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Abstract— Constrained Markov Decision Processes offer a
principled way to tackle sequential decision problems with
multiple objectives. Although they could be very valuable in
numerous robotic applications, to date their use has been quite
limited. One of the reasons is that their solution requires to
solve constrained linear programs with a large number of
variables and this is computationally demanding, especially
when considering dynamic environments. In this paper we
propose a hierarchical approach to solve large CMDPs. States
are clustered into macro states and relevant parameters like
transition probabilities and costs are extracted with a Monte
Carlo approach. Macro states are created with the objective
of grouping together states with similar costs while preserving
feasibility. We illustrate the value of our findings in a path plan-
ning scenario where the robot moves through an environment
characterized by different risk levels. Our approach largely
outperforms the non-hierarchical method and we also show how
it prevails over methods based on fixed partitioning strategies.

I. INTRODUCTION

In this paper we present a hierarchical method for
the solution of constrained Markov decision processes
(CMDPs). Markov decision processes (MDPs) continue to
be extensively used to solve sequential decision problems
where the state is observable and the outcome of actions is
uncertain. When the state is not observable, computationally
more demanding methods like partially observable MDPs
(POMDPs) are used. However, in numerous situations state
observability is a legitimate hypothesis. This is for example
the case when the state is used to model the pose of a robot
operating outdoor and equipped with appropriate sensors
(e.g., GPS and gyro). While the MDP formulation considers
a single objective function, in numerous engineering
domains there are multiple objectives to be concurrently
considered. When this is the case, one could combine them
into a single objective function, see e.g., [15]. This approach
is however problematic because the resulting objective
function does not have an immediate physical meaning
and it is influenced by the specific choice made when
combining the various components together. Alternatively,
one can optimize with respect to one objective function and
introduce constraints on the others. This is the standpoint
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adopted in CMDPs. Determining the optimal policy for
a CMDP requires to solve an often large constrained
linear program and there is then interest in techniques to
reduce the associated computational costs. To mitigate this
problem, we embrace a hierarchical paradigm (HCMDP –
hierarchical CMDP). As we discuss in Section II, similar
ideas have been already explored for MDPs, but their
application to CMDPs is missing and former methods
include some limitations that we overcome. Our eventual
objective is to use CMDPs to solve motion planning
problems of unmanned ground vehicles (UGV) used in
manufacturing environments (e.g., autonomous forklifts) and
operating in human inhabited environments. In particular,
we are interested in developing motion plans accounting for
both efficiency and various safety measures. For example,
the robot should at the same time optimize task specific
measures (e.g., length of traversed path, consumed energy,
etc.), while containing certain risk measures, like crossing
through heavily trafficked areas. Note that in some instances
it may be unavoidable to take risky actions in order to
complete the task, but the planner should keep these episodes
to a minimum. To this end, we use CMDPs to compute a
solution accounting for these concurrent objectives.

The main idea behind HCMDP is to partition the state
space of the original CMDP into clusters and to compute a
policy over this smaller space. Then, the solution is projected
back into the original state space, by solving a number
of simpler CMDP instances. This method presents two
problems. The first concerns completeness, i.e., depending
on how the clusters are formed one may lose connectivity to
the goal set. The second problem concerns optimality, i.e.,
the solution obtained through the hierarchical approach is
not as good as the optimal solution in the original problem.
Provided that the decrease in performance is bounded, the
second problem can in general be tolerated, whereas care
should be taken to avoid the first one. In this paper we show
how it is possible to create clusters to guarantee feasibility.
Additional problems connected to the hierarchical solution of
CMDPs are related to the definition of costs and transition
probabilities in the hierarchical CMDP. To estimate these
quantities, we use a Monte Carlo based approach that is
broadly applicable and does not hinge on specific properties
of the underlying state space.

The remainder of the paper is organized as follows.
Related work is discussed in Section II. The basic CMDPs
theory is presented in Section III. Section IV illustrates
HCMDP and in Section V we present various simulations



illustrating its properties. Finally, conclusions are offered in
Section VI.

II. RELATED WORK

Literature in MDPs is vast. The reader is referred to
[4] for a general introduction to MDPs and to [14], [16]
for applications to robotics. A comprehensive treatise about
CMDPs is given in [1]. Despite MDPs have been extensively
used in robotics and the theory of finite CMDPs is well
understood, the use of CMDPs in robotics has been somehow
limited and most applications are found in other domains,
e.g., communication networks. We posit that their limited
use is a consequence of their computational complexity. In
robotics, Ding et al. [11] used CMDPs to solve planning
problems. More recently, we used CMDPs to solve the rapid
multirobot deployment problem [5], [6].

Hierarchical solutions to MDPs have been proposed in the
past with the objective of improving computational efficiency
and to compute policies that could be reused for similar sub-
problem instances. Dai et al. proposed multiple approaches
to create hierarchical models of large MDPs [7]. Topological
value iteration guarantees to find the optimal solution of an
MDP. Its partitioning method, however, becomes inefficient
when applied to state spaces with poor connectivity. Focused
topological value iteration [8], [9] improves the former
method by building the value function on a subset of the state
space including the starting point. The partitioning problem,
however, persists. Barry et al. proposed their first hierarchical
approach based on strongest connected components [2], and
then improved that with DetH* [3]. Their methods, however,
are focused on the solution of factored MDPs. SPUDD
[13] was introduced to solve very large MDPs and saves
values/policies as functions rather than using a numeric
lookup table. MAXQ [10] is also used to solve MDPs in
hierarchical form, but it relies on human input to define the
clustering of states. In our previous work [12] we proposed a
first hierarchical solution to CMDP problems. Our findings
showed that a significant speedup could be obtained with
modest losses in terms of objective functions. However, our
previous partitioning method was based on a predetermined
schema that does not guarantee feasibility in the hierarchical
problem. In this paper we overcome this limitation.

III. BACKGROUND

We shortly recap MDPs and CMDPs. The reader is re-
ferred to [4] and [1] for detailed introductions to the problem.
Throughout the paper we exclusively consider finite models.

A. Markov Decision Processes

A finite MDP is defined by a quadruple (X,U, P, c) where:
• X is a finite state space with n elements.
• U the finite set of actions. U(x) is the set of actions

that can be taken in state x ∈ X .
• P : X × U × X → [0, 1] is the transition probability

function. P (x, a, y) is the probability of moving from
state x to state y when applying action a ∈ U(x). Being

a probability, this function satisfies the normalization
requirements, and is written as P axy for brevity.

• c : X ×U → R≥0 is a cost function. c(x, a) is the cost
incurred when applying action a while being at state x.

Note that both P (x, ·, y) and c(x, ·) are defined only for
actions in U(x), and this fact will be tacitly assumed in
the following. A policy π : X → U associates an action
to a state, and it is known that for MDPs there is no
loss of optimality assuming that π is deterministic. Given
a start state x0 ∈ X , the policy π induces a stochastic
process over the set of states, where Xi+1 is the random
variable representing the state reached from Xi by applying
action π(Xi). Different cost models have been considered in
literature. In this paper we focus on the infinite horizon total
cost, whose definition hinges on the definition of absorbing
MDP. An MDP is absorbing if the state space X can be
partitioned into X ′ and M such that for each policy π:

1)
∑
t P

π(Xt = x) <∞;
2) P axy = 0 for each x ∈M and y ∈ X ′,

where Pπ(Xt = x) is the probability that Xt = x while
following policy π. If we assume that c(x, a) = 0 for each
x ∈ M , then for an absorbing MDP we can the define the
infinite horizon total cost of a policy π as

c(π) = E

[ ∞∑
t=0

c(Xi, π(Xi))

]
where the expectation is taken with respect to the probability
distribution over the set of realizations of the stochastic
process Xi induced by π. Note that this cost exists because
of the absorbing property, i.e., we are guaranteed that for
each policy the state will eventually enter and remain in
M , where no additional cost is accrued. Solving an MDP
means to determine the policy π∗ minimizing the cost just
defined. Dynamic programming provides various approaches
to compute the solution, e.g., value iteration and policy
iteration.

B. Constrained Markov Decision Processes

CMDPs extend MDPs by introducing additional costs,
and imposing constraints on them. A CMDP is defined by
(X,U, P, c, di, Di) where X,U, P, c are defined as for MDPs
and:

• di : X × U → R≥0 with 1 ≤ i ≤ k are k additional
cost functions.

• Di are k non negative bounds.

When action a is applied in state x, in addition to c(x, a)
each of the additional costs di(x, a) is incurred as well. The
definition of an absorbing CMDP follows the definition of an
absorbing MDP, but we additionally require that di(x, a) = 0
for each x ∈M . Given an absorbing CMDP and a policy π
the following costs are then defined:

c(π, β) = E

[ ∞∑
t=0

c(Xi, π(Xi))

]



di(π, β) = E

[ ∞∑
t=0

di(Xi, π(Xi))

]
where β indicates the mass distribution for X0, i.e., β(x) =
Pr[X0 = x]. This additional parameter is needed because
the solution of a CMDP in general depends on the initial
distribution of state. The CMDP problem is to determine a
policy π∗ solving the following optimization problem:

π∗ = arg min c(π, β) (1)
s.t. di(π, β) ≤ Di 1 ≤ i ≤ k

Despite their similarities, there are three main differences
between MDPs and CMDPs. First, the optimal policy for
a CMDP may require randomization, whereas deterministic
policies are sufficient to achieve optimality in MDPs. Second,
the optimal solution depends from the initial distribution β,
whereas for MDPs the optimal policy is independent from
the initial state. Third, MDPs are normally solved using
dynamic programming but this is not true for CMDPs. The
optimal policy for a CMDP is found solving a constrained
linear program defined as follows. Let K = {(x, a)|x ∈
X ′, a ∈ U(x)} be the state-action space, and and ρ(x, a) a
set of optimization variables associated to each element in
K . Then the optimization defined in Eq. 1 has a solution if
and only if the following linear program is feasible:

min
ρ

∑
(x,a)∈K

ρ(x, a)c(x, a) (2)

s.t.
∑

(x,a)∈K

ρ(x, a)di(x, a) ≤ Di 1 ≤ i ≤ k

∑
(y,a)∈K

ρ(x, a)(δx(y)− P ayx) = β(x) ∀x ∈ X ′

ρ(x, a) ≥ 0 ∀(x, a) ∈ K

where δx(y) = 1 when x = y and 0 otherwise. If the linear
program is unfeasible, then the CMDP cannot be solved, i.e.,
no policy can satisfy the constraints. If the linear program is
feasible, then the optimal solution ρ(x, a) induces an optimal
randomized policy π∗ defined as

π∗(x, a) =
ρ(x, a)∑

a∈A(x)

ρ(x, a)
x ∈ X ′, a ∈ U(x) (3)

where π∗(x, a) is the probability of executing action a
while in state x. Note that the policy is only defined
for states in X ′ and can be arbitrarily defined for states
in M because of the assumption that the CMDP is absorbing.

The linear program associated with a CMDP can eas-
ily include a very large number of optimization variables
ρ(x, a) and its solution becomes therefore computationally
demanding (see Section V for some examples). This problem
is particularly daunting when CMDPs are used plan the
actions of of a robot operating in a dynamic environment,
and changes in the surroundings require the repeated solution
of the large linear program. Starting from these motivations,

Fig. 1: HCMDP Approach. The lower layer represents the
states of the MDP, whereas the higher layer represents the
macro-state graph. The blue area shows the set M and is
preserved in the two layers.

in the following we present a hierarchical method to accel-
erate the solution while preserving feasibility and limiting
performance loss.

IV. HCMDP – HIERARCHICAL CONSTRAINED MARKOV
DECISION PROCESSES

Hierarchical methods to solve MDPs have been considered
since quite some time (see e.g., [4], vol II, Ch. 6). The
principle can be applied to CMDPs too, although to the
best of our knowledge this has not been explored yet, with
the exception of our recent work [12]. The overarching idea
is to create a smaller CMDP (i.e., an instance with fewer
states) through clustering of states, compute a policy for
the smaller instance, and then utilize this high level strategy
to infer a policy for the original problem (see Figure 1).
More formally, starting from a CMDP (X,U, P, c, di, Di),
we extract a HCMDP (XH , UH , PH , cH , di,H , Di,H) with
the objective that |X| << |XH |. Next, we compute the
optimal policy π∗H for the HCMDP and we use it to extract
a policy π′ for the original CMDP. Note that while π∗H is
guaranteed to be optimal for the HCMDP, in general π′

will not preserve optimality for the non-hierarchical CMDP.
Our proposition, however, is that the loss in optimality is
compensated by the gain in computational efficiency.

Despite these principles are well accepted, no general
purpose solution has been proposed so far, and this approach
relies on the solution of various intermediate problems. The
first concerns clustering, i.e., how to build XH from X .
In the following we present a method that is guaranteed
to preserve connectivity. Next, it is necessary to define the
action set UH for the clustered state space. The last modeling
problem is the definition of transition probabilities between
clusters of states, and the computation of the state/action
costs. To solve this problem we adopt a Monte Carlo
approach. The final problem is how to infer a policy π′ over
X starting from π∗H . In the following we discuss how we
solve each of these issues.



A. Clustering

The first problem we tackle is how to compute XH from
X . XH must be a partition of X and its elements will be
called clusters or macro states. The key idea to effective
partitioning is to group together states with similar charac-
teristics, where similarity is in this case measured in terms
of the cost function c. As mentioned in the introduction, care
must be taken when creating macro states in order to preserve
connectivity. This concept can be formalized as follows.
We say that x is connected to y and we write x  y if
there exists a sequence of states s1, . . . , sn ∈ X and actions
a1, . . . an−1 ∈ U such that s1 = x, sn = y and P aisi,si+1

> 0
for 1 ≤ i ≤ n− 1. Let z ∈ X ′ and y ∈ M be two states in
the original CMDP, such that z  y, and let ZH , yh ∈ XH

be the two macro states containing z and y in the hierarchical
CMDP. Then, we require that ZH  YH . Furthermore, given
S ⊂ X , x ∈ X , and a ∈ U(x) we define the following sets

Pre(S) = {x ∈ X|∃a ∈ U(s) ∧ ∃y ∈ S ∧ P axy > 0}
Post(x, a) = {Y ∈ XH |∃y ∈ Y ∧ P axy > 0}
Post(S) = {Y ∈ XH |∃y ∈ Y ∧ P axy > 0}.

Note that Pre(S) is a subset of states of X , whereas
Post(x, a) and Post(S) are sets of macrostates of XH . Al-
gorithm 1 illustrates our clustering approach. The algorithm
starts by creating a cluster with the absorbing set (line 1).
Then, it repeatedly iterates over the set of states that have
not been assigned to a cluster, but can reach one of the
existing clusters in one step with non-zero probability (line
4). States are then assigned to a cluster if the size of the
cluster does not exceed a maximum size (parmeter MS), and
the average cost of a cluster is similar to c(s, as), i.e., the
cost incurred in order to move from s into the cluster (lines
6 to 14). We define c(H) as the average of the costs for all
the state/action pairs in H . If a state cannot be assigned to
any of the existing clusters, then a new cluster with a single
state is created (lines 15 to 19), and the process is iterated. At
the end, an optional merging step described in the following
is performed (line 23). Note that in the current description
of the algorithm we assumed that all states are connected
to each other and therefore they eventually are all assigned
to a cluster. To enforce this property, one can preliminarily
identify and eliminate states belonging to components not
connected to M . The behavior of the clustering algorithm
is defined by two parameters, namely the maximum size
of each cluster MS, and the threshold δ used for the test
whether c(H) ≈ c(s, as). The impact of these parameters
is evident. Large values for δ lead to clusters of states with
dissimilar values for c, thus defying the effectiveness of the
clustering approach. On the other hand a too little value leads
to too many clusters. In the experimental section we will
analyze the sensitivity to MS. The negative effect of a poorly
chosen δ is controlled by MS (when δ is too large) or by
the merging step (when δ is too small).

1) Merging: Too large clusters negatively impact the
performance of the algorithm and the parameter MS is intro-
duced to control this aspect. However, too many small clus-

Algorithm 1: Clustering Algorithm
Data: X,U, P
Result: XH : Set of macro-states

1 XH ← {M};
2 while There exist states not assigned to any cluster

do
3 foreach C ∈ XH do
4 S ← Pre(C) ∩(X \ ∪XH ) ;
5 foreach s ∈ S do
6 for as ∈ U(s) do
7 Ys ← Post(s, as);
8 for H ∈ Ys do
9 if c(H) ≈ c(s, as) ∧ |H| < MS

then
10 assign s to cluster H;
11 break out of two nested for

loops;
12 end
13 end
14 end
15 if s not assigned yet then
16 create new cluster Ms = {s};
17 add Ms to XH ;
18 assign s to cluster Ms;
19 end
20 end
21 end
22 end
23 XH ← merge(XH );
24 return XH ;

ters also negatively impact the performance. To overcome
this problem, small clusters can be combined together during
a merging step. A parameter mS (minimum size) is used to
trigger the merging process. Algorithm 2 shows how merging
is performed. Clusters smaller than mS are combined with
neighboring clusters. When multiple neighbors exist, the one
with the most similar cost is picked, provided that it does
not exceed the maximum size MS.

B. Hierarchical Action Set

The set of clustered states induces a new set of actions
UH for the HCMDP. For a macrostate Y ∈ XH , the action
set UH(Y ) is created considering all macrostates that can be
reached in one step. Hence, UH(Y ) is:

UH(Y ) = {Z ∈ XH |∃y ∈ Y ∧z ∈ Z∧a ∈ U(y)∧P ayz > 0}.

Note that UH is induced by XH and the original action set
U , but it is made of actions that were not part of U .

C. Transition probabilities and costs

The final step to complete the construction of HCMDP
is the definition of transition probabilities PH , costs cH
and di,H , and bounds Di,H . To the best of our knowledge,
no principled methods have been proposed to infer these
quantities using an analytic approach valid irrespectively



Algorithm 2: Merge Algorithm
Data: XH : Set of all macro-states
Result: XH : New set of macro-states

1 repeat
2 for M ∈ XH do
3 if |M | < mS then
4 Madj= Post(M) ;
5 Mc ← arg minMc∈Madj

|c(Mc)− c(M)|;
6 if |Mc| < MS then
7 merge M and Mc and update XH ;
8 end
9 end

10 end
11 until no more states are merged;
12 return XH ;

of the structure of the underlying state space. In order to
create a method that can be applied to arbitrary state spaces,
we therefore opt for a Monte Carlo based approach in
which transition probabilities and costs are estimated through
sampling. The advantage of this approach is found in its
broad applicability. The known disadvantage is that it does
not lend itself to an easy characterization of its performance
in terms of analytic bounds. We only describe the estimation
method for the transition probabilities, since the idea is
similar for the costs. For macro states M1 and M2 and action
M3 ∈ U(M1) we want to estimate PM3

M1,M2
. This probability

is defined only if M1 and M2 are adjacent, i.e., M1 ∈ U(M2)
and M2 ∈ U(M1). The estimation process is as follows. We
select one state x ∈M1 and one state y ∈M2. In both cases
a uniform random distribution is used. Then we compute the
single source shortest path from y using breadth first search.
The graph used by BFS has all states in M1 and M2 and has
and edge between vertices a ∈ M1 and b ∈ M2 whenever
there is an action c ∈ U(a) such that P cab > 0. Single source
shortest path identifies all vertices in M1 reachable from y
with a non-zero probability. This set includes x due to the
way we built the macro states. By reversing the direction of
the edges in the graph we then obtain a policy to go from
x to y. Next, a simulation starts, that is we simulate the
state evolution from x following the deterministic policy we
just computed and using the transition probabilities in the
original CMDP. Due to the underlying uncertainty in state
evolution, it is possible that while following this policy the
state will end in M2 or in a different adjacent macro state.
The probability PM3

M1,M2
is then estimated by taking the ratio

between the number of times the state eventually reaches
M3 and the overall number of attempts. Note that the set
of simulations provide also PM3

M1,Mj
with j 6= 2 by counting

how many times the evolution ends in Mj rather than M2.
Hierarchical costs cH and di,H are estimated using a

similar approach. The difference in this case is that the
average is taken over the overall costs accrued during the
simulation of an application of action Mi from state Mj .
Finally, for the hierarchical bounds Di,H we use the same

costs in the original CMDP. This combination of transition
probability definition and clustering guarantees connectivity.
The proof, omitted for brevity, follows the connectivity proof
given in [3].

D. The hierarchical planner

Algorithm 3 sketches the structure of the hierarchical
planner. The input to the algorithm is the original CMDP,
the start state s, and the set of goal states M . The algorithm
starts by computing the hierarchical structure (line 1) and
then tries solving the associated linear program. If the linear
program can not be solved, the various bounds are increased
(line 6) and the problem is solved again. We assume all costs
are increased, but one could also opt for a different increase
strategy, e.g., increasing one at the time. The rationale behind
increasing the bounds, is that the hierarchical problem may
be unsolvable due to the approximations induced in comput-
ing the costs through Monte Carlo sampling (in particular,
overestimation of the costs di,H ). Once a strategy for the
hierarchical CMDP is found, a sequence of smaller CMDPs
is solved to move from one macro state to the next (line
15 to 23). The desired sequence of macro states to follow
is given precisely by the policy for the hierarchical problem
and exploits our definition of actions for the macro states. In
particular, the action set for a macro state YH is given by the
set of macro states sharing a boundary with it, so that the
goal set computed at line 18 can be easily computed. The
cycle terminates when the goal set is reached.

Algorithm 3: Algorithmic Sketch
Data: CMDP = (X,U, P, c, di, Di), s,M

1 Build HCMDP (XH , UH , PH , cH , di,H , Di,H);
2 Solved← false;
3 while Not Solved do
4 Solve LP associated with HCMDP;
5 if LP unfeasible then
6 Increase each bound Di,H of ∆Di,H ;
7 end
8 else
9 Solved← true;

10 end
11 end
12 Extract optimal aggregate policy π∗H (Eq. 3);
13 x← s;
14 while x /∈M do
15 Determine state YH containing s;
16 if YH 6= M then
17 ZH ← π∗A(Yt);
18 GoalSet← Frontier(YH , ZH);
19 πL ←SolveLocalCMDP(x,GoalSet);
20 repeat
21 Follow policy πL and update x
22 until x reaches GoalSet or exits YH ;
23 end
24 end



Fig. 2: Sample terrain map. Warmer colors represent high
risk areas to be avoided. The right picture shows two different
solutions obtained with different risk constraints.

V. EXPERIMENTS AND RESULTS

In this section we experimentally compare three different
approaches to solve CMDP problems. The first is the non-
hierarchical method that solves the linear program given in
Eq. 2. The second is the method we presented in [12] that
relies on a fixed structure partitioning of the state space. The
third is the method we described in the previous sections, and
we study its sensitivity to some of its parameters.

As stated in the introduction, our objective is to study
high-level motion strategies for autonomous vehicles used in
industrial environments while pursuing multiple objectives.
High-level in this case means that we abstract from the
motion primitives of the vehicle. These can be accounted
for in the transition probabilities between states and the
associated costs. According to this approach, we focus on
planar environments subdivided in regular grids. In this study
we assume that cost c is a measure of risk and we consider
a single additional cost d representing traveled distance.
Our method, however, can include an arbitrary number of
additional costs. According to this choice, the problems we
study aim at determining paths between couple of points
that minimize the overall expected risk while bounding the
expected length of the traversed path. We consider two
different test cases. The first is shown on the left side of
Figure 2. Warmer colors are used to identify cells associated
with higher values for the risk cost c. This map is referred to
as terrain in the following. The second map is shown in the
left side of Figure 3 where black areas are non traversable
obstacles and the white area represents free space. Risk is
defined as proximity to obstacles which and is shown in the
middle panel of the same figure. This map is referred to as
maze in the following. In both maps the cost d is set to 1
for every state/action pair.

Being defined over a grid, for both environments we as-
sume 4-connectivity and we correspondingly define 4 actions
for each state.1 In the state transition model each action
succeeds (i.e., the robot moves towards the desired next state)
with probability 0.8. For example, if x has four neighbors
and we consider the action a =up, we have P axy = 0.8 for the
state y above x. The remaining 0.2 probability is uniformly
spread over x and the three states left, right, bottom. We
consider three different performance measures. The first is

1For states close the boundary or to an obstacle, the action set is adjusted
by removing actions that would violate these constraints.

the time spent to find the solution, the second is the value of
the objective function c (risk), and the third is the value of
the of additional constrained cost d (path length). The code
is implemented in Matlab and linear programs are solved
using the built in linprog function. To perform a fair
time comparison, for the hirarchical methods we log the
cumulative time spent inside all the calls to linprog.

Table I shows the performance on the terrain environment
for 12 different problem instances, where a problem instance
is defined as a couple of start and end points (their coordi-
nates are given in figure 4 and 5 on the x axis). The first
row of the table shows the timing for the non-hierarchical
method (NH) while the second row displays the results for
the hierarchical method using fixed partitioning. Successive
rows show the results for the algorithm we propose while
varying the parameter MS and the sampling rate in the
Monte Carlo process. To be specific, X/Y means that the
maximum cluster size MS is X , and the number of samples
used to estimate probabilities and costs is Y% of the number
of states in the clusters. The prefix nm stands for non
merged, and indicates that the merging step at the end of
Algorithm 1 was not performed.

To put the performance of the non-hierarchical method
into perspective, we notice that the terrain environment
generates a constrained linear program with more than 65000
variables whereas the maze environment induces a linear pro-
gram with more than 41000 variables. These numbers explain
the large difference in time between the non-hierarchical and
hierarchical methods, and justify this line of research.

Next, we consider the value obtained for the objective
function c (risk) and the bounded additional cost d (path
length). Results are plotted in Figure 4 and 5 averaging the
results of 100 independent runs. The first fact to observe
is that the different methods achieve similar performance
with regard to the constrained cost d (see Figure 5). This
demonstrates that each solution tends to use almost all
the allotted budget for d, as specified by the bound D.
Considering Figure 4 one observes that, as expected the,
non hierarchical method provides the best solution while the
other methods in general behave similarly, with a slight better
performance for hierarchical solutions using larger clusters.
Moreover, instances not using the merging step behave in
general worse. Two additional observations are in order.
Fixed partitioning appears in general very competitive for
this benchmark. However, in some instances it totally fails
(like in maze), so it cannot be considered as a generally
applicable solution. Second, in some instances (e.g., the sec-
ond test case in Figure 4) it appears that the non-hierarchical
method is outperformed by one of the hierarchical methods.
This counterintuitive results is due to the fact that if the
linear program for the hierarchical problem is unfeasible, the
constraint D is increased (see Algorithm 3). This additional
budget for the traversed length may give the possibility to
avoid risky areas (high values of c) by taking a detour that is
now allowed because of the increased D bound. This aspect
is shown in the right panels of Figures 2 and 3. There we
show how paths with lower constraints on length are forced



Fig. 3: Maze map where fixed partitioning fails. Left picture shows the map. Middle picture is the risk map associated with
the map where the hotter colors illustrate riskier area. The right picture shows two different solutions.

Alg 1 2 3 4 5 6 6 8 9 10 11 12
NH 107 94.8 54.7 1303.4 613.8 43.9 860.2 86.6 743.9 151.4 59.3 106.2

Fixed 3.19 2.91 2.2 1.3 0.8 1.79 2.3 1.5 2.5 0.89 1.89 1.7
100/10 4.59 5.49 3.89 1.72 2.72 2.20 2.43 1.82 3.21 1.43 3.39 2.55
100/30 7.04 5.68 4.02 1.82 1.79 7.33 2.48 3.02 3.59 1.79 3.06 3.59
100/50 6.17 8.45 3.79 1.70 1.65 7.48 2.37 5.48 5.14 2.58 4.34 4.21

nm/100/50 5.3 3.48 3.15 1.76 1.56 2.54 11.84 2.87 2.51 1.92 2.93 2.76
200/10 4.9 3.53 4.06 2.57 1.08 3.47 2.58 3.53 2.9 1.02 3.44 4.57
200/30 3.89 3.21 3.74 2.84 1.49 2.72 2.98 4.01 3.72 1.28 2.84 3.81
200/50 4.75 4.50 4.45 2.38 1.64 2.36 2.48 3.78 5.21 1.21 3.51 3.77

nm/200/50 4.03 3.44 3.02 1.31 1.76 2.63 1.84 4.83 4.07 1.49 2.45 2.20
400/10 7.17 6.02 5.25 5.64 1.71 8.12 3.17 3.76 3.31 2.26 3.45 3.85
400/30 6.41 6.83 5.05 2.52 2.31 8.06 5.43 2.90 4.08 2.42 7.73 4.86
400/50 6.80 5.65 5.41 5.14 2.48 8.09 3.06 2.56 4.39 2.3 3.47 3.89

nm/400/50 5.32 3.98 9.72 6.28 7.16 11.03 4.9 5.92 4.5 2.32 3.83 4.62

TABLE I: Time spent by the various algorithms for the terrain map on 12 different instances.

Fig. 4: Average c cost (risk) over 100 independent runs for
the terrain environment.

through risky areas.
We next consider the maze environment. In this case the

fixed partitioning method fails because it produces a policy
that does not consider the obstacles in the environment
(see Figure 6). While this example is specific to the fixed
partitioning method we considered, it is easy to show that
for any fixed partitioning strategy one can build a state space
instance that will be clustered into macro states leading
to unfeasible policies. For this reason, adaptive clustering
algorithms considering the underlying structure of the state
space are needed. These include the one we presented, as
well as [3].

Having assessed that our proposed algorithm outperforms
the non-hierarchical approach, and that fixed clustering meth-
ods are inadequate, the analysis of the maze environment is
therefore restricted to the algorithm we proposed. Table II

Fig. 5: Average d cost (path length) over 100 independent
runs for the terrain environment.

Fig. 6: Example showing how fixed partitioning fails. Parti-
tions are shown using dotted lines. The hierarchical CMDP
induces the policy shown by the red arrows that cannot
be executed due to the obstacles cutting through the macro
states.



Alg 1 2 3 4
100/10 5.63 4.64 3.41 2.22
100/30 3.08 3.89 3.20 2.10
100/50 5.69 4.54 3.76 2.54
100/70 5.69 5.22 3.92 2.44
100/90 5.73 4.80 3.78 2.45
200/10 8.52 7.95 5.05 8.48
200/30 9.89 5.44 6.97 7.76
200/50 9.08 8.88 5.66 6.74
200/70 9.62 7.51 6.37 6.28
200/90 9.07 9.11 5.84 7.31

TABLE II: Time spent by the various algorithms for the maze
map on 4 different instances (in seconds).

shows the time spent solving the various instances of linear
programs, as we did in Table I. The table confirms that
for this metric the size of the cluster is the most relevant
parameter, whereas variations are minor when one considers
a fixed cluster size and then varies the number of samples.

Finally, Figures 7 and 8 show the performance for the
functions c and d. The findings confirm what previously
observed, i.e., that the performance loss is contained.

Fig. 7: Average c cost (risk) over 100 independent runs for
the maze environment.

Fig. 8: Average d cost (path length) over 100 independent
runs for the maze environment.

VI. CONCLUSIONS

In this paper we have presented a hierarchical solution to
CMDPs. We believe that the CMDP framework is valuable
to the robotics community because it offers a principled
solution to multiobjective sequential decision problems and
hierarchical solutions are necessary to expedite the solution

of CMDPs. Our method hinges on two steps. A partitioning
of the states guaranteed to preserve connectivity, and an
estimation of parameters based on Monte Carlo sampling.
Our experimental validation confirms that HCMDP offers
large gains in terms of computational time while incurring
in moderate losses in the objective functions. In the future we
aim at deriving bounds for the performance loss. Moreover,
by taking advantage of multi-core architectures we will
accelerate the estimation of parameters with Monte Carlo
sampling by running multiple instances in parallel.
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