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Abstract— We consider the problem of grasping concave
objects, i.e., objects whose surface includes regions with negative
curvature. When a multifingered hand is used to restrain
these objects, these areas can be advantageously used to
determine grasps capable of more robustly resisting to external
disturbance wrenches. We propose a new grasp quality metric
specifically suited for this case, and we use it to inform a grasp
planner searching the space of possible grasps. Our findings
are validated both in simulation and on a real robot system
executing a bin picking task. Experimental validation shows
that our method is more effective than those not explicitly
considering negative curvature.

I. INTRODUCTION

The problems of grasp quality evaluation and grasp plan-
ning are inherently intertwined. Grasp planning is often
performed as an informed search process in the space of
possible grasps, and grasp quality is used as the metric to
inform the search. The ability to restrain an object despite
external disturbance wrenches is greatly desirable in numer-
ous applications, and this led to the concept of force closure
grasp, i.e., a grasp capable of resisting an arbitrary external
disturbance wrench. Consequently, numerous grasp quality
metrics have been proposed in literature to evaluate this
ability (see Section II for references.) Most grasp quality
metrics, however, just consider the normal component of the
force exerted at a contact point and do not take into account
the surface local to the point where the force is applied.
Figure 1 illustrates this situation in the simpler case of planar
objects. The leftmost figure shows a concave object and the
blue dots indicate two contact points for a possible grasp.
Similarly, the rightmost figure illustrates a convex object and
the blue dots also indicate two contact points for a grasp.
Most grasp quality metrics would rank these two grasps as
equivalent because, as shown in the middle figure, locally the
two surfaces coincide and therefore the same grasp wrench
space is generated. Real world experience and common sense
however indicate that the one on the left is more stable, i.e.,
it will be capable of resisting disturbance wrenches of higher
magnitude (think for example to a disturbance force acting
vertically on the middle of the lower edge of both objects.)
This effect is magnified if we also consider that in practice
contacts hardly occur at just one point.
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Fig. 1. Subfigure (a) shows two grasping points on the surface of a
concave planar object, whereas subfigure (c) considers a convex planar
object. Subfigure (b) in the middle show that the normals at the grasping
points are identical.

The simple example we just illustrated motivates the con-
tribution presented in this paper, i.e., the idea of integrating
the surface geometry into the grasp quality metric through the
friction cone. More precisely, we start with the development
of a grasp quality metric specifically conceived for objects
featuring negative curvature boundaries, i.e., concave ob-
jects. This metric overcomes classical approaches exclusively
considering normals at the contact point but ignoring the
curvature of the local neighborhood to the contact point. This
idea builds upon the known concept of second order force
and form closure considered in literature. Then, we use this
new metric to inform a grasp planner that actively seeks to
exploit negative curvature regions when considering concave
objects to grasp.

The rest of the paper is structured as follows. Related
work is presented in Section II, while in Section III we
introduce relevant mathematical background. In Section IV
we formalize the concept of curvature dependent grasp
quality metric, and we sketch how this can be used for grasp
planning. The approach is demonstrated in simulation and
on a real robotic arm with a multifingered robotic hand in
Section V. Finally, we draw conclusions and outline future
work in Section VI.

II. RELATED WORK

Due to their practical importance to implement efficient
grasp planners, grasp quality metrics have been extensively
studied in the past. A recent survey by Roa and Suárez
[16] offers a comprehensive summary of twenty-four metrics
proposed through the years, and reveals that negative curva-
ture is normally not considered. Despite the fact that many
different metrics have been proposed in literature, very few
are considered in practice. The metric perhaps most used



in practice was proposed by Ferrari and Canny more than
twenty years ago [4] and evaluates a grasp based on its ability
to resist an arbitrary external disturbance wrench. To this end,
it exclusively considers the normal component of the force
at the contact point. This metric became popular because it
is intuitive and relatively simple to determine, since it boils
down to the computation of a six dimensional convex hull.
However, it is not immune from drawbacks. For example, it
is not scale invariant, and its numeric value depends on an
arbitrarily chosen origin point to compute torques. Perhaps
most importantly from a practical standpoint, the metric con-
siders the ability to resist arbitrary external wrenches, while
in reality disturbance wrenches are almost invariably due to
disturbance forces. In an effort to overcome the limitations
of this approach, methods considering only disturbances
occurring in practice were proposed [1], [18]. The metrics,
however, still do not consider the local curvature of the object
being grasped, and did not become very popular because
of their computational burden. Recently, we proposed two
algorithms to significantly expedite the computation of these
metrics [7], [8], but these contributions do not alter their
definition and therefore do not consider the local curvature
of the object at the grasping point.

The idea of explicitly considering negative curvature in
grasp quality evaluation is related to second order force
and form closure, a concept well known in literature [14],
[15]. However, grasp metrics directly related to this concept
are not popular. The idea of exploiting concavities to better
restrain an object has also been considered already, especially
for form closure grasps [5]. One of the few contributions
that explored the area of grasping on curved parts but did
not take advantage of negative curvature was proposed in
[3]. Concavities on the object surface are often considered
in caging, and caging grasps where the emphasis is more
on form closure and on the ability to retain an object in a
certain area or configuration without necessarily immobiliz-
ing it. Various studies linking caging to grasping have been
proposed [17], [19], [20]. These methods, however introduce
further assumptions and constraints for the shape of the
object or the structure of the robotic hand, whereas we aim
to develop a broadly applicable method.

III. BACKGROUND

We shortly introduce some concepts related to force clo-
sure grasps. The reader is referred to [2], [12], or [14] for
a comprehensive introduction to the topic. Let B be a rigid
body to grasp using a multifingered robotic hand. We assume
the commonly used point contact finger model, i.e., each
finger establishes contact with B at a single point p and
exerts a force f towards the object. We assume that the
surface of B is differentiable in p and let Tp be the tangent
plane in p. A local, right-handed orthonormal reference
frame is established at the contact point p, with two axis u
and w lying on Tb and the third axis t orthogonal to Tp and
pointing inwards. Let [f1 f2 f3] be the three components of
f along t, u and w, respectively. According to the Coulomb
friction model, let µ be the friction coefficient between B and

the finger at p. Slippage between the finger and the object
does not occur as long as the force f belongs to the following
set:

F (p) =

{
f ∈ R3 | f1 ≥ 0 ∧

√
f22 + f23 ≤ µf1

}
.

Mathematically, F (p) describes a cone and it is therefore
called friction cone at point p. The first condition implies
that the force f is directed inside the object, while the
second condition relates the intensities of the tangential and
orthogonal components. From a practical perspective F (p)
is often approximated with a regular pyramid (see Figure
2) and the force f is expressed as a positive combination
of the components along the edges of the pyramid, i.e.,
f =

∑k
j=1 αjfj , with αj ≥ 0.

Fig. 2. Friction cone and its approximation

The grasping metrics proposed by Ferrari and Canny
consider the elementary wrenches induced by force f . The
jth elementary wrench is wj = [fj p × fj ], where the
coordinates of p are expressed in an arbitrary reference
system. The center of mass of B is usually chosen as origin
for the reference system, but any other point is equally valid.
The metrics consider the convex hull of either the union of
the elementary wrenches generated by all contact points, or
the convex hull of their Minkovsky sum. While the reader
is referred to [4] for the precise details and definition, the
intuition is that as the opening of the cone increases, the score
of the grasp improves because it is capable of resisting more
disturbance wrenches.

IV. GRASP QUALITY METRICS WITH NEGATIVE
CURVATURE

In this section we develop the mathematical foundations
for the grasp quality metric we propose. To explain the
concepts, we use pictures displaying planar objects, but the
method we develop aims at the three dimensional scenario.
From an analytic perspective, differential geometry offers the
pertinent tools and concepts [6], although, as we will outline
in the next section, from a practical standpoint objects are
most often represented using triangular meshes and therefore



feature many local non-differential patches. Moreover, as
we explained in the previous section, in practical scenarios
most representations rely on discrete models (e.g., discretized
friction cones). Therefore it will be necessary to eventually
reconcile the continuous models and representations with
their discrete counterparts. For the time being we assume that
the boundary of the object being grasped can be decomposed
as a finite collection of surfaces and that the grasping points
are placed at differentiable points. That is to say that if
p ∈ R3 is a contact point on the surface of the object, then
there exists a neighborhood of p such that the points x on
the surface satisfy the equation g(x) = 0 where g : R3 → R
is a suitable function twice differentiable in p. Moreover,
points inside the object are such that g(x) < 0. To begin
with, consider Figure 3. The three blue dots display three
possible contact points on the surface of an object. According
to our previous considerations, point number 1 and number
3 lie in a locally convex and concave patches of the surface.
Therefore point number 3 is more valuable than point number
1 in terms of its ability to resist an external wrench, e.g.,
a wrench due to an external lateral force. Point number 2
represents an intermediate situation, whereby an orthogonal
force applied there would help resist forces pushing the
object up, but not down.

Fig. 3. Three different conditions for contact points on a curved surface
bounding the object from above.

Next, consider Figure 4. All cases depict contact points
in locally convex patches of the surface. However, from left
to right, the local curvature increases, and then intuitively
one would prefer the rightmost contact point for its ability
to restrain a disturbance wrench.

Fig. 4. Grasping points in blue on the black surface with different ratio
of curvature.

Starting from the above observations, we then aim at the
analytic definition of a quality metric incorporating them.

The idea is to dilate the friction cone F (p) at the contact
point considering the local curvature of the surface at the
contact point. According to our assumptions, the Hessian
matrix of the function g at p exists. Let H(p) be such matrix.
The local concavity or convexity of g in p can be determined
from the properties of H(p). If g is locally convex, then the
friction cone remains unchanged, as suggested by the first
contact point in Figure 3. If g is instead locally concave, then
the friction cone should be expanded, as for the third contact
point in Figure 3. Such expansion should not be isotropic
(i.e., uniform), but rather dependent on the local curvature.
That is to say that the friction cone should be expanded more
towards the directions in which g grows more, and viceversa.
Different surface curvature measures have been proposed in
differential geometry. However, aiming at a definition that
can be turned into an easy to compute method, we instead
estimate the curvature, and then the expansion of the friction
code, considering directional slices of the function g. Let v
be a unit length vector on the tangent plane Tp, and let gv
be the unidimensional function obtained evaluating g along
the direction identified by v. For a given small constant h,
we therefore define

∇g′v =
g′(x+ hv)− g′(x)

h

where g′ is a well defined derivative of the single variable
function g evaluated along v. Note that h is a constant for
a given hand, but will in general vary for different hands,
i.e., be a function of the finger size. From an algorithmic
standpoint this can be achieved considering a few directions
on the plane tangent to g in p and then computing the ∇g′v
along these directions. Directions can be uniformly spaced
or randomly selected. The same idea can be applied when
g is locally concave, convex, or neither convex nor concave
(e.g., a saddle point). In each case the friction cone F (p)
is expanded exclusively in the directions along which ∇g′v
is positive. This idea can be formalized as follows. For a
given force f , let vf be the unit length vector lying in Tp
and having the same direction defined by f2 and f3. In the
frame t,u,w, vf is then1

vf =

[
0

f2√
f22 + f23

f3√
f22 + f23

]
.

We then define the expanded friction cone FE(p) as

FE(p) =

{
f |
√
f22 + f23 ≤ µf1 if ∇g′vf

(p) ≤ 0

f |
√
f22 + f23 ≤ (µ+ ζ)f1 if ∇g′vf

(p) > 0

Where ζ = k∇g′vf
(p) and k is a fixed parameter k > 0.

In particular, since the same k is used to perform alternative
grasps for the same object, the relative score is rather
insensitive to k as long as it is positive. Note that in this
definition we did not write the condition f1 ≥ 0 in the
interest of space, but this should be nevertheless assumed.

1Recall that the first component is along the orthogonal axis t.



The newly defined FE(p) formally captures the cases
intuitively discussed in Figure 3 and 4, i.e., it expands F (p)
only along directions of negative curvature, and it moreover
performs an anisotropic expansion, i.e., the cone is grown
more in the directions of larger negative curvature. Note that
from a geometric standpoint, FE(p) is still a cone albeit its
base is no longer circular.

From a practical perspective, as we mentioned in the previ-
ous section, the friction cone F (p) is most often represented
by a regular pyramid. Moreover, as explained in the next sec-
tion, the directional derivative is evaluated only along a finite
number of directions. A convenient approach is to evaluate
directional derivatives only along directions orthogonal to the
pyramid edges and to then expand only the edges associated
with directions revealing negative curvatures.

A. Grasp Planner using Negative Curvature

In this subsection we describe a grasp planner using the
grasp quality metric we just presented to inform its search
through the space of possible grasps. While the underlying
principles are general, aiming at the validation of the robot on
our existing robotic hardware, some implementation choices
are made considering the hardware we will use. In particular
we focus on the multifingered Dora Hand produced by
Dorabot, Inc., whose CAD rendering is shown in figure 5.
Note that while the fingers can be closed, they cannot be
moved around the palm of the hand, and therefore the relative
position of their first joint remains constant. The finger on
the left of the figure is indicated as finger 1 in the following.

Fig. 5. Dora Hand model.

As formerly stated, in most scenarios objects are rep-
resented using triangular meshes. This is very often true
also when considering objects with curved surfaces, since
they can be modeled as a large collection of small size
triangles. In the following, we indeed hypothesize that the
objects’ surface is represented by meshes of triangles, and
it is therefore necessary to appropriately adapt the general
concepts we developed assuming differential surfaces.

The planner starts locating all edges whose adjacent faces
form a concave region. Figure 6 shows some examples, with
such edges shown in red, while the normals of the two
adjacent faces are shown in green and blue.

The planner we developed is inspired by the approach
presented in GraspIt! [11], i.e., it randomly generates hand

Fig. 6. Examples of the objects we used in simulation. The top row also
shows the negative curvature attached to edges in red lines. Blue and green
lines are the normal vector of the two adjacent faces connected by the
negative curve edge.

positions around the object to be grasped and then determines
the contact points by simulating finger closing. Eventually,
the grasp with the highest value for the grasping metric is re-
turned. This general idea is adapted for the hand we consider
as follows. First, a point of negative curvature is determined
on the triangular mesh and a hand configuration is generated
so that the finger 1 makes contact with such point. Once the
contact point of the first finger is determined, the joint space
of the finger is sampled to determine a set of end-effector
poses, and from those poses we determine the contact points
for the other two fingers by projecting how they would close.
This is very similar to what is done in GraspIt! and many
other planners. End-effector configurations that do not yield
three contact points are discarded. At this point the quality
of the remaining grasp configurations is determined. The
process is then repeated multiple times, and at each iteration
a new point with negative curvature is randomly chosen.

Figure 7 shows some example grasps computed by the
planner we just described. Note that the finger 1 always
makes contact on the surface with negative curvature.

Fig. 7. Grasps determined by the grasp planner for six different objects.



V. EXPERIMENTS AND RESULTS

In this section we present some results illustrating the
metric we proposed in this paper and we show how it informs
a planner performing a bin picking task using a commercially
available robot.

A. Preliminary Results

Revisiting Figures 3 and 4, our first experiment shows
the effect in grasp quality with respect to the ratio of
negative curvature. In the following we consider two
quality measures, namely the Ferrari-Canny metric formerly
discussed, and the volume of the grasp wrench space [10].
This metric is indicated as VGV S . The reason to consider
also this second metric will become clear later on in this
section. We consider objects similar to Figure 1(a), where
the curve is generated by the function x−(y) = −αy2 − c
and x+(y) = αy2 + c. By varying y within [−y0, y0],
we obtain an object with the center of mass located at
(0, 0). We fix our grasp point p1 at (−c, 0) and p2 (c, 0).
Therefore, we use the expanded friction cone FE(p1) and
FE(p2) to calculate the grasp wrench space.
The top row in Figure 8 shows an example with c = 2,
k = 0.05 and α = 0, 2, 4. We approximate ∇g′vf

(p) with
h = 0.001, so that ∇g′vf

(p) = 2α. The Ferrari-Canny
quality and grasp wrench space volume are indicated below
each object. The examples show that in this case both
metrics are increased as the curvature of the object increases
and the friction cone is correspondingly expanded. Figure 9
displays the relationship between the Ferrari-Canny grasp
quality and the curvature.

Next, we consider a situation similar to point (2) in
Figure 3. In this case the curve is generated by function
x−(y) = αy3 − c and x+(y) = αy3 + c, with y within
[−y0, y0]. The center of mass is still located at (0, 0) and
we fix our grasp points at p1 at (−c, 0) and p2 (c, 0). Then,
we use the expanded friction cone FE(p1) and FE(p2) to
calculate the grasp wrench space. The bottom row in Figure
8 shows some examples with with c = 2, k = 33.33 and
α = 0, 2, 4. We approximate ∇g′vf

(p) with h = 0.001, so
that ∇g′vf

(p) = 0.003α. As for the previous examples, the
values for both the Ferrari-Canny and VGWS metrics are
shown. These last examples show why we considered VGWS ,
too. In this case the Ferrari-Canny metric does not change
because it is defined by the worst case disturbance. In this
case the asymmetric expansion of the friction cone helps in
resisting disturbance forces, but is neutral with respect to a
disturbance torque rotating the object counterclockwise. This
is consistent with the metric definition, but is indeed one of
the weaknesses of this metric, i.e., it is defined by worst case
scenarios that may hardly occur in practice. On the contrary,
the metric considering the volume of the grasp wrench space
grows, indicating that the grasp can resist a wider range of
force disturbances.

Fig. 8. 2D example on objects with different contacting curvature. Red
line shows the expanded friction cone at the contact point.

Fig. 9. The relationship between grasp quality and the curvature of the
surface for setup shown in figure 8.

B. Grasp Planning Comparison

To show how the grasp planner we developed takes
advantage of negative curvatures, we compare it with
a baseline random grasp planner, as it is often done in
literature [9], [13]. In the following, our planner is referred
to as NC planner, where NC stands for negative curvature.
The random grasp planner was implemented by simply
giving a random pose of the object with respect to the
hand, then close the hand based of its hardware structure
and measure the quality of the grasp. This is basically the
GraspIt! approach.
We chose the 3 objects shown in Figure 6, i.e. a duck, a
bottle and an eight-shaped object representing the logo of
Dorabot, Inc., (referred to as DoraLogo in the following).
Figure 10 shows the comparison result between our grasp
planer and the random grasp planner with both of them
generating the same amount of grasps. The time spent to
generate grasps using our NC grasp planner and the random
planner is shown in Table I. Clearly, our NC grasp planner
is more efficient in generating grasps with higher quality.

For fairness, it is also important to notice that the NC
grasp planner has some limitations. First, it offers no advan-
tages if the object to be grasped has not negative curvature
areas. In addition being biased towards areas of negative
curvature, if the center of mass of the object is far from
these areas, the planner may produce a low quality grasp.



Fig. 10. Grasp quality comparison with same amount of grasps for 3 different objects.

Object DoraLogo Bottle Duck
Grasp planner NC Rand NC Rand NC Rand
Avg Time(s) 4.974 8.735 0.832 5.523 2.535 13.715

TABLE I
COMPARISON RESULT FOR TIME TO GENERATE GRASPS IN SIMULATION.

C. Real Robot Comparison

We conclude the validation of the method we proposed
using a Dorabot mobile manipulator (see Figure 11). This
robot features an omni-directional mobile base with 360
degree coverage by a lidar sensor, and it includes a lifter,
a UR5 robot arm, and a reconfigurable dexterous robot hand
with an eye-in-hand RGBD vision sensor. The platform can
be controlled using ROS. The hand is designed in a modular
fashion, and all flanges in the fingers are the same module.
Each joint may be actuated or not. Each finger can have
any number of flanges, and a hand can have any number
of fingers. Every finger can bend in any direction, and all
flanges are equipped with tactile sensors and a joint angle
sensor. The hand can then function in multiple ways, from a
from parallel jaw gripper to an anthropomorphic mode. The
software pipeline is shown in Figure 12, and our grasp planer
result intervenes in the third step—retrieving grasp from
database. In this section, we show the real robot performance
while grasping objsect with and without negative curvature.
The objects we used to perform our test are shown in Figure
13.

We run 10 grasp test on each object with the database
generated with NC grasp planner and a random grasp
planner. Successful runs are determined by fully grasping
the object from the bin, picking it up, and dropping the
object at a predefined location, while failure is defined as
not being able to complete the whole process. Failure is
typically caused by the object sliding during motion or
being unable to determine an appropriate grasp configuration.
Figure 14 shows successful grasps for each object with our
NC grasp planner whereas table II shows the overall result.
The accompanying video shows the whole system in action.

The NC grasp planner clearly outperforms the grasps
from the baseline random grasp planner. Since sliding may

Fig. 11. Robot hardware

Fig. 12. Software pipeline.

Object DoraLogo Bottle Duck
Grasp planner NC Rand NC Rand NC Rand

Success 8 4 6 5 7 4
Success (sliding) 1 1 2 1 0 0

Fail (sliding) 1 2 0 1 3 4
Fail (motion planning) 0 3 2 3 0 2

TABLE II
COMPARISON RESULT FOR REAL ROBOT EXPERIMENT.

occur while the object is moved, grasping on a negative curve
can better restrain the object, so we get fewer failures caused
by sliding.



Fig. 13. Objects used in real robot example.

Fig. 14. Grasp example with real robot.

VI. CONCLUSIONS

In this paper we considered the problem of grasping
objects with negative curvature and the related problem of
evaluating grasp configurations where the fingers make con-
tact in points of negative curvature. We proposed a modified
grasp quality metric that accounts for local curvatures and
shown that it overcomes many of the problems associated
with commonly used metrics. The metric was then used to
inform a grasp planner aiming at making contact with the
object at convex areas. The method we proposed has been
contrasted with a baseline planner using randomized grasps
commonly used in literature and it was shown to be largely
superior. Validation occurred both in simulation and on a
mobile manipulator with consistent results.
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