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Abstract Constrained Markov Decision Processes o↵er a principled method to de-
termine policies for sequential stochastic decision problems where multiple costs are
concurrently considered. Although they could be very valuable in numerous robotic
applications, to date their use has been quite limited. Among the reasons for their lim-
ited adoption is their computational complexity, since policy computation requires the
solution of constrained linear programs with an extremely large number of variables.
To overcome this limitation, we propose a hierarchical method to solve large problem
instances. States are clustered into macro states and the parameters defining the dy-
namic behavior and the costs of the clustered model are determined using a Monte
Carlo approach. We show that the algorithm we propose to create clustered states
maintains valuable properties of the original model, like the existence of a solution for
the problem. Our algorithm is validated in various planning problems in simulation
and on a mobile robot platform, and we experimentally show that the clustered ap-
proach significantly outperforms the non-hierarchical solution while experiencing only
moderate losses in terms of objective functions.

1 Introduction

Markov Decision Processes (MDPs) are extensively used to determine robot control
policies in situations where the state is observable. This method is appealing because
it builds on a formal framework guaranteeing optimality in terms of expected cumu-
lated costs while accounting for uncertain action outcomes. Among its limitations are
the assumption that the state is observable and that a single cost function is considered
when determining the optimal solution. When the state is not observable, partially ob-
servable MDPs (POMDP) can be used, and there exists a vast literature in this area.
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In this paper we focus on the other problem, i.e., the situation where multiple costs
should be simultaneously considered. As robots become more capable, they are tasked
with missions of increasing complexity. Consequently, more and more often control
policies considering multiple costs at once are needed. For example, one would like to
simultaneously consider the time to complete a mission, consumed energy, undertaken
risk, and so on. When multiple costs are given, constrained MDPs (CMDPs) can be
used. With CMDPs one determines a policy optimizing with respect to one cost while
satisfying bounds on the other costs. This approach guarantees an optimal solution,
but the main drawback is that in many practical scenarios it may require to solve con-
strained linear programs with an extremely large number of variables, thus creating a
computational bottleneck. The computational bottleneck entails both time complexity,
as larger linear programs take more time to be solved, but also space complexity, since
non-hierarchical solutions may generate problem instances requiring extremely large
amounts of memory (specific examples will be given in Section 5). This is particularly
problematic if a problem must be repeatedly solved to tackle dynamic changes in the
environment. To overcome this problem, in this paper we present a hierarchical ap-
proach to solve large CMDPs (HCMDP), i.e., CMDPs requiring the solution of linear
programs with a large number of variables. The idea is to partition the CMDP’s state
space into clusters of states to obtain a problem instance with a much smaller number
of states. An optimal policy is computed for this reduced CMDP, and then used to de-
termine a policy for the original CMDP. As we discuss in Section 2, similar ideas have
been already explored for MDPs, but to the best of our knowledge their application
to CMDPs is novel, and former methods include some limitations that we overcome.
In particular we show that our solution provides guarantees in terms of preserving
some properties of the initial CMDP, and in particular it ensures that the hierarchical
method provides a solution whenever the original problem admits one, albeit optimal-
ity is in general not preserved. A problem arising when utilizing clustering techniques
is how to define pertinent parameters for the newly created clustered states. Our solu-
tion relies on a Monte Carlo approach that can be broadly applied without imposing
special requirements on the structure of the underlying state space or cost functions.
To assess the impact of the technique we propose, the method is extensively validated
both in simulation and on a mobile robot traveling more than 5.5km in an indoor envi-
ronment, and we show that substantial performance improvements are obtained while
experiencing only modest decreases in therm of solution quality.

The remainder of the paper is organized as follows. Section 2 discusses related work
in the area of hierarchical planners. Background in MDPs and CMDPs is provided in
section 3. Our method is presented in section 4, where we describe how an HCMDP is
created, and we discuss the associated planner. Section 5 illustrates the performance
of the planner in three di↵erent scenarios, namely matlab simulations, Gazebo simu-
lations, and on a P3AT robot. Finally conclusions are given in section 6. Moreover, in
the appendix we provide the proofs of two theorems stated in section 4.

2 Related work

MDPs have been extensively used to solve various types of decision making problems in
robotics and beyond. We refer the reader to [5, 27] for general introductions to the topic,
and to [22, 23, 28] for applications specific to robotics. For a comprehensive introduction
to CMDPs, Altman’s book is a standard reference [1]. Although MDPs have become
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one of the standard tools used in numerous robotic applications, the use of CMDPs in
robotics remains very limited. In fact, when it is necessary to simultaneously consider
multiple costs, a common approach is to combine them into a single objective function,
for example as a linear combination [25]. This method however is unappealing because
the resulting objective function is an artificial measure not related to the physical
quantities experienced by the robot while operating in its environment. Similarly, if
one considers the approach of solving the constrained optimization problem using a
Lagrangian relaxation, a key issue is selecting appropriate constants in the relaxation.
Either case shows that optimizing putting a bound on the costs is a more intuitive
method. Ding et al. have been among the few to use CMDPs to solve various planning
problems in robotics [13, 14]. El Chamie and Açikmeşe use a CMDP formulation based
on linear programming to control a swarm of robots while providing bounds on the costs
[8]. Similarly, Boussard and Miura use a CMDP based method to solve a search problem
where the objective is to locate as many items as possible under a time constraint.
Recently, Carpin et al. used CMDPs to solve a rapid deployment problem whereby
robots have to maximize the probability to reach a set of given locations while being
subject to a given temporal deadline [7, 9].

Aiming at improving computational e�ciency, numerous methods proposed hierar-
chical solutions for MDPs, sometimes with the objective of computing reusable policies
that can be repeatedly utilized for multiple similar problem instances. Dai et al. pro-
posed various methods in this area. Topological value iteration guarantees to find an
optimal solution for the underlying MDP, but the method becomes ine�cient if the
state space features poor connectivity [10]. Aiming at overcoming some of these limita-
tions, focused topological value iteration builds an accurate value function on regions
of the state space by taking advantage of knowing the initial state. However, it still
su↵ers when poor connectivity exists [11, 12]. A technique called “region-based decom-
position” proposed by Hauskrecht et al. [18] decomposes the overall state space into
several regions resembling the structure of the environment in which the robot moves,
like rooms, corridors, and the like. The key of the method is in identifying entrances
to these regions to reduce the size of the state space.

Barry et al. also presented more than one solution to the hierarchical MDP planning
problem. A first method based on the strongest connected components was given in [3]
and then improved by the DetH* algorithm [4]. The main limitation of these solutions,
however, is that they are applicable only to solve factored MDPs.

The SPUDD method proposed by Hoey et al. aims at solving very large MDPs by
saving value functions and policies as functions rather than using lookup tables [19].
The MAXQ method proposed by Diettrich also aims at solving MDPs with large state
spaces, but it relies on human input in the clustering stage. Hierarchical methods have
also been explored in the area of POMDPs. For example Pineau et al. [26] developed
a method focusing on actions, and proposed a decomposition based on the feasibility
of actions in di↵erent situation.

Other methods dealing with solutions for hierarchical models were presented in
[2, 6, 26, 29]. All these methods, however, do not tackle the CMDP case.

To the best of our knowledge, the first paper proposing a hierarchical solution for
CMDPs has been our previous work presented in [15]. The proposed method showed
that significant performance gains could be obtained with this strategy while incurring
in very limited losses in terms of the cost functions. However, the partitioning method
we used in our original work relied on a preassigned clustering strategy that in general
does not preserve feasibility when going from the original problem to its hierarchical
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version. The clustering method we propose in this paper overcomes this limitation, and
extends our former preliminary contributions presented in [15, 16].

3 Background on Constrained Markov Decision Processes

In this section we introduce the concepts and notation needed to formalize the problem
we tackle in this paper. The reader is referred to [5, 27] for a thorough description of
MDPs, and to [1] for CMDPs.

3.1 Markov Decision Processes

A finite MDP is defined by a quadruple M = (X , U, P, c) where:

– X is a finite state space with n elements.
– for each x 2 X the finite set U(x) is the set of actions that can be executed in state

x. From these n sets we define U = [x2XU(x) as the set of all actions. Furthermore,
from X and U we define the state/action set K = {(x, u) | x 2 X , u 2 U(x)}.

– P : K ⇥ X ! [0, 1] is a probability mass function called transition probability.
P (x, u, y) is the probability of transitioning from state x to state y when executing
action u 2 U(x). In the following we write this as Pu

xy for brevity. Note that since
P is a probability mass function it satisfies the probability axioms.

– c : K ! R�0 is a non-negative cost function. c(x, u) is the cost incurred when
executing action u while being at state x.

A deterministic policy is a function ⇡ : X ! U associating to each state x an
action in U(x). Note that according to this definition the policy is Markovian, i.e., it
depends on the current state only, but not on past history. In the following we will
exclusively consider Markovian policies since it is well known that they are optimal
for the problems we consider. A finite MDP M and a policy ⇡ induce a stochastic
process over the set of states X [5]. In the following we use the symbol Xi for the
random variable representing the state at time i obtained starting from an initial state
x0 2 X and repeatedly applying ⇡. It is well known that for the most commonly used
cost criteria (e.g., finite horizon, discounted infinite horizon) deterministic policies are
optimal [5]. In this paper we focus on the infinite horizon total cost function defined as

c(x,⇡) = E
" 1X

t=0

c(Xt,⇡(Xt))|X0 = x

#
(1)

where the expectation is taken with respect to the probability distribution over the set
of realizations of the stochastic process Xi induced by ⇡. Equation (1) defines the so-
called cost-to-go, i.e., it is the expected cost incurred when starting from state X0 = x

and following policy ⇡. In the following we write c(⇡) for the n-dimensional vector
storing c(x,⇡) for each state (also known as value vector). Our focus on the infinite
horizon total cost stems from the observation that many robotic tasks have a duration
that is a priori unknown and are not necessarily subject to a discounting factor. It is
evident from Eq. (1) that without additional hypotheses the total cost could in general
be infinite. One alternative that we followed in our past work [9, 16] is to require that
the MDP is absorbing. In this paper we instead require a set of conditions that are
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easier to verify. The state space X can be partitioned into two subsets X 0 and M such
that:

1. 8x 2 M : c(x, u) = 0;
2. Pu

xy = 0 for each x 2 M , u 2 U(x), and y 2 X 0;
3. for each x 2 X there exists one state y 2 M and a policy ⇡ such that in the Markov

chain associated with policy ⇡ state y is accessible from x.

The first two conditions establish that no more cost is accrued in M and that once the
state enters M it remains there. The last condition implies the existence of a deter-
ministic Markovian policy leading to M . Collectively, these conditions establish that
there exists at least one Markovian policy ⇡0 such that c(⇡0) is finite. This guaran-
tees that the infinite horizon total cost problem we define in the following admits a
solution. Note that while in general M may consist of more than one state, since we
assumed c(x, u) = 0 for each state in M , one can without loss of generality assume
that M features a single state. This simplifies the formulation of the last condition,
where accessibility is then requested from each state in X 0 to the only state in M . In
the remainder of the paper we will assume that these three conditions hold. When this
is the case, solving an infinite horizon total cost MDP requires to determine the policy
minimizing the cost, i.e., to determine

⇡⇤ = argmin
⇡

c(⇡)

where the minimum as intended componentwise for each state x 2 X. As for other cost
criteria, the optimal policy for this problem is a deterministic policy [5].

3.2 Constrained Markov Decision Processes

In an MDP a single cost c(x, u) is incurred every time an action is executed. When
multiple costs are defined, a CMDP approach can instead be used. In CMDPs one de-
termines a policy minimizing one cost function while putting constraints on the others.
Formally, a finite CMDP C is defined as C = (X , U, P, c, di, Di,�) where X , U, P, c are
defined as for MDPs and:

– di : K ! R�0 with 1  i  k are k additional cost functions;
– Di are k non negative bounds;
– � is a probability mass function defined over X giving the probability distribution

for the random variable X0, i.e., the initial state.

In a CMDP when action u is executed in state x, then each of the costs c(x, u),
d1(x, u), . . . , dk(x, u) is incurred. For each of them di↵erent cost criteria could be de-
fined. Extending the framework we just introduced, we will consider infinite horizon
total costs for all these functions. As for the MDP case, it will be necessary to introduce
conditions to guarantee the existence of a solution. These are the same we considered
for the MDPs, but the first condition is extended requiring that all costs are 0 in M

(i.e., di(x, a) = 0 for each 1  i  k and each x 2 M .) For an absorbing CMDP and
policy ⇡ the following k + 1 total cost vectors are then defined:

c(⇡,�) = E
" 1X

t=0

c(Xt,⇡(Xt))

#
di(⇡,�) = E

" 1X

t=0

di(Xt,⇡(Xt))

#
(2)



6

where as for the MDP case c(⇡,�) is a vector storing the expected cost-to-go for each
state x 2 X. With a slight abuse of notation d(⇡,�) is instead a scalar value obtained
taking the expectation of the vector with respect to �.

In Eq.(2) expectations are taken with respect to both the policy ⇡ and the initial
distribution �. This additional parameter is needed because the optimal policy for a
CMDP in general depends on the initial distribution of states. The CMDP problem
asks to determine a policy ⇡⇤ solving the following constrained optimization problem:

⇡⇤ = argmin
⇡

c(⇡,�) (3)

s.t. di(⇡,�)  Di 1  i  k.

Given that in a CMDP there are k + 1 costs, in the problem formulation there is
a certain degree of subjectivity in deciding which cost should be minimized and which
ones should instead be bounded in expectation. From a mathematical standpoint, any
choice is technically correct, but from a practical perspective these choices are not
equivalent and domain specific knowledge is often essential to make this choice. In
some instances there is a natural hierarchy among the importance of the costs, or
bounds may be simpler to derive for certain costs. For example, if one cost measures
safety and the other energy consumption, it may be natural to optimize with respect
to safety and to put a bound on energy consumption based on the batteries used by
the robot. To corroborate this aspect, examples will be discussed in Section 5.

Although MDPs and CMDPs share many traits in their definitions, some impor-
tant di↵erences emerge when computing the optimal policies. First, the optimal policy
for a CMDP is in general a stochastic policy, whereas optimal policies for MDPs are
deterministic. Moreover, because the costs in Eq. (2) depend on the initial distribu-
tion �, the optimal policy depends on it, whereas the optimal policy for an MDP is
independent from the initial state distribution.

The optimal policy for a CMDP is determined by solving a constrained linear
program based on so-called occupancy measures. Let K0 = {(x, u) | x 2 X 0, u 2 U(x)}
be the state-action space restricted to the non absorbing states, and let ⇢(x, u) be a set
of optimization variables associated to each element of K0. The optimization problem
in Eq. (3) has a solution if and only if the following constrained linear program is
feasible:

min
⇢

X

(x,u)2K0

⇢(x, u)c(x, u) (4)

s.t.
X

(x,u)2K0

⇢(x, u)di(x, u)  Di 1  i  k

X

(y,u)2K0

⇢(y, u)(�x(y)� Pu
yx) = �(x) 8x 2 X 0

⇢(x, u) � 0 8(x, u) 2 K0

where �x(y) = 1 when x = y and 0 otherwise. If the linear program is feasible, then
the optimal solution ⇢(x, u) induces an optimal randomized policy ⇡⇤ defined as

⇡⇤(x, u) =
⇢(x, u)P

u2U(x)

⇢(x, u)
x 2 X 0, u 2 U(x) (5)
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Fig. 1 The figure illustrates the idea behind the HCMDP approach. The left side shows a
CMDP whose numerous states are represented by the small grid cells. On top of these states,
irregularly shaped clusters are defined, as indicated by the thick line partitions. Clusters define
a new HCMDP shown in the right panel. Neighboring relationships between clusters define
connectivity in the HCMDP. The M states in the original CMDP (red grid cell) are mapped
into M states in the hierarchical CMDP (red circle). Edges in the clustered graph are added
between macro states sharing a border in the original state space.

where ⇡⇤(x, u) is the probability of executing action u while in state x (see [1] for the
proof.). The reader will note that this definition allows for randomized policies, as we
formerly stated. The policy is not defined for states M , but this is irrelevant because
no more costs are accrued when the state is in M , and the state cannot leave it once
it enters.

While the CMDP formalism allows to tackle many di↵erent practical problems, one
of the main limitations is given by the number of variables that may emerge while solv-
ing the associated linear program. In fact, one may easily end up with problem instances
with tens of thousands of variables. In a fully static scenario this could sometimes be
acceptable as the policy could be computed o↵-line. However, when the environment
changes one may be required to recompute the policy online, and the computational
requirements could become di�cult to accommodate within a tightly timed control
loop. In an e↵ort to address these challenges, in the following we present a hierarchical
method to expedite the solution while preserving feasibility.

4 HCMDP – Hierarchical Constrained Markov Decision Processes

Approximated methods based on hierarchical approaches have been proposed in lit-
erature for MDPs (see e.g., [5], vol II, Ch. 6), but to the best of our knowledge this
paradigm has not been considered for CMDPs, with the exception of our recent works
[15, 16]. The underlying idea for CMDPs is similar to the one used for MDPs, although
there are some complications due to the necessity to consider multiple costs at once.
By clustering the state space of the original CMDP we create an HCMDP with fewer
states, compute a policy for the smaller instance, and then utilize this policy to derive
a policy for the original CMDP (see Figure 1).

These ideas can be formalized as follows. Let C = (X , U, P, c, di, Di,�) be a CMDP.
From C we extract an HCMDP CH = (XH , UH , PH , cH , di,H , Di,H ,�H) with |XH | <<

|X |. Next, we compute the optimal policy ⇡⇤
H for CH and we use it to extract a policy

⇡0 for C. While ⇡⇤
H is optimal for CH , in general ⇡0 will not be optimal C and in fact
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one can anticipate that the gap between ⇡0 and ⇡⇤ (the optimal policy for C) widens
as the size of the clusters shrinks, and viceversa narrows as the size of the clusters
increases. However, our tenet is that the loss in optimality is limited and compensated
by the significant gain in computational e�ciency. Moreover, the hierarchical solution
is also less memory intensive, i.e., by solving multiple smaller problems it requires
less memory than the original non-hierarchical problem. Various subproblems must be
tackled to build CH from C. In the following subsections we identify all of them and
provide pertinent solutions.

4.1 Clustering

The first problem is how to compute XH from X . Elements of XH will be in the
following calledmacro states or clusters. There are evidently multiple ways to determine
these clusters. The method we propose is based upon both an intuition and a formal
requirement. The intuition is that clusters should be composed of similar states, where
similarity is measured in terms of the cost function c. The formal requirement is that
clusters must preserve the connectivity property we define in the following.

Definition 1 Let C = (X , U, P, c, di, Di,�) be a CMDP, and x, y be two states in X .
We say that x is connected to y and we write x  y if there exists a sequence of
states s1, . . . , sm 2 X and actions u1, . . . um�1 2 U such that s1 = x, sm = y, and
Pui
si,si+1 > 0 for 1  i  m� 1.

Based on this definition we introduce the concept of connectivity preserving HCMDP.

Definition 2 Let C = (X , U, P, c, di, Di,�) be a CMDP and let CH = (XH , UH ,

PH , cH , di,H , Di,H ,�H) be an HCMDP for C. We say that CH preserves the connec-
tivity of C if the two following conditions hold:

1. XH is a partition of X ;
2. For z 2 X 0 and y 2 M , let ZH and YH be the states in XH such that z 2 ZH and

y 2 YH . If z  y, then ZH  YH .

Note that because of the requirement that XH is a partition of X , the states ZH

and YH are unique and the second condition is then well posed. Moreover, observe that
the connectivity preserving property is a function of CH as a whole and not just XH ,
because connectivity depends not only on states, but also on transition probabilities.
To define the clustering algorithm, for S ⇢ X , x 2 X , and u 2 U(x) it is convenient to
define the following operators:

Pre(S) = {x 2 X | 9u 2 U(x) ^ 9y 2 S ^ Pu
xy > 0}

Post(x, u) = {Y 2 XH | 9y 2 Y ^ Pu
xy > 0}

Post(S) = {Y 2 XH | 9y 2 Y ^ 9x 2 S ^ Pu
xy > 0}.

Note that Pre(S) is a subset of states of X , whereas Post(x, u) and Post(S) are sets
of macrostates of XH . Starting from these operators, Algorithm 1 shows our proposed
approach to clustering. The method depends on two parameters, namely the maximum
cluster size MS and a constant � used to define whether two states have similar cost.
A single cluster is initially created with the set M (line 1). Then the algorithm loops
until all states in X have been assigned to a state in XH (loop starting at line 2). At
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each iteration, each of the existing clusters is examined (line 3) and the states that
can reach one of the clusters in one step with non-zero probability are identified (set
S at line 4). For each element in S (loop starting at line 5) every possible action is
evaluated (line 6) to determine to which macrostate the action would lead to (line 7).
The state is assigned to a cluster H (line 10) only if two conditions are simultaneously
verified, i.e., cluster H includes less than MS states, and the average cost of cluster
C(H) is similar to the cost c(s, us) incurred to move from s into H (test at line 9).
As soon as a state is assigned to a cluster, it is not considered anymore (line 11). If
state s cannot be assigned to any cluster (line 12), then a new cluster including just s
is created (line 13) and added to the set of clusters (line 14). At the end, an optional
merging step described in the following is performed (line 15) and the set of clusters
is returned (line 16.)

Algorithm 1: Clustering Algorithm

Data: X , U, P
Result: XH : Set of macro-states

1 XH  {M} ;
2 while There exist states not assigned to any cluster do

3 foreach C 2 XH do

4 S  Pre(C) \(X \ [XH) ;
5 foreach s 2 S do

6 for us 2 U(s) do

7 Ys  Post(s, us);
8 for H 2 Ys do

9 if c(H) ⇡ c(s, us) ^ |H| < MS then

10 assign s to cluster H;
11 break out of the two inner for loops;
12 if s not assigned yet then

13 create new cluster Ms = {s} and assign s to it;
14 add Ms to XH ;
15 XH  merge(XH) ;
16 return XH ;

Note that because of the third hypothesis we formerly made (accessibility of M
from each state), Algorithm 1 terminates. This is because the hypothesis ensures that
at every iteration at least one state is assigned to a cluster (either an existing one
or a new one). Therefore, after a finite number of iterations the clustering algorithm
terminates. As previously stated, the clusters determined by Algorithm 1 depend on
MS and � and their impact on the clusters should now be clear. A too large value
for � leads to cluster with heterogeneous values for c, while small values for � lead
to the creation of many small clusters. Similar conclusions can be made for MS. In
the experimental section we will analyze the sensitivity to MS. The negative e↵ect of
a poorly chosen � can be mitigated by MS (when � is too large) or by the merging
algorithm described next (when � is too small).

Merging. The cluster size influences the performance of the algorithm, because
too large clusters diminish the e↵ectiveness of the algorithm, whereas too many small
clusters induce large approximations. The MS parameter is used to counter the first
problem, i.e., the creation of too large clusters. The merging algorithm presented here
counters the other problem, i.e., the presence of too many small clusters. To this end,
small clusters are merged together, where the definition of small cluster is defined by
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a new parameter mS (minimum size). Algorithm 2 shows how merging is performed.
All clusters are examined (line 2), and if they are smaller than mS (line 3) they
are combined with one of their neighboring clusters. To this end, all neighbors are
determined (line 4) and the one with the most similar cost is picked (line 4). If the
combined size does not exceed the upper limit MS (line 6) then the clusters are merged
(line 7). The process is repeated until no more clusters can be merged (loop starting
at line 1). The algorithm terminates returning the new set of merged macrostates (line
9.) Note that the merging algorithm does not merge the macro state M .

Algorithm 2: Merge Algorithm

Data: XH : Set of all macro-states excluding the macro state {M}
Result: XH : New set of macro-states

1 repeat

2 for M 2 XH do

3 if |M | < mS then

4 Madj= Post(M) ;
5 Mc  argminMc2Madj

|c(Mc)� c(M)|;
6 if |Mc|+ |Madj | < MS then

7 merge M and Mc and update XH ;
8 until no more states are merged ;
9 return XH ;

4.2 Hierarchical Action Set

Once the set of macro states XH has been created, the set of actions UH for the
HCMDP easily follows. For Y 2 XH , the action set UH(Y ) is identified considering all
macro states that can be reached in one step from the states in C, i.e.,

UH(Y ) = {Z 2 XH | 9y 2 Y ^ z 2 Z ^ u 2 U(y) ^ Pu
yz > 0}. (6)

It is important to note that according to this definition UH(Y ) is generated starting
from the original action set U , but its elements are actions that are not in U . In
particular, each action in UH(Y ) is a macrostate in XH .

4.3 Transition probabilities, costs, and initial probability distribution

The definition of an HCMDP is completed by the definition of the transition probabil-
ities PH , costs (cH and di,H), bounds (Di,H), and initial probability distribution �H .
With the objective of creating a method applicable independently from the structure
of the underlying state space, we opt for a Monte Carlo approach whereby transition
probabilities and costs are estimated through sampling.1 In this section, in the inter-
est of space, we only describe how transition probabilities can be estimated through
sampling, since the same idea can be applied to estimate the costs.

1 To the best of our knowledge no method has been proposed to analytically estimate costs
and probabilities.
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Given M1,M2 2 XH and M3 2 U(M1), we aim at estimating PM3
M1,M2

. It is worth-
while recalling that although M3 is a macro state too, in this context it is an ac-
tion applied from macro state M1 and it shall be interpreted as the action aiming at
moving from macro state M1 to macro state M3. As per the definition of UH(M1)
given in Eq. (6), PM3

M1,M2
is non zero only if M1 and M2 are adjacent, where ad-

jacency is defined by Eq.(6). The probability estimation method is as follows. Let
BM1,M3

= {y 2 M3 | 9x 2 M1 ^ 9u 2 U(x) ^ Pu
xy > 0}, i.e., the boundary between

M1 and M3. We then build a graph G = (V,E) where V = M1 [ B and an edge is
added between vertices v1, v2 2 V whenever Pu

v1,v2 > 0 for some u 2 U(v1). Then,
for each state x 2 M1 we compute the shortest path from x to B, where shortest is
defined in terms of number of edges. These paths define a policy2 ⇡ over M1 to move
from M1 to M3. Note that this policy is not optimal. Next, using a uniform probability
mass function over the states in M1 we randomly select one state x 2 M1 and simulate
policy ⇡. Following ⇡ the state eventually leaves M1 to enter either M3 or some other
macro state. Through repeated executions, these policy simulations allow to estimate
PM3
M1,Mj

for each Mj .

Hierarchical costs cH and di,H are estimated using a similar approach. The di↵er-
ence in this case is that the average is taken over the overall costs accrued during the
simulation of an application of action Mi from state Mj . For the hierarchical bounds
Di,H we use the same costs in the original CMDP. Finally, �H is built from � by
adding up the probabilities of the states within each macro state, i.e., for each macro
state YH we define �H(YH) =

P
x2YH

�(x).

4.4 Hierarchical planning

The hierarchical planner operates in two steps and Algorithm 3 illustrates them. The
algorithm takes as input a CMDP C, a starting state s and a set of goal states M . Since
we assumed that a starting state s 2 X is provided as input, the initial distribution �

is zero everywhere except in s. An HCMDP CH is built as per our previous description
(line 1), and an optimal policy is determined (loop starting at line 3). At each iteration
the linear program is solved (line 4), and an optimal policy ⇡⇤

H for CH is computed. If
a policy cannot be found (line 5), the bounds Di,H are increased until the associated
linear program is solved (line 6) In particular, each of the Di,H is increased by a fixed
percentage. In our examples presented later on, the increment is 10% and there is
an obvious tradeo↵ between selecting a larger or a smaller increase, since a smaller
increase will give a sharper bound, but multiple small increases may be necessary
before a satisfactory bound is determined and the problem solved. The rationale behind
increasing the bounds, is that the hierarchical problem may be unsolvable due to the
approximations induced in computing the costs through Monte Carlo sampling (in
particular, overestimation of the costs di,H). It shall however be noted that these
increased bounds may end up being higher than the original ones. While we believe
that for simple problem settings it may be possible to derive quantitative bounds, this
appear to be not trivial for the general case, and is left for future work. After a solution
is found (line 8), the optimal policy for the hierarchical CMDP is determined (line 9).
This concludes the first stage of the algorithm. In the second stage, starting at line 10,

2 The set of paths define a policy because for each vertex they identify an edge to traverse
along the shortest path, and by construction this edge is associated with an action.
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a policy for the original CMDP is extracted solving a sequence of smaller CMDPs to
move from one macro state to the next. To be specific, the smaller CMDPs are built as
follows. Assume the state in the original CMDP is C is s /2 M (otherwise the problem is
already solved and the second loop at line 11 terminates.) This state belongs to exactly
one macro state YH 2 XH because XH is a partition of X (line 12.) The optimal policy
⇡⇤
H defines the action ZH 2 U(YH) to execute, i.e., it identifies the next macro state

to move into (line 14.) By construction, this macro state shares a boundary with YH ,
i.e., there exist a set of states GoalSet ⇢ X in the original CMDP reachable from some
state in YH with a single transition (line 15). Therefore, from the original CMDP we
extract a smaller CMDP whose state set is YX [GoalSet and we compute a policy ⇡L
to reach GoalSet (line 16). Once the policy is computed, it is executed (line 18) until
the state exists YH (either entering GoalSet or another macro state). From there, the
optimal policy ⇡⇤

H provides a new action to execute and the cycle terminates when the
goal set M is reached.

Algorithm 3: HCMDP Planning

Data: CMDP C = (X , U, P, c, di, Di,�), s,M
1 Build HCMDP CH = (XH , UH , PH , cH , di,H , Di,H ,�H);
2 Solved false;
3 while Not Solved do

4 Solve LP associated with HCMDP;
5 if LP unfeasible then

6 Increase each bound Di,H of �Di,H > 0;
7 else

8 Solved true;
9 Extract optimal aggregate policy ⇡⇤

H (Eq. 5);
10 x s;
11 while x /2M do

12 Determine state YH containing s ;
13 if YH 6= M then

14 ZH  ⇡⇤
H(Yt) ;

15 GoalSet Frontier(YH , ZH);
16 ⇡L  SolveLocalCMDP(x,GoalSet) ;
17 repeat

18 Follow policy ⇡L and update x ;
19 until x exits YH ;

We conclude this section stating two theorems whose proofs are given in the ap-
pendix of the paper.

Theorem 1 Let C = (X , U, P, c, di, Di,�) be a CMDP and let CH = (XH , UH , PH , cH ,

di,H , Di,H ,�H) be an HCMDP built from C with the method described in this section.
If the number of samples tends to infinity, then CH preserves the connectivity of C.

Theorem 2 Let C = (X , U, P, c, di, Di,�), s,M be the input to Algorithm 3. Then, as
the number of samples tends to infinity, Algorithm 3 builds a solvable HCMDP.

Note that the second theorem states the existence of a policy, but does not state
anything about its optimality. Theorems 1 and 2 only guarantee asymptotic conver-
gence in the number of samples, but do not provide indications on the rate of conver-
gence as a function of the number of samples. This is consistent with results in existing
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literature for motion planning, like the probabilistic roadmap method [21], rapidly ex-
ploring random trees [24], and the more recent optimal method RRT⇤ [20]. In some
instances, knowledge of certain parameters characterizing the environment, or making
simplifying assumptions about its structure, it may be possible to derive relationships
between the number of samples and the rate of convergence. However, for more general
cases this is an open question and subject to future work.

5 Experimental Validation

In this section we investigate the viability of the method we presented. In particular,
we aim at assessing the trade o↵ between the computational gains we obtain using a
hierarchical solution and the gap between the optimal non-hierarchical solution and
the sub-optimal hierarchical solution. Moreover, we also experimentally determine the
sensitivity to the parameters influencing the clustering method we presented. The al-
gorithm is evaluated in three di↵erent scenarios, namely a matlab based simulation,
a Gazebo based simulation, and an implementation on a Pioneer P3AT robot operat-
ing in an indoor environment. Each of the three di↵erent setups o↵er complementary
features.

5.1 Matlab Simulations

We start our study with numerous matlab simulations allowing to quickly evaluate how
the performance changes as the parameters are modified. Three di↵erent methods are
compared. The first is the baseline non-hierarchical CMDP solver producing optimal
policies solving the linear program given in Eq. (4). This method will be indicated as
NH (non-hierarchical) in the tables and charts. The second is the method we presented
in [15] that relies on a fixed structure for partitioning of the state space. In particular,
for mobile robot tasks it relies on a state space clustering leading to a rectangular
decomposition of the environment (see Figure 7). In tables and charts this method
will be indicated as “Fixed”. The third is the method we propose in this paper. All
methods are subject to the same costs and transition probabilities.

All examples we will consider in the following feature two costs and then cannot
be considered with a plain MDP solver. The first cost c is the cumulative risk accrued
along a trajectory based on a preassigned risk map. The second cost d is the Euclidean
path length. Note that although we consider two costs only, all solving approaches can
handle an arbitrary number of costs. The first test environment is shown in Figure 2 and
it models an outdoor environment in which the robot has to navigate between selected
couples of start/goal locations. The heat map shows the risk map, with higher risk
locations indicated by warmer colors. The sub figure on the right shows two di↵erent
solutions obtained imposing di↵erent constraints on the path length. Note that the
white trajectory traverses areas with higher risk because it is subject to a more stringent
bound on path length, so it cannot a↵ord to take the same detour generated by the red
trajectory. This map is referred to as “terrain map” in the following. Figure 3 shows
the clusters created by Algorithm 1 when processing this map.

The second test environment is depicted in Figure 4 and it is based on an indoor
factory-like environment. The associated risk map is shown as well, where the darker
areas with highest risk are associated with the obstacles. This map is referred to as
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Fig. 2 Sample terrain map where warmer colors represent high risk areas to be avoided. The
right picture shows two di↵erent solutions obtained with di↵erent constraints.

Fig. 3 Macro states created by Algorithm 1 on the terrain map environment. The goal state
is evidenced by the letter G and a red circle as it constitutes a standalone cluster.

“maze” in the following. In both maps the cost d (Euclidean distance) is set to 1 for
every state/action pair.

Fig. 4 Maze map where fixed partitioning fails. The left panel shows the map whereas the
right panel displays the associated risk map.

Both environments are defined over a grid in which we assume 4-connectivity and we
correspondingly define four actions for each state when possible.3 Each action succeeds

3 For states close the boundary or to an obstacle, the action set is adjusted by removing
actions that would violate these constraints.
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with probability 0.8. When the action fails, any of the nearby neighbors can be reached
with equal probability. Three di↵erent performance measures are used in the following
to compare the di↵erent algorithms. The first is the time spent to determine the policy.
The second is the expected value of the risk objective function c, and the last is the
value for the additional constrained cost d (path length). All algorithms are coded
in matlab and rely on the built in linprog function to solve the linear programs. To
ensure a fair comparison, since the hierarchical methods solve multiple instances of
smaller linear programs, the displayed time is the cumulative sum of the time spent to
solve all linear programs needed to compute a solution. The non-hierarchical method
instead solves just one large linear program and the time spent to solve it is what we
use for comparison.

Table 1 displays the time spent to solve 12 di↵erent problem instances on the terrain
map environment. Each instance is defined by a di↵erent couple of start/goal locations.
The top two rows display the performance of the non hierarchical and fixed resolution
planner whereas the bottom twelve rows display the time spent by the HCMDP method
for di↵erent combinations of its parameters. In particular, X/Y means that the maxi-
mum cluster size MS is X, and the number of samples used to estimate probabilities
and costs is Y% of the number of states in the clusters. The prefix nm stands for
non merged, and indicates that the merging step at the end of Algorithm 1 was not
performed. Throughout this section, the � parameter is set as the average di↵erence
for the c function between each node and all of its neighbors. The table shows that
the performance di↵erence between the non hierarchical method and the hierarchical
strategies considered (Fixed and HCMDP) varies between a factor of 17 (case 3) and
1000 (case 4).

Alg 1 2 3 4 5 6 7 8 9 10 11 12

NH 107 94 54 1303 613 43 860 86 743 151 59 106
Fixed 3.19 2.91 2.2 1.3 0.8 1.79 2.3 1.5 2.5 0.89 1.89 1.7

100/10 4.59 5.49 3.89 1.72 2.72 2.20 2.43 1.82 3.21 1.43 3.39 2.55
100/30 7.04 5.68 4.02 1.82 1.79 7.33 2.48 3.02 3.59 1.79 3.06 3.59
100/50 6.17 8.45 3.79 1.70 1.65 7.48 2.37 5.48 5.14 2.58 4.34 4.21
nm/100/50 5.3 3.48 3.15 1.76 1.56 2.54 11.8 2.87 2.51 1.92 2.93 2.76
200/10 4.9 3.53 4.06 2.57 1.08 3.47 2.58 3.53 2.9 1.02 3.44 4.57
200/30 3.89 3.21 3.74 2.84 1.49 2.72 2.98 4.01 3.72 1.28 2.84 3.81
200/50 4.75 4.50 4.45 2.38 1.64 2.36 2.48 3.78 5.21 1.21 3.51 3.77
nm/200/50 4.03 3.44 3.02 1.31 1.76 2.63 1.84 4.83 4.07 1.49 2.45 2.20
400/10 7.17 6.02 5.25 5.64 1.71 8.12 3.17 3.76 3.31 2.26 3.45 3.85
400/30 6.41 6.83 5.05 2.52 2.31 8.06 5.43 2.90 4.08 2.42 7.73 4.86
400/50 6.80 5.65 5.41 5.14 2.48 8.09 3.06 2.56 4.39 2.3 3.47 3.89
nm/400/50 5.32 3.98 9.72 6.28 7.16 11.0 4.9 5.92 4.5 2.32 3.83 4.62

Table 1 Time spent (seconds) by the various algorithms for the terrain map on 12 di↵erent
instances.

Table 1 also shows that, as expected, HCMDP is slower than the fixed method since
it performs a more sophisticated partitioning, but the performance gap is in general
modest, though it widens as expected as the number of samples in the Monte Carlo
estimation grows.

Another interesting to assess the performance gain is by looking at the number and
size of the linear programs solved by the non-hierarchical and hierarchical methods.
The terrain map environment generates a constrained linear program with more than
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65,000 variables, and the maze environment creates instances with more than 41,000
variables. The number of variables is (roughly) given by the number of states multiplied
by four, since each variable corresponds to a state/action pair (x, u) and there are four
or less actions per state (states close to the boundary or to the obstacles have less than
four actions.) Table 2 instead displays the size and number of subproblems generated by
the hierarchical methods for the twelve problems considered in the terrain environment.
Each row shows two numbers, with the top one being the number of variables of the
largest linear program solved, and the bottom number showing the average number
of problems solved. Both numbers are averaged over one hundered runs, and rounded
to the closest integer. Note that the percentage of samples does not influence these
numbers and is therefore not displayed. These numbers justify the large di↵erence
in time between non-hierarchical and hierarchical methods and motivate this line of
research.

Alg 1 2 3 4 5 6 7 8 9 10 11 12

100
392 380 354 380 382 384 376 348 376 356 380 384
10 8 8 4 3 5 6 4 5 3 5 6

nm/100
356 348 316 284 358 348 304 320 320 340 312 276
14 13 10 6 6 8 8 9 7 8 9 6

200
756 780 800 800 800 760 780/4 756 800 740 704 760
6 5 3 3 2 5 4 3 4 3 2 4

nm/200
740 680 656 632 740 556 724 712 680 644 720 716
8 8 5 3 4 8 4 6 8 4 3 6

400
1560 1524 1460 1388 1512 1560 1540 1452 1524 1512 1420 1420
4 4 3 3 2 3 3 2 3 3 2 3

nm/400
1320 1272 1156 1420 1260 1340 1410 1316 1220 1340 1360 1360
5 6 4 3 3 2 5 3 4 8 6 4

Table 2 Size of the largest linear program (top number) and number of supbroblems (bottom
number) for each algorithm and problem considered in the terrain map problem.

While the time to solve a problem instance is an important aspect, hierarchical
methods would not be very useful if the performance increase comes at the cost of a
inferior performance in terms of costs of the functions being optimized. Figure 5 and 6
analyze how these costs vary across the 12 di↵erent cases we considered. In particular,
Figure 5 shows the average cost for the primary c cost (risk), whereas Figure 6 plots
the average d cost (path length). In both instances averages are obtained over 100
independent runs (variances are small, and so averages are representative.)

Figure 5 shows that as expected the non-hierarchical method achieves in general
the best performance in terms of minimizing the expected c cost. In some cases (e.g.,
2 and 8) some instances of the HCMDP solver obtains a better cost. This is due to
the fact that if the HCMDP planner cannot solve a certain problem instance for given
constraints on the d cost, it will increase the D bounds in an attempt to make the linear
program feasible. Hence, in some instances, taking advantage of the increased bound
for the d cost, it is possible to lower the c cost as well because the additional budget
for the traversed length may give the possibility to avoid risky areas. The reader could
also observe that in many instances the Fixed partitioning method works competitively
with both the non hierarchical method and HCMDP. However, as it will be evidenced
discussing the maze environment, this strategy is in general prone to failure, although
in the terrain map this is not evident since there are no obstacles.
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Fig. 5 Average c cost (risk) over 100 independent runs for the terrain map environment.

Fig. 6 Average d cost (path length) over 100 independent runs for the terrain map environ-
ment. Horizontal green bars show the value of the constraint in the original, non-hierarchical
problem formulation.

Figure 6 shows instead the average for the constrained path length cost d. Here we
see that the variations are more contained, demonstrating that only in few instances
the bound needs to be lifted for making the problem feasible.

We next consider the maze map. This environment is interesting because it shows
that approaches relying on clustering methods not considering the underlying map are
in general doomed to fail. Figure 7 shows the policy produced by the algorithm we
formerly presented in [15]. The dotted lines show the clusters boundaries, whereas the
red arrows illustrate the computed policy. The example shows that in some macro states
the policy suggests transitions that cannot be executed because of an obstacle cutting
through. This problem could be overcome reducing the size of the clusters, but for any
fixed clustering strategy one can devise an environment leading to unfeasible policies.
For this reason, adaptive clustering algorithms considering the underlying structure of
the state space are needed. These include the one we presented, as well as [4].
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Fig. 7 Example showing how fixed partitioning fails. Partitions are shown using dotted lines.
The hierarchical CMDP induces the policy shown by the red arrows that cannot be executed
due to the obstacles cutting through the macro states.

Alg 1 2 3 4
100/10 5.63 4.64 3.41 2.22
100/30 3.08 3.89 3.20 2.10
100/50 5.69 4.54 3.76 2.54
100/70 5.69 5.22 3.92 2.44
100/90 5.73 4.80 3.78 2.45
200/10 8.52 7.95 5.05 8.48
200/30 9.89 5.44 6.97 7.76
200/50 9.08 8.88 5.66 6.74
200/70 9.62 7.51 6.37 6.28
200/90 9.07 9.11 5.84 7.31

Table 3 Time spent (seconds) by the various algorithms for the maze map on 4 di↵erent
instances.

Given that the fixed-clustering approach is not a viable solution for this environ-
ment, and having shown in the previous section that the non-hierarchical solution is
largely outperformed by our method, the analysis of the maze environment is then
restricted to the HCMDP algorithm. Similarly to Table 1, Table 3 show the time spent
(in seconds) to compute the policy as the size of the cluster and the number of samples
is varied. The table confirms that for this metric the size of the cluster is the most
relevant parameter, whereas there is less sensitivity to the number of samples. Finally,
Figures 8 and 9 show the performance for the functions c and d. The findings confirm
what previously observed, i.e., that the performance loss is contained.

One last question to be addressed is how to pick the parameters for the HCMDP
planner. Looking at Table 1, for example, we see that the performance varies with the
maximum size of the cluster (MS) and the number of samples. The second parameter
has rather straightforward interpretation, since the number of samples is a fixed per-
centage of the number of states in the macrostate, and there is an obvious tradeo↵, in
the sense that more samples imply higher accuracy but require more time. The choice
for the cluster size, instead, is less intuitive. With the objective of getting some experi-
mental insights on how to select this value, we performed a series of experiments where
we varied the size of the cluster and observed its impact on the computational time
and the quality of the solutions. Figure 10 shows the results for three di↵erent prob-
lem instances in both the terrain and the maze problem. Note that since the problems
have di↵erent state spaces, results are normalized expressing in both cases MS as the
percentage of the number of states rather than as an absolute number. It is interesting
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Fig. 8 Average c cost (risk) over 100 independent runs for the maze environment.

Fig. 9 Average d cost (path length) over 100 independent runs for the maze environment.
Horizontal green bars show the value of the constraint in the original, non-hierarchical problem
formulation.

to notice that for both problems and all cases considered, picking MS equal to 1% of
the number of states in the non-hierarchical problem seems to give the best result.

Moreover, in Figures 11 and 12 we evaluate how the cluster size influences the
objective function (risk) and the additional constrained costs (path length). Experi-
mental data show that the impact of MS on these quantities is limited. Therefore, it is
reasonable to conclude that setting MS equal to 1% of the size of the state space seems
to be a good starting point. Of course, when domain specific knowledge is available,
better choices could be made. An analytic investigation on how to select the cluster
size is subject to future work.
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Fig. 10 Time to compute the solution with HCMDP as a function of the cluster size MS.
The left figure shows the trends for the terrain problem, and the right figure shows the trends
for the maze problem.

Fig. 11 Time to compute the solution with HCMDP as a function of the cluster size MS.
The left figure shows the trends for the terrain problem, and the right figure shows the trends
for the maze problem.

Fig. 12 Time to compute the solution with HCMDP as a function of the cluster size MS.
The left figure shows the trends for the terrain problem, and the right figure shows the trends
for the maze problem.

5.2 Gazebo Simulations

With the objective of eventually validating the HCMDP planner on a real robotic
platform, as an intermediate step we developed and tested the planner using ROS and
the Gazebo simulator. The simulated robotic platform exactly matches the robot we
use in the real world experiments, i.e., a P3AT equipped with odometry, sonar, and
the SICK LMS proximity range finder (see Figure 18). The software architecture used
both in Gazebo and on the real robot relies on standard ROS nodes. In particular,
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we use a particle filter for localization [28] and we therefore assume that a map of
the environment is available. In both cases the map was preliminarily built driving
the robot around manually and using the GMapping SLAM algorithm [17] available in
ROS. Figure 13 shows a rendering of the simulated environment (top), the map built
by the SLAM algorithm (bottom left) and the associated risk map for the primary cost
c (bottom right). The simulated map is 21.7m⇥20m and is discretized into square cells
of size 0.5m⇥ 0.5m. In each cell we assume the availability of four actions (up, down,
right, left). This assumption is consistent with our software design, where navigation
to a given target point relies on the ROS navigation stack. In particular, the ability
to execute an action (say “up”) is not influenced by the current orientation of the
robot, and therefore the state is represented just by the cell where the robot is located
(without considering its orientation). According to the framework we presented, for
each state x (i.e., grid cell) the policy computed by the planners returns an action ⇡(x)
that can be translated to a point in one of the nearby grid cells and then fed to the
navigation stack to move the robot there.

Fig. 13 Simulated environment used for the Gazebo simulations and associated risk map.

An essential step to setup a planner based on an MDP approach is to estimate the
transition probabilities, i.e., Pu

xy. To estimate these quantities, each action is executed
100 times and transition probabilities are derived by counting. To explore the sensitivity
of the policies to transition probabilities, two surfaces with di↵erent friction coe�cients
were used. In the first case the probability of executing a motion with success is 0.66
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Fig. 14 Sample paths obtained by the three planners solving the same problem instance: Left:
MDP, Center: CMDP, Right: HCMDP

whereas in the second case it is 0.51. When a motion does not succeed, a uniform
probability over adjacent states (excluding the target state) is used.

Figure 13 (bottom left) shows four di↵erent points in the map used as start/goal
locations to compute the policy. Four di↵erent cases were considered. The first starts
at P1 and ends at P2; the second starts at P2 and ends at P3; the third starts at P3 and
ends at P4; and the fourth starts at P4 and ends at P1. Policies were computed using
three di↵erent planning strategies, namely MDP, CMDP, and HCMDP. For the MDP
planner the objective is to minimize the cumulative c cost according to the risk map
shown in figure 13. MDP is included as an additional term of comparison, although
it solves a simpler problem because it considers just the primary cost c (risk) and ig-
nores the additional cost d (Euclidean distance). Figure 14 shows some examples of
the resulting paths. Every test was repeated 20 times to estimate average behaviors.
The leftmost panel in figure 14 shows that the MDP solution takes the safest path
since it almost entirely lies inside the low risk areas (refer to figure 13). This path is
however longer. This is consistent with the objective function we setup, and to the
lack of constraints on path length. The middle panel shows that, due to the constraints
on path length, the planner produces a path that cuts through some higher risk areas
to meet the bound. Finally, the rightmost panel shows that the HCDMP planner dis-
plays a behavior that is somehow intermediate, in the sense that sometimes it favors
a safer subpath, and sometimes it instead selects a shorter path. This is very evident
when considering point P2. In such case the HCMDP planner produces a path that
approaches P2 like the CMDP planner (shorter but riskier), but then leaves the point
along the same path determined by the MDP planner. This is due to the fact that when
leaving P2 the hierarchical planner has to relax the constraints to achieve feasibility,
and therefore it can produce a path with higher length but lower risk.

Figures 15 and 16 show the first set of results, where the HCMDP planner was tested
using di↵erent values for the maximum cluster size and sampling rate. Consistently with
the expectations, Figure 15 shows that the MDP achieves the lowest risk, whereas it
is again shown that tuning the parameters it is possible to obtain similar performance
between CMDP and HCMDP. Figure 16 also confirms our previous observations with
regard to variations in the secondary cost. Based on these two sets of results, it appears
that the most convenient setup for the HCMDP planner is obtained when the maximum
cluster size is set to 200 and the sampling rate is 90%. Therefore in the following we
will just consider these parameters.

Figure 17 shows an additional set of results where the friction coe�cient is set
to be much lower and then the robot is subject to more slippage when moving (and
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Fig. 15 Average c cost (risk) over 20 independent runs for intermediate friction.

Fig. 16 Average d cost (path length) over 20 independent runs for intermediate friction.
Horizontal green bars show the value of the constraint in the original, non-hierarchical problem
formulation.

then more uncertainty). The figure confirms the conclusions we formerly derived, thus
showing insensitivity to the transition probability rates.

5.3 Real Robot Experiments

To conclude, we executed the same three algorithms to control a P3AT robot (see
figure 18) navigating inside one of the university buildings. Figure 19 shows the map
of the environment preliminarily obtained using the GMapping algorithm. The maxi-
mum dimensions of the environment are 42m⇥ 71m, and the map was split in square
cells of size 0.5m ⇥ 0.5m. Consistently with the previous experiments, Figure 20 dis-
plays the risk map associated with the map. As for the Gazebo simulations, transition
probabilities were extracted through repeated simulation of the various actions. Figure
19 also shows four points used to define the start and goal locations for the various
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Fig. 17 Top: average c cost (risk). Bottom: average d cost (path length). Charts display the
average of 20 independent runs in an environment with reduced friction between the wheels and
the soil. Horizontal green bars show the value of the constraint in the original, non-hierarchical
problem formulation.

Fig. 18 The P3AT robot used to test the HCMDP planner in the real world.

missions. To determine averages, every mission was executed 10 times, and over the
various runs, the robot drove more than 5.5km inside the building totaling over more
than 25 hours of autonomous operation. Figure 21 shows four paths produced by the
HCMDP planner while computing a policy from point P1 to P2, then to P3, afterwards
to P4, and ending at P1. Columns in Figure 22 represent these four paths respectively.
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Fig. 19 Map of the university building used to the the HCMDP planner.

Fig. 20 Risk map associated with Figure 19.

Fig. 21 Four paths produced by the HCMDP planner while computing a policy from point
P1 to P2, then to P3, afterwards to P4, and ending at P1 (see also Figure 19).



26

Fig. 22 Results obtained averaging 10 runs with the real robot. Top: average c cost (risk).
Bottom: average d cost (path length).

As we did in the previous cases, Figure 22 displays the average primary cost c

(risk) and the average secondary cost d (path length). Three di↵erent versions of the
HCMDP planner were compared, where di↵erences were in the size of the clusters (100,
200, 400), whereas the percentage of samples was fixed at 90. Experiments with the
real robot confirm the conclusions we anticipated in Matlab and Gazebo simulations.
In particular, referring to the bottom figure we outline that the path length constraint
was 45 in the first case, 55 in the second, 40 in the third, and 85 in the fourth. It can
be observed that the planner with cluster size 400 is rather competitive with the non
hierarchical version for both costs.

6 Conclusions and Future Work

This paper proposed HCMDP, an algorithm to solve CMDPs using a hierarchical ap-
proach. The technique presented in this paper is valuable because it o↵ers an e�cient
way to solve sequential stochastic decision making problems considering more than one
cost. While CMDPs o↵er an optimal solution to these problems, their computational
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burden limits their applicability in real world applications. HCMDP overcomes this
problem while at the same time ensuring that valuable properties (e.g., feasibility) are
maintained. The algorithm has been extensively validated in simulation and on a real
robot, and the results show significant reductions in the computational time paired
with modest gaps in the expectations of the cost functions.

Various interesting open questions remain. The first is whether it is possible to
derive formal bounds for the performance gap between the policy produced by the
non-hierarchical CMDP and HCMDP. This gap is likely to be a function of parameters
like the maximum cluster size and the number of samples used in the Monte Carlo esti-
mation, but at the moment it appears that tight bounds may be not easy to determine.
The second question pertains to the choice of the parameters. It would be interesting to
derive intuitions on how they should be selected for a given problem instance, perhaps
in terms of an heuristic, or through an iterative guessing process. Another question is
related to the estimation of the parameters for the HCMDP. Within the Monte Carlo
framework, estimation can be performed in many di↵erent ways, and the one we ex-
plored in this paper is just one of the possible choices. A more in depth study would
most likely determine better strategies, either in terms of performance or estimation
accuracy.

On the experimental side, at the moment we have contrasted the HCMDP method
only with the optimal non-hierarchical alternative. Of course, there is a range of sub-
optimal methods one could use to expedite the solution of sequential stochastic decision
problems, in particular for the unconstrained MDP scenario. As part of our future work,
more numerical comparisons between sub-optimal solvers will be done.

Finally, with the emergence of massive multi-core architectures, it would be inter-
esting to experiment how performance scales if one uses multiple cores to perform the
Monte Carlo estimation and to solve the intermediate CMDP instances.

Appendix

Proof of Theorem 1. Definition 2 establishes two conditions for saying that an
HCMDP preserves connectivity. The first requires that XH is a partition of X . Algo-
rithm 1 never considers a state twice, i.e., once a state has been assigned to a cluster it
will not be considered again for assignment (line 4). Moreover, the main loop ensures
that all states in X are assigned to a cluster. Therefore, XH is a partition of X .

We next turn to the second condition. Let z 2 X 0 and y 2 M be two states such that
z  y. By definition this means that there exists a sequence of states S = s1, s2, . . . , sn
such that for each each 1  i  n � 1 Pui

si,si+1 for some ui 2 U(si) and s1 = y and
sn = z. Since XH is a partition of X , this sequence of states is associated with a
sequence of macrostates ZH = S1 . . . Sn = YH such that si 2 Si for each i. Note
that in general there could be some repeated elements in the sequence of macrostates.
Let S1, . . . Sk (k  n) be the sequence obtained removing subsequences of repeated
macrostates.4 First note that this sequence includes at least two elements. This is true
because we started assuming y /2 M while z 2 M . According to Algorithm 1 all and
only the states in M are mapped to an individual macrostate (line 1), so y cannot be
in the same macrostate as z. Next, consider two successive elements in the sequence of

4 This means that if Si = Si+1 we remove the latter from the sequence and we reiterate this
step until Si 6= Si+1 for all symbols left in the sequence.
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macrostates, say Si and Si+1. By construction, there exist two successive states in S,
say sj and sj+1, such that sj 2 Si and sj+1 2 Si+1. Since these two states are part
of S, there exists one input uj 2 U(sj) such that P

uj
sj ,sj+1 > 0. As per Eq.(6), this

implies that an action Sj+1 is added to the set of actions U(Sj). Next, consider the
method described in subsection 4.3, and in particular the definition of the boundary
B between two macro states. It follows that sj+1 2 BSi,Si+1

. The algorithm further
continues computing the shortest path between each state in Si and B, where the
shortest path is computed over the induced graph G. For si the path trivially consists
of a single edge to si+1 (or some other vertex in B that is also one hop away from si.)
Next, the algorithm randomly selects one vertex from Sj using a uniform distribution
and executes the policy to reach B. Let m be the total number of Monte Carlo samples
generated. Then the probability that the estimate of P

Si+1

Si,Si+1 = 0 is bounded from
above by

(1� �)k1(1� P
uj
sj ,sj+1)

k2

where � = 1
Si

, k1 is the number of times sj was not sampled and k2 is the number of
times sj was sampled (k1 + k2 = m, k1,2 � 0). This proves that as the total number

of samples m grows, the estimate for P
Si+1

Si,Si+1 will be eventually be positive. This
reasoning can be repeated for each couple of successive macro states, thus showing
that ZH  YH , and this concludes the proof.

Proof of Theorem 2. We start observing that Algorithm 3 builds and solves
a sequence of HCMDPs. Each is a CMDP with a suitable set of parameters and at
every iteration the constrained linear program given in Eq. (4) is solved. Theorem
1 guarantees that state MH is accessible from every macrostate, and therefore there
exists at least one policy ⇡0 for which c(⇡0) is finite. Let us next consider the inequality
constraints in Eq. (4). If the linear program is not feasible, then each bound Di,H

is increased by �Di,H (line 6.) By construction, all costs di,H(x, u) � 0 for each
state/action pair (x, u). Let ns = |K0

H | be the number of state/action pairs in the
HCMDP, dmax = max(x,u)2K0

H
{di,H(x, u)} the largest among the additional costs,

and Dmin = min{�Di,H} the smallest among the increments in line 6. Therefore after

at most dnsdmax
Dmin

e iterations all inequality constraints become feasible.
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