and A. Surana. Hierarchical multi-
objective planning: From mission specifications to contingency management. In
IEEE International Conference on Robotics and Automation, pages 3735–3742,
2014.

[50] M. Dror, G. Laporte, and P. Trudeau. Vehicle Routing with Stochastic
Demands: Properties and Solution Frameworks. Transportation Science,
23(3):166–176, 1989.

[51] R. Dubé, A. Cramariuc, D. Dugas, J. Nieto, R. Siegwart, and C. Cadena.
SegMap: 3D Segment Mapping using Data-Driven Descriptors. 2018.

[52] M. Durner, M. Brucker, A. Wendt, P. Jensfelt, K. O. Arras, and R. Triebel.
Semantic Labeling of Indoor Environments from 3D RGB Maps. Proceedings of
the IEEE International Conference on Robotics and Automation, pages 1871–
1878, 2018.

[53] M. El Chamie, Y. Yu, and B. Açıkmeşe. Convex synthesis of randomized policies
for controlled markov chains with density safety upper bound constraints. In
American Control Conference, pages 6290–6295, 2016.

[54] M. M. Fard and J. Pineau. MDPs with Non-Deterministic Policies. Advances
in neural information processing systems, 21:1065–1073, 2009.

[55] X. Fei and S. Soatto. Visual-Inertial Object Detection and Mapping. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 11215 LNCS, pages
318–334, 2018.

[56] X. Fei, K. Tsotsos, and S. Soatto. A simple hierarchical pooling data structure
for loop closure. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 9907 LNCS, pages 321–337, 2016.

[57] E. A Feinberg and A. Shwartz. Handbook of Markov decision processes: methods
and applications, volume 40. Springer Science & Business Media, 2012.

Bibliography 133

[58] S. Feyzabadi and S. Carpin. Risk-aware path planning using hierarchical
constrained Markov decision processes. In Proceedings of the IEEE International
Conference on Automation Science and Engineering (CASE), pages 297–303,
2014.

[59] S. Feyzabadi and S. Carpin. Planning using hierarchical constrained markov
decision processes. Autonomous Robots, 41(8):1589–1607, 2017.

[60] S. Friedman, H. Pasula, and D. Fox. Voronoi Random Fields: Extracting the
Topological Structure of Indoor Environments via Place Labeling. Technical
report, 2007.

[61] B. Gallagher. Matching structure and semantics: A survey on graph-based
pattern matching. AAAI FS, 6:45–53, 2006.

[62] X. Gao and T. Zhang. Unsupervised learning to detect loops using deep neural
networks for visual SLAM system. Autonomous Robots, 41:1–18, 2017.

[63] I. Garcia-Camacho, G. Alenya, D. Kragic, M. Lippi, M. C. Welle, H. Yin,
R. Antonova, A. Varava, J. Borras, C. Torras, and A. Marino. Benchmarking
Bimanual Cloth Manipulation. IEEE Robotics and Automation Letters, 5(2):1–
1, 2020.

[64] S. Garg, N. Suenderhauf, and M. Milford. Don’t Look Back: Robustifying
Place Categorization for Viewpoint- and Condition-Invariant Place Recognition.
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 3645–3652, 2018.

[65] M. Gendreau, O. Jabali, and W. Rei. Chapter 8: Stochastic Vehicle Routing
Problems, pages 213–239. 2014.

[66] B. Golden, S. Raghavan, and E. Wasil. The Vehicle Routing Problem: Latest
Advances and New Challenges. Springer {US}, 2008.

[67] B. L. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval Research
Logistics (NRL), 34(3):307–318, 1987.

[68] M. C. Gombolay, R. J. Wilcox, and J. A. Shah. Fast scheduling of robot
teams performing tasks with temporospatial constraints. IEEE Transactions
on Robotics, 34(1):220–239, 2018.

[69] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

[70] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Siegwart, and
J. Nieto. Volumetric instance-aware semantic mapping and 3D object discovery.
IEEE Robotics and Automation Letters, 2019.

Bibliography 134

[71] J. Guerrero and G. Oliver. Swarm-like Methodologies for Executing Tasks with
Deadlines. Journal of Intelligent & Robotic Systems, 68(1):3–19, sep 2012.

[72] M. Günther, T. Wiemann, S. Albrecht, and J. Hertzberg. Model-based furniture
recognition for building semantic object maps. Artificial Intelligence, 247:336–
351, jun 2017.

[73] J. Hall, C. E. Rasmussen, and J. Maciejowski. Modelling and control of
nonlinear systems using gaussian processes with partial model information. In
Proceedings of the 51st IEEE Conference on Decision and Control (CDC), pages
5266–5271, 2012.

[74] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask R-CNN. In Proceedings
of the IEEE International Conference on Computer Vision, 2017.

[75] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2016.

[76] T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel Methods in Machine
Learning. Annals of Statistics, 36(3):1171–1220, 2008.

[77] W. H. Huang and K. R. Beevers. Topological map merging. International
Journal of Robotics Research, 24(8):601–613, 2005.

[78] A. Hussein, A. Al-Kaff, A. de la Escalera, and J. M. Armingol. Autonomous
Indoor Navigation of Low-Cost Quadcopters. 2015.

[79] Antonios G. Ioannis K. Semantic mapping for mobile robotics tasks: A survey.
Robotics and Autonomous Systems, 66:86–103, 2015.

[80] K. Jang, E. Vinitsky, B. Chalaki, B. Remer, L. Beaver, A. A. Malikopoulos, and
A. Bayen. Simulation to scaled city: Zero-shot policy transfer for traffic control
via autonomous vehicles. In Proceedings of the 10th ACM/IEEE International
Conference on Cyber-Physical Systems, ICCPS ’19, pages 291–300, New York,
NY, USA, 2019. ACM.

[81] L. Kallenberg. Markov decision processes - Lectures notes. Technical report,
University of Leiden, Leiden, 2009.

[82] V. Karpov, A. Migalev, A. Moscowsky, M. Rovbo, and V. Vorobiev. Multi-robot
exploration and mapping based on the subdefinite models. In A. Ronzhin,
G. Rigoll, and R. Meshcheryakov, editors, Interactive Collaborative Robotics,
pages 143–152. Springer International Publishing, 2016.

[83] K. Karydis. A Data-Driven Hierarchical Framework for Planning, Navigation,
and Control of Uncertain Systems: Applications to Miniature Legged Robots.
PhD thesis, University of Delaware, 2015.

Bibliography 135

[84] K. Karydis and M. A. Hsieh. Uncertainty Quantification for Small Robots
Using Principal Orthogonal Decomposition, pages 33–42. Springer Proceedings
in Advanced Robotics. Springer International Publishing, 2017.

[85] K. Karydis, I. Poulakakis, J. Sun, and H. G. Tanner. Probabilistically valid
stochastic extensions of deterministic models for systems with uncertainty. The
International Journal of Robotics Research, pages 1–18, 2015.

[86] K. Karydis, I. Poulakakis, J. Sun, and H. G. Tanner. Probabilistically Valid
Stochastic Extensions of Deterministic Models for Systems with Uncertainty.
The International Journal of Robotics Research, 34(10):1278–1295, 2015.

[87] K. Karydis, D. Zarrouk, I. Poulakakis, R. S. Fearing, and H. G. Tanner.
Planning with the STAR (s). In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3033–3038. IEEE, 2014.

[88] L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and AutomaProbabilistic roadmaps for pathtion,
12(4):566–580, aug 1996.

[89] G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In 2007 6th IEEE and ACM International Symposium on Mixed
and Augmented Reality, ISMAR, 2007.

[90] M.J. Kochenderfer. Decision Making Under uncertainty. MIT Lincoln
laboratory series, 2015.

[91] A. Kolling and S. Carpin. Extracting surveillance graphs from robot maps. In
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2323–2328. IEEE, 2008.

[92] V. Koltchinskii, C.T. Abdallah, M. Ariola, P. Dorato, and D. Panchenko.
Statistical learning control of uncertain systems: it is better than it seems.
Technical Report EECE-TR-00-001, University of New Mexico, 2000.

[93] B. Kuipers. The spatial semantic hierarchy. Artificial Intelligence, 119:191–233,
2000.

[94] D. Lang and D. Paulus. Semantic Maps for Robotics. IEEE International
Conference on Robotics and Automation, 2014.

[95] G. Laporte, F. Louveaux, and H. Mercure. The vehicle routing problem with
stochastic travel times. Transportation science, 26(3):161–170, 1992.

[96] S. M. Lavalle, J. J. Kuffner, and Jr. Rapidly-Exploring Random Trees: Progress
and Prospects. In Algorithmic and Computational Robotics: New Directions,
pages 293–308, 2000.

Bibliography 136

[97] S.M. LaValle. Planning algorithms. Cambridge academic press, 2006.

[98] S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning.
International Journal of Robotics Research, 20(5):378–400, 2001.

[99] J. Leitner, A. W. Tow, N. Sunderhauf, J. E. Dean, J. W. Durham, M. Cooper,
M. Eich, C. Lehnert, R. Mangels, C. McCool, P. T. Kujala, L. Nicholson,
T. Pham, J. Sergeant, L. Wu, F. Zhang, B. Upcroft, and P. Corke. The
ACRV picking benchmark: A robotic shelf picking benchmark to foster
reproducible research. Proceedings - IEEE International Conference on Robotics
and Automation, pages 4705–4712, 2017.

[100] H. Li and F. Nashashibi. A new method for occupancy grid maps merging:
Application to multi-vehicle cooperative local mapping and moving object
detection in outdoor environment. 12th International Conference on Control,
Automation, Robotics and Vision, 2012(December):632–637, 2012.

[101] Q. Liu, R. Li, H. Hu, and D. Gu. Building semantic maps for blind people
to navigate at home. Proceedings of the 8th Computer Science and Electronic
Engineering Conference, pages 12–17, 2017.

[102] W. Liu and M.H. Ang. Incremental sampling-based algorithm for risk-aware
planning under motion uncertainty. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 2051–2058, 2014.

[103] M. Loeve. Probability theory: foundations, random sequences. 1955.

[104] A. W. Long, K. C. Wolfe, M. Mashner, and G. S. Chirikjian. The Banana
Distribution is Gaussian: A Localization Study with Exponential Coordinates.
In Proceedings of Robotics: Science and Systems, 2012.

[105] D. G. Lowe. Object recognition from local scale-invariant features. In
Proceedings of the seventh IEEE international conference on computer vision,
volume 2, pages 1150–1157. Ieee, 1999.

[106] S. Lowry, N. Sunderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke, and
M. J. Milford. Visual Place Recognition: A Survey. IEEE Transactions on
Robotics, 32(1):1–19, 2016.

[107] B. Luders, M. Kothari, and J. How. Chance constrained RRT for probabilistic
robustness to environmental uncertainty. In AIAA guidance, navigation and
control conference, 2010.

[108] R. C. Luo and M. Chiou. Hierarchical Semantic Mapping Using Convolutional
Neural Networks for Intelligent Service Robotics. IEEE Access, 6:61287–61294,
2018.

Bibliography 137

[109] M. Luperto and F. Amigoni. Predicting the global structure of indoor
environments: A constructive machine learning approach. Autonomous Robots,
pages 1–23, 2018.

[110] Dimitris G Manolakis, Vinay K Ingle, Stephen M Kogon, et al. Statistical
and adaptive signal processing: spectral estimation, signal modeling, adaptive
filtering, and array processing. McGraw-Hill Boston, 2000.

[111] F. Mart́ınez Santa, F.y H. Mart́ınez Sarmiento, and E. Jacinto Gómez. Using
the delaunay triangulation and voronoi diagrams for navigation in observable
environments. Revista Tecnura, 2014.

[112] M. Mazuran and F. Amigoni. Matching line segment scans with mutual
compatibility constraints. In Proceedings - IEEE International Conference on
Robotics and Automation, 2014.

[113] S. Mccammon and G. A. Hollinger. Topological Hotspot Identification for
Informative Path Planning with a Marine Robot. Proceedings of the IEEE
International Conference on Robotics and Automation, pages 4865–4872, 2018.

[114] O. Mendez, S. Hadfield, N. Pugeault, and R. Bowden. SeDAR - Semantic
Detection and Ranging: Humans can localise without LiDAR, can robots?
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 6053–6060, 2018.

[115] M. Milford, S. Anthony, and W. Scheirer. Self-Driving Vehicles: Key Technical
Challenges and Progress Off the Road. IEEE Potentials, 39(1):37–45, jan 2020.

[116] M. Mi lkowski, W. M. Hensel, and M. Hohol. Replicability or reproducibility?
On the replication crisis in computational neuroscience and sharing only
relevant detail. Journal of Computational Neuroscience, 45(3):163–172, 2018.

[117] H. Mnyusiwalla, P. Triantafyllou, P. Sotiropoulos, M. A. Roa, W. Friedl, A. M.
Sundaram, D. Russell, and G. Deacon. A Bin-Picking Benchmark for Systematic
Evaluation of Robotic Pick-and-Place Systems. IEEE Robotics and Automation
Letters, 5(2):1–1, 2020.

[118] R. Mur-Artal and J.D. Tardos. ORB-SLAM2 An Open-Source SLAM System
for Monocular Stereo.pdf. IEEE Transactions on Robotics, 33(5):1255–1262,
2017.

[119] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[120] L. Naik, S. Blumenthal, N. Huebel, H. Bruyninckx, and E. Prassler. Semantic
mapping extension for OpenStreetMap applied to indoor robot navigation.
Proceedings - IEEE International Conference on Robotics and Automation,
2019-May:3839–3845, 2019.

Bibliography 138

[121] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations
for maximizing submodular set functions—I. Mathematical programming,
14(1):265–294, 1978.

[122] A. Nemirovski and A. Shapiro. Convex approximations of chance constrained
programs. SIAM Journal on Optimization, 17(4):969–996, 2007.

[123] V. Nguyen, A. Harati, A. Martinelli, R. Siegwart, and N. Tomatis. Orthogonal
SLAM: A step toward lightweight indoor autonomous navigation. In IEEE
International Conference on Intelligent Robots and Systems, 2006.

[124] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2004.

[125] P. Núñez, R. Vázquez-Mart́ın, J. C. Del Toro, A. Bandera, and F. Sandoval.
Feature extraction from laser scan data based on curvature estimation for mobile
robotics. In Proceedings - IEEE International Conference on Robotics and
Automation, 2006.

[126] T. Ogunfunmi. Adaptive Nonlinear System Identification - The Volterra and
Wiener Model Approaches, volume 8. 2007.

[127] K. Okumura, Y. Tamura, and X. Défago. Amoeba Exploration: Coordinated
Exploration with Distributed Robots. 2018 9th International Conference on
Awareness Science and Technology, iCAST 2018, pages 191–195, 2018.

[128] F.A. Oliehoek and C. Amato. A concise introduction to decentralized POMDPs.
Springer, 2016.

[129] F. O. Ostermann and C. Granell. Advancing Science with VGI: Reproducibility
and Replicability of Recent Studies using VGI. Transactions in GIS, 21(2):224–
237, 2017.

[130] C. C. Pantelides and J. G. Renfro. The online use of First-Principles Models in
process operations: review, current status & future needs. Technical report.

[131] P. M. Pardalos and L. Pitsoulis. Nonlinear Assignment Problems: Algorithms
and Applications, volume 7. Springer Science & Business Media, 2000.

[132] J. Park, A. J. Sinclair, R. E. Sherrill, E. A. Doucette, and J. W. Curtis.
Map merging of rotated, corrupted, and different scale maps using rectangular
features. Proceedings of the IEEE/ION Position, Location and Navigation
Symposium, pages 535–543, 2016.

[133] M. J. Paulik, J. Overholt, M. Krishnan, Y. Alnounou, and G. Hudas. Occupancy
Grid Map Merging using Feature Maps. In IASTED Technology Conferences,
pages 10.2316/P.2010.706–074., 2016.

Bibliography 139

[134] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap, Y. Fan
Chen, C. Choi, J. Dusek, D. Hoehener, S-Y. Liu, M. Novitzky, I. Franzoni
Okuyama, J. Pazis, G. Rosman, V. Varricchio, H.-C. Wang, D. Yershov,
H. Zhao, M. Benjamin, C. Carr, M. Zuber, S. Karaman, E. Frazzoli, D. Del
Vecchio, D. Rus, J. How, J. Leonard, and A. Censi. Dukietown: an open,
inexpensive and flexible platform for autonomy education and research. In
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 1497–1504, 2017.

[135] R. Peng. A Simple Explanation for the Replication Crisis in Science · Simply
Statistics, 2016.

[136] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer
of robotic control with dynamics randomization. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 3803–3810, May 2018.

[137] S. T. Pfister, S. I. Roumeliotis, and J. W. Burdick. Weighted line fitting
algorithms for mobile robot map building and efficient data representation.
In Proceedings - IEEE International Conference on Robotics and Automation,
2003.

[138] A. Pörtner, M. Hoffmann, S. Zug, and M. König. SwarmRob: A Docker-Based
Toolkit for Reproducibility and Sharing of Experimental Artifacts in Robotics
Research. Proceedings - 2018 IEEE International Conference on Systems, Man,
and Cybernetics, SMC 2018, pages 325–332, 2019.

[139] L. F. Posada, A. Velasquez-lopez, F. Hoffmann, and T. Bertram. Semantic
Mapping with Omnidirectional Vision. Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1901–1907, 2018.

[140] A. Pronobis, O. Mart́ınez Mozos, B. Caputo, and P. Jensfelt. Multi-modal
Semantic Place Classification On behalf of: Multimedia Archives can be found
at: The International Journal of Robotics Research Additional services and
information for Multi-modal Semantic Place Classification. The International
Journal of Robotics ResearchThe International Journal of Robotics Research,
29(3):298–320, 2010.

[141] A. Purohit, P. Zhang, B. M. Sadler, and S. Carpin. Deployment of swarms
of micro-Aerial vehicles: From Theory To practice. Proceedings - IEEE
International Conference on Robotics and Automation, pages 5408–5413, 2014.

[142] M. L. Puterman. Markov decision processes : discrete stochastic dynamic
programming. Wiley-Interscience, British Columbia, 2005.

[143] A. Quattrini Li, R. Cipolleschi, M. Giusto, and F. Amigoni. A semantically-
informed multirobot system for exploration of relevant areas in search and
rescue settings. Autonomous Robots, 40(4):581–597, 2016.

Bibliography 140

[144] R. Ramaithititima. Landmark-based Exploration with Swarm of Resource
Constrained Robots. Proceedings of the IEEE International Conference on
Robotics and Automation, pages 5034–5041, 2018.

[145] C. E. Rasmussen. Gaussian processes in machine learning. In Summer School
on Machine Learning, pages 63–71. Springer, 2003.

[146] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[147] G. Robles. Replicating MSR: A study of the potential replicability of papers
published in the Mining Software Repositories Proceedings. Proceedings -
International Conference on Software Engineering, pages 171–180, 2010.

[148] G. Robles, U. Rey, J. Carlos, and D. M. Germán. Beyond Replication : An
example of the potential benefits of replicability in the Mining of Software
Repositories Community. Victoria, (February):0–3, 2010.

[149] E. Robotics, N. Noe, F. Bonsignorio, J. Hallam, and A. P. Del Pobil. Good
Experimental Methodology GEM Guidelines. Technical report, 2008.

[150] M. Rohani, D. Gingras, and D. Gruyer. A novel approach for improved vehicular
positioning using cooperative map matching and dynamic base station DGPS
concept. IEEE Transactions on Intelligent Transportation Systems, 17(1):230–
239, 2016.

[151] S. Saeedi, M. Trentini, M. Seto, and H. Li. Multiple-Robot Simultaneous
Localization and Mapping: A Review. Journal of Field Robotics, 33(1):3–46,
2016.

[152] R. Sandstr, A. Bregger, B. Smith, S. Thomas, and N. M. Amato. Topological
Nearest-Neighbor Filtering for Sampling-Based Planners. Proceedings of
the IEEE International Conference on Robotics and Automation, Brisbane,
Australia, pages 3053–3060, 2018.

[153] D. C. Shah and M. E. Campbell. A qualitative path planner for robot navigation
using human-provided maps. International Journal of Robotics Research, 2013.

[154] S. G. Shahbandi, M. Magnusson, and K. Iagnemma. Nonlinear Optimization
of Multimodal Two-Dimensional Map Alignment With Application to Prior
Knowledge Transfer. IEEE Robotics and Automation Letters, 3(3):2040–2047,
2018.

[155] M.T.J. Spaan. Partially observable Markov decision processes. In M. Wiering
and M. van Otterlo, editors, Reinforcement Learning: State-of-the-art. Springer,
2012.

Bibliography 141

[156] M. F. Stoelen, V. F. De Tejada, A. Jardón Huete, C. Balaguer, and F. P.
Bonsignorio. Distributed and adaptive shared control systems. IEEE Robotics
and Automation Magazine, 22(4):137–146, 2015.

[157] P. Stotko, S. Krumpen, M. Schwarz, C. Lenz, S. Behnke, R. Klein, and
M. Weinmann. A VR System for Immersive Teleoperation and Live Exploration
with a Mobile Robot. pages 3630–3637, 2020.

[158] J. L. Susa Rincon and S. Carpin. Map Merging of Oriented Topological Semantic
Maps. In International Symposium on Multi-Robot and Multi-Agent Systems,
pages 202–208, 2019.

[159] J. L. Susa Rincon and S. Carpin. Time-constrained exploration using
toposemantic spatial models: A reproducible approach to measurable robotics.
IEEE Robotics Automation Magazine, 26(3):78–87, Sep. 2019.

[160] J. L. Susa Rincon, P. Tokekar, V. Kumar, and S. Carpin. Rapid deployment
of mobile robots under temporal, performance, perception, and resource
constraints. IEEE Robotics and Automation Letters, 2(4):2016–2023, Oct 2017.

[161] R.S. Sutton and A.G. Barto. Reinforcement Learning. MIT Press, 2018.

[162] S. Temizer, M. J Kochenderfer, L. P. Kaelbling, T. Lozano-Pérez, and J. K.
Kuchar. Collision Avoidance for Unmanned Aircraft using Markov Decision
Processes *. In AIAA Guidance, Navigation, and Control Conference, Toronto,
2010. American Institute of Aeronautics and Astronautics.

[163] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2006.

[164] S. Thrun and M. Montemerlo. The graph SLAM algorithm with applications to
large-scale mapping of urban structures. In International Journal of Robotics
Research, volume 25, pages 403–429, 2006.

[165] S. Thrun and Others. Robotic mapping: A survey. Exploring artificial
intelligence in the new millennium, 1(1-35):1, 2002.

[166] P. Tokekar and V. Kumar. Visibility-based persistent monitoring with robot
teams. In 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3387–3394. IEEE, 2015.

[167] L. Trevisan. Combinatorial optimization: exact and approximate algorithms.
Standford University, 2011.

[168] P. Triantafyllou, H. Mnyusiwalla, P. Sotiropoulos, M. A. Roa, D. Russell, and
G. Deacon. A benchmarking framework for systematic evaluation of robotic
pick-and-place systems in an industrial grocery setting. Proceedings - IEEE
International Conference on Robotics and Automation, 2019-May:6692–6698,
2019.

Bibliography 142

[169] E. Tsardoulias, A. Thallas, and L. Petrou. Metric map merging using RFID
tags & topological information. CoRR, abs/1711.06591, 2017.

[170] J. van den Berg, P. Abbeel, and K. Goldberg. LQG-MP: optimized path
planning for robots with motion uncertainty and imperfect state information.
International Journal of Robotics Research, 30(7):895–913, 2011.

[171] J. van den Berg, D. Wilkie, S.J. Guy, M. Niethammer, and D. Manocha.
LQG-obstacles: feedback control with collision avoidance for mobile robots
with motion and sensing uncertainty. In Proceeding of the IEEE International
Conference on Robotics and Automation, pages 346–353, 2012.

[172] B. Vanderborght. Decisions, Decisions [From the Editor’s Desk]. IEEE Robotics
Automation Magazine, 26(3):4–13, 2019.

[173] V. N. Vapnik. An overview of statistical learning theory. IEEE Transactions
on Neural Networks, 10(5):988–999, 1999.

[174] K. M. Varadarajan. Topological mapping for robot navigation using affordance
features. In ICARA 2015 - Proceedings of the 2015 6th International Conference
on Automation, Robotics and Applications, pages 42–49, 2015.

[175] E. Vidal, J. D. Hern, and K. Isteni. Optimized environment exploration
for autonomous underwater vehicles. Proceedings of the IEEE International
Conference on Robotics and Automation, pages 6409–6416, 2018.

[176] M. Vidyasagar. Randomized Algorithms for Robust Controller Synthesis using
Statistical Learning Theory. Automatica, 37(10):1515–1528, 2001.

[177] M. Vidyasagar. Learning and Generalization With Applications to Neural
Networks. Springer-Verlag, London, UK, 2nd edition, 2003.

[178] J. Vilela, Y. Liu, and G. Nejat. Semi-autonomous exploration with robot teams
in urban search and rescue. 2013 IEEE International Symposium on Safety,
Security, and Rescue Robotics, SSRR 2013, pages 1–6, 2013.

[179] N. G. Villanueva-Chacon and E. A. Martinez-Garcia. Tele-robotic distributed
architecture for sewer exploration. Proceedings of the 6th Andean Region
International Conference, Andescon 2012, pages 220–223, 2012.

[180] E. K. Warrington. The selective impairment of semantic memory. The Quarterly
journal of experimental psychology, 27(4):635–657, 1975.

[181] M. Wiering and M. van Otterlo, editors. Reinforcement Learning: State-of-the-
art. Springer, 2012.

Bibliography 143

[182] B. Yamauchi. A frontier-based exploration for autonomous exploration.
IEEE International Symposium on Computational Intelligence in Robotics and
Automation, Monterey, CA, pages 146–151, 1997.

[183] B. Yamauchi. A frontier-based approach for autonomous exploration. In
International Symposium on Computational Intelligence in Robotics and
Automation, pages 146–151, 1997.

[184] Z. Yan, N. Jouandeau, and A. A. Cherif. A survey and analysis of multi-robot
coordination. International Journal of Advanced Robotic Systems, 10, 2013.

[185] B. Yang, D. Jayaraman, J. Zhang, and S. Levine. REPLAB: A reproducible
low-cost arm benchmark for robotic learning. Proceedings - IEEE International
Conference on Robotics and Automation, 2019-May:8691–8697, 2019.

[186] D. Zhu, T. Li, D. Ho, C. Wang, and M. Q. Meng. Deep Reinforcement Learning
Supervised Autonomous Exploration in Office Environments. Proceedings of the
IEEE International Conference on Robotics and Automation, pages 7548–7555,
2018.

[187] D. Zou and P. Tan. CoSLAM: Collaborative visual SLAM in dynamic
environments. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2013.

	List of Symbols
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgment
	Curriculum Vita
	Abstract
	Introduction
	Literature Review
	Planning under Uncertainty
	Markov Decision Processes - MDP
	Constrained Markov Decision Processes - CMDP

	Context for the Rapid Deployment Problem
	Mapping and Exploration
	Mapping
	Map Merging
	Exploration and SLAM

	Replicability and R-Articles

	Theoretical Background
	Introduction
	Markov Decision Process - MDP
	MDP Formulation

	Constrained Markov Decision Process - CMDP
	CMDP Formulation
	Solving CMDPs

	Rapid Deployment of Mobile Robots under Constraints
	Introduction
	Observing Multiple Targets with One Robot
	Environment model
	A model based on CMDPs

	Solving the rapid deployment problem
	Group Assignment Problem
	Simulations
	Conclusions

	Motion Planning Under Temporal Constraints with Stochastic Motion Primitives: Theory and Practice
	Introduction
	Preliminary Background
	Uncertainty Quantification via Probabilistically-Valid Stochastic Models
	Stochastic Motion Primitives Derivation
	Extracting the Transition Probabilities
	Deterministic Model Fitting
	Stochastic Model Extension

	Experimental Setup
	Environment
	Infrastructure

	CMDP definition
	Experimental Validation
	Conclusions

	Time-Constrained Exploration Using Toposemantic Spatial Models
	Introduction
	Replicability
	Oriented Topological Semantic Maps
	OTSM Formulation
	Incremental Map Construction, Navigation, and Exploration

	Exploration Algorithms
	Random Strategy Exploration
	Topological Frontier
	Topological Frontier with Normalized Distances
	Semantic: Explore Corridors First
	Semantic: Complete Corridors First

	Experimental Validation
	Setup
	Maneuvers
	Calculating the Failure and Temporal deadline
	Software Architecture

	Results
	Random Strategy Exploration
	Topological Frontier Exploration
	Topological Frontier with Normalized Distances Exploration
	Semantic Strategy Exploration

	Conclusions

	OTSM Implementation
	Introduction
	Systems Implementations
	Intersection Detection System (IDS) using 2D LIDAR
	Labeling System (LS) using 2D images
	Loop closure problem

	Experimental Setup
	Results
	Conclusions

	Map Merging of Oriented Topological Semantic Maps
	Introduction
	Inverse Warrington's Object Recognition Model (IWORM)
	IWORM Inspired Map Merging of OTSMs
	Sources of error
	Understanding Errors

	Simulations
	Setup

	Results
	Conclusions

	Conclusions
	Summary of Contributions
	Future Work

	Bibliography

