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Abstract— The cooperative leader following task for multi-
robot teams is introduced and discussed. We describe the de-
sign and implementation of a distributed technique to coordi-
nate team level and robot level behaviors for this task, as well
as a multi-threaded framework for the implementation of a het-
erogeneous multi-robot system. This approach enables robots to
remain in formation as they deal with other obstacles that may
appear within the formation. We describe how single robot be-
haviors are realized and scheduled. The proposed approach has
been run and wvalidated on a team of robots performing both in
indoor and outdoor environments.

I. INTRODUCTION

In this paper we address the problem of leader fol-
lowing in the case of a heterogeneous multi-robot team.
This task requires the robots to move in a linear pat-
tern, each following the previous robot, with the first
robot either following a human operator, being teleop-
erated, or going through a predetermined path. The
task can be seen as a service task for bringing the
robots to a work area. Of course, the team is required
to perform in a robust way, so that the team is able
to correctly operate even if some external undesired
or unforeseen event occurs. Examples of unexpected
events include an obstacle in the way or one or more
of the robots failing.

We propose a distributed policy based on explicit
communication that allows this goal to be achieved at
the team level. At the single robot level we introduce
a multi-threaded structure that can be employed on
different robots, and we also give the details about the
tracking techniques. This framework allows us to ab-
stract the coordinated tracking process from the low-
level sensor details.

This paper is organized as follows: related work is
discussed in Section II, while our approach at the team
level is introduced in Section III, and at the robot
level in Section IV. Details about the software ar-
chitecture are provided in Section V, and in Section
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VI we briefly outline how the various sensors are used
for leader following and obstacle avoidance. Finally
in Section VII we present additional implementation
results, with conclusions offered in Section VIII.

II. RELATED WORK

The task of pattern formation and formation march-
ing has gained a lot of attention in previous years,
with the former being a preliminary step for the lat-
ter. Indeed there are some tasks that intrinsically re-
quire the movement of a multi-robot system in a spec-
ified pattern, such as in military applications, demi-
ning or surveillance. However, much of this previous
research has been done in simulation only and just a
few projects have been implemented and tested on real
robot systems. We now briefly overview the most sig-
nificant work in relation to our research. In [1] an im-
plementation on a physical team of robots is discussed.
A class of reactive behaviors that implement forma-
tions is introduced and tested on a team of military
unmanned ground vehicles performing in an outdoor
terrain. While this work is similar to ours in terms
of the behavior-based approach, the main differences
are that we do not use a global positioning system
(e.g., GPS) and we also deal with a heterogeneous sys-
tem in which robots are equipped with different sets
of sensors. Potential field approaches are widely used
for formation keeping (see for example [10]). Robots
move being attracted to their position in the pattern
and being repulsed from obstacles and other robots. In
[3] the idea of moving a team by means of one robot
that leads the rest of the robots is discussed and some
simulation results are shown. The issue of designing
control laws for this kind of problem is discussed in [8]
and [9]. In contrast to much of this previous research,
our research explicitly addresses issues of maintain-
ing formation in a leader-following application while
also avoiding obstacles that may unexpectedly appear
within the formation.
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Fig. 1. Team-level (bold lines and italics font) and robot-level
(thin lines and roman font) behavior transitions.

III. TEAM LEVEL BEHAVIORS

We address the following problem: given a set of
possibly heterogeneous robots arranged in a linear pat-
tern, design a strategy so that if the first moves in an
unknown environment, the other follows while at the
same time avoiding obstacles that may appear within
the formation. Of course the line pattern can be mod-
ified, for example, to avoid an obstacle suddenly ap-
pearing in the proximity of a robot. The invariant,
however, is that each robot (except the first) should
follow the previous robot. We call this task Cooper-
ative Leader Following. Indeed, the proposed task is
cooperative since to be reached at the team level, ev-
ery robot has to reach its own goal at the local level.
Clearly, if one robot loses the tracking of its leader
with all the following robots behind it, the team fails.
As usual in multi-robot team design, it is necessary to
match group goals with individual goals. We utilize a
behavior-based approach ([2]) and distinguish between
team-level behaviors and robot-level behaviors.

At the group level we use a situated automaton ([6])
approach, with the team seen as a finite state automa-
ton whose inputs come from the environment. The
transitions between the three group-level behaviors are
shown in Figure 1.

At the team level we introduce three behaviors:

o Team-Follow: if the team is executing this behav-
ior, every robot (except the first) will follow its local
leader.

o Team-Wait: this behavior is executed when the
team is waiting for some event to happen. This is the
case when, for example, a moving object approaches
a robot, so that it is not safe to keep moving. In this
case all robots stop to avoid breaking the formation.
o Team-Recover: this behavior is executed when the
team is trying to recover from a wait condition. Since
not all robots are involved in a collision danger situ-
ation, when the team is performing this behavior sin-
gle robots will execute different behaviors, with some
robots trying to go around obstacles, and others sim-
ply performing regular following at a reduced speed.

The introduction of the Team-Wait behavior is mo-
tivated by the assumption that the team will not op-
erate in an interference-free environment, but rather

in an unknown, possibly unstructured, environment
shared with other moving entities, such as humans or
other robots. In this scenario, it could happen that a
moving object approaches the robot, so that it is nec-
essary for it to stop to avoid a collision. The robot
first waits for a certain amount of time for the ob-
stacle to go away. If this time is exceeded, then the
robot attempts to circumnavigate the obstacle — i.e.
to recover from the situation and to resume the follow
behavior. The wait stage is introduced because recov-
ering is a difficult task, and it is preferred to execute
it only when there is no alternative. Of course, when a
robot is waiting, other robots should wait too, to keep
the formation together. From the above discussion it
is evident that some sort of ezplicit communication is
necessary to gain the desired team level behavior, es-
pecially for large team sizes.

IV. RoBoT LEVEL BEHAVIORS

At the single robot level we designed a set of five
behaviors that, locally executed, give the team level
behaviors previously described (see Figure 1). They
are:

« Robot-Follow: the robot is following its leader.

o Robot-Local-Wait: the robot is waiting because
an obstacle does not let it move safely.

o Robot-Remote-Wait: the robot is waiting be-
cause one or more other robots are in Robot-Local-
Wait.

¢ Robot-Local-Recover: the robot is trying to re-
cover from a Robot-Local- Wait situation. This means
that it is trying to overtake an obstacle while keeping
track of its leader.

« Robot-Remote-Recover: the robot is following
its leader but at a reduced speed, so that if its follower
is doing a Robot-Local-Recover behavior, it will be eas-
ier for the robot to keep tracking while overtaking the
obstacle.

Figure 1 outlines the relationship between team-
level behaviors and robot-level behaviors. So, the team
is doing a Team-Follow behavior if all the single robots
are doing a Robot-Follow. The team is in a Team- Wait
behavior if all the robots are doing either Robot-Local-
Wait or Robot-Remote-Wait. Finally, the team is do-
ing a Team-Recover behavior if all the robots are doing
either Robot-Local-Recover or Robot-Remote-Recover.
So, at the team level the switching between differ-
ent behaviors is triggered by explicit communication,
while at the single robot level the triggering comes
both from sensors and from communication.

At the single robot level the switching between dif-
ferent behaviors is triggered from inputs which come
from sensors and communication. To make this struc-
ture independent of the number of robots in the team,



each robot is modeled as a Situated Counter Machine.
A counter machine ([4]) is a computational model
which lies between finite state automatons and push-
down automatas. Informally, a counter machine is a
finite state automata augmented with a counter that
can count arbitrary numbers, so that the next state
choice is based not only on the current state and in-
put (from sensors and communcation), but also on the
counter value, which can be updated during the tran-
sition. This choice has been made so that the same
algorithm will work independently of the size of the
team, as described below. Indeed, a finite state au-
tomata is not capable of this, since it cannot count
arbitrary numbers, due to the fixed finite number of
different states.

Each robot perceives its environment through its
sensors, which in addition to tracking data (such as the
actual position of the robot being tracked or of the ob-
stacles to be avoided) identify two high level conditions
— namely Local Warn Begin (LWB) and Local Warn
End (LWE). A LWB condition means that an obstacle
has approached the robot, so that it is no longer pos-
sible to move in a safe manner, while a LWE condition
means that the problem which caused the LWB con-
dition is no longer present. Clearly, a LWE condition
occurs if and only if a LWB condition has previously
ocurred.

Additionally, the communcation system provides
two high-level messages to other robots, which are
Remote Warn Begin (RWB) and Remote Warn End
(RWE). RWB and RWE mean, respectively, that an-
other robot is in the LWB or LWE condition. When
a robot is in a LWB or a LWE condition, it commu-
nicates this to the team, so that other members can
receive a RWB or RWE, respectively.

Finally, it is necessary to deal with the switching
from Wait behaviors to Recover behaviors. When a
robot is in a LWB condition, it starts a timer, and
after a fixed amount of time expires, T¢imer, it goes
from Robot-Local-Wait to Robot-Local-Recover, com-
municating this to the other robots, so that they
can switch from Robot-Remote- Wait to Robot-Remote-
Recover. All of this communcation is performed in a
broadcast manner, so that the robot that communi-
cates can ignore how many otherrobots are listening.
Similarly, the robot that receives a message is not re-
quired to know who sent it.

It is possible that while a robot is performing a
Robot-Remote-Recover behavior, it enters the LWB
condition, so that it has to start its local timer. More-
over, there could be more than one robot waiting to
switch to the recover behavior. It is for this reason
that counters are introduced. There are two counters
— Warn (W,) and Timer (T,). Warn counts the num-

ber of robots that are in a local warn condition, whild
Timer counts the number of robots which are waiting
for the timer to expire. So when both Warn and Timer
are 0, the team is performing Team-Follow, when both
are positive the team is performing Team-Wait, and
when Warn is positive and Timer is 0 the team is in
Team-Recover. Table I describes how a robot locally
changes its state (and then its behavior), based on the
values of the two counters.

The use of counters and timers is somewhat simi-
lar to those in [7], which were shown to be effective.
In the physical robot implementation, each robot has
its own copies of the counters, and the broadcast mes-
sages are used to keep all these copies in a consistent
state. However, we recognize that the communication
system and/or robots will not be perfect, and that at
times messages will be lost or never sent. For instance,
a robot could fail after entering the LWB condition,
perceived as a RWB from the others, causing it to not
be able to send the corresponding RWE or timeout
message. To avoid the team being stopped from this
event, all the robots start an internal timer when they
receive a RWB message. If after a reasonable amount
of time the corresponding RWE or timeout message
does not come, the first who recognizes this situation
issues the missing message, so that the team can re-
sume.

V. DEALING WITH A HETEROGENEOUS TEAM

To test the proposed framework, we implemented
this approach on a heterogeneous team of five Emperor
robots, shown in Figure 2. The robots are heteroge-
neous in that they are equipped with different sensor
suites and have different mobile platforms. We devel-
oped a multi-threaded software architecture in which
each sensor is handled by a separate thread that uses
its data to get information about tracking and navi-
gation. Each thread then sends its output (e.g., the
polar coordinates of the point to track) to a Decisor
thread which, on the basis of the desired behavior
and sensory input, drives the robot. The Decisor first
merges the provided points to track and then decides
how to move on the basis of a set of fuzzy rules. A
separate thread handles explicit communcation. Each
robot is equipped with sonar sensors that provide dis-
tance readings within 4 meters. Three of the robots are
equipped with a SICK laser range finder. Also, three
of them have a Sony camera mounted on a pan-tilt
unit. Each robot is equipped with wireless Ethernet,
which allows them to communicate over the standard
TCP/IP protocol. Finally, we note that even though
these robots also have a Differential Global Positioning
System (DGPS), we did not use it in this research be-
cause of its frequent unavailability (e.g., due to indoor



4 Bn In Bn+1 Tn-l—l Wn+1
Follow LWB Local Wait 1 1
Follow - Remote Wait 1 1
Local Wait LWE || Remote Recover | n-1 0
Local Wait LWE Follow 0 0
Local Wait LWE Remote Wait n-1 m-1
Local Wait LTO Timer Elapsed n-1 m

Timer Elapsed
Timer Elapsed
Local Recover
Local Recover
Local Recover
Remote Wait
Remote Wait
Remote Wait
Remote Recover
Remote Recover
Remote Recover

oz ocoo=Eroozob B ~E = ol

©CEEcEEB~BEEBEBE~~~oF
=
=
=

Local Recover 0 m

Remote Wait n m-1
Remote Recover 0 m-1
Follow 0 0
Timer Elapsed 1 m
Local Wait n+1 | m+1
Remote Recover 0 m
Follow 0 0
Local Wait n+1 | m+1
Remote Wait n m
Follow 0 0

TABLE I
COUNTER MACHINE TRANSITION FUNCTION. IN THIS TABLE, By IS THE CURRENT BEHAVIOR, T, IS THE Timer COUNTER, Wy IW THE
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Fig. 2. Heterogeneous Emperor robots used in our experiments.
Four of the robots are ATRV-minis, and one robot is a Transit
robot.

operations, satellite obstructions, etc.).

VI. TRACKING THE LEADER
A. Laser PLS Sensor

The SICK PLS (Proximity Laser Scanner) sensor
provides readings with a scan angle of 180 degrees
and an angular resolution of 0.5 degrees. Distances re-
turned under 15 meters are considered reliable. Start-
ing from this sensor data, the tracking routine re-
moves spikes and averages across samples to obtain
a smoother sequence (see Figure 3).

From the smoothed sequence, the routine then ex-
tracts all the local minima in the sequence and then
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Fig. 3. Raw readings from the PLS sensor and a smoothed
sequence (note the difference in the two scales).

tries to match each one with the previous tracked min-
ima'. The one which is closest is considered to be the
new local minima to track and will be tracked in the
next step. The routine returns the polar coordinates
(distance, p, and angle, ) of the minima to track. This
is the information that the thread dealing with the
laser will provide to the Decisor module. The chosen
local minima is the one which minimizes the quantity:

d= \/(pc cos . — p; cos Ht)2 + (pcsinf. — pg sin Ht)2

where (p.,8.) are the polar coordinates of the can-
didate local minima and (p¢,6;) are the coordinates
of the minima currently being tracked. This formula
gives the distance on the cartesian plane between the

Tt is assumed that at the beginning all the robots are arranged
in a line pattern, so that at the first scan cycle the current
position of the leader is roughly known.



candiate local minima and the currently tracked min-
ima. In addition, during the local minima search, the
routine verifies that no obstacle is too close to the
robot. If this is not the case, the LWB condition is
raised and the corresponding LWE condition is issued
when the obstacle moves away.

B. CCD Camera

As previously mentioned, three of the robots are
equipped with a CCD camera mounted on a pan-tilt
unit. The associated framegrabber returns a color im-
age in the RGB coordinate space of 120 x 160 pixels.
Robots equipped with a camera have to detect and fol-
low in real time a similar robot in their field of view.
The designed approach for detecting the position of
the leader robot is as follows:

o Color segmentation is accomplished by defining a
range of colors that are accepted as possibly the red
color of the ATRV robots, discarding all other pixels.
o Averaging (Smoothing) is achieved using a neighbor-
hood averaging technique in which pixel color is up-
dated by the eight surrounding pixels. If four or more
are red it is set to red, otherwise it is set to white
(white pixels are ignored in the following steps).

o Blob detection is done by checking the boundaries of
25 pixels. When a red pixel along the boundary of a
region is found, the region is flagged as a possible hit.
o Object assignment gives a different label to each con-
nected component, using the iterative algorithm by
Haralick ([5]).

o Object selection decides which of the objects should
be tracked. This is done by comparing the center of
mass of every distinct object with the position in the
image plane of the previous object being tracked (in
a similar way to what is done in the laser routine, as
outlined in VI-A).

e Proximity estimation gives a rough estimation of the
distance to the robot, based on the dimension of the
blob being tracked, and of its position on the image
plane.

Thus, as for the laser, the camera-handling thread
gives a position to track in polar coordinates (i.e., dis-
tance and direction). Figure 4 shows examples of the
detection of robot position using this approach.

C. Sonar

Every robot is equipped with sonar sensors. In our
experiments they have been used for obstacle avoid-
ance only, and not for tracking, because from a num-
ber of trials it became evident that crosstalk and en-
vironmental conditions were such that tracking could
be obtained only within a small distance range. In-
stead, they proved to be highly effective for obstacle
avoidance. The thread which deals with sonars iden-

Fig. 4. Results of visual tracking approach. Small white cir-
cles indicate locations of robots detected by the visual tracking
algorithm.

tifies the LWB and LWE conditions, as for the laser,
and in addition it produces a vector whose direction
and intensity indicate the direction and distance to
obstacles. Since readings from sonars come in polar
coordinates (p;,0;), the cartesian components® z,. and
y, of the resulting vector are calculated as:

Lp = Z f(pz) Cos 01 Yr = Z f(pz) sin 61
i=1 i=1

where n is the number of samples returned by the sonar
sensor and f is the function plotted in Figure 5.
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Fig. 5. Sonar weight function, where z is in meters.

VII. RoBoT TEAM EXPERIMENTS

The proposed framework has been implemented and
tested both in indoor and outdoor environments using
teams of three to five robots. Figure 6 shows the robots
performing these behaviors in an outdoor grassy envi-
ronment, while figure7 shows the robots performing
these behaviors in an outdoor gravel environment.

Figure 8 gives an example of the robot state changes
that occur to maintain formations when the robots en-
counter obstacles within their formation. In this fig-
ure, all three robots are initially in the Robot-Follow

2Here, the X axis is directed along the heading of the robot
and the Y axis is perpendicular and positive to the left.



Fig. 6. Results of approach implemented on robots operating
in an outdoor grassy environment.

Fig. 7. Results of approach implemented on robots operating
in an outdoor gravel environment.

behavior. Then, at time 70, Robot 1 encounters an
obstacle that puts it into the Robot-Local- Wait behav-
ior, causing the other two robots to enter the Robot-
Remote-Wait behavior. At time T'1, after waiting a
period of time for the obstacle to leave but with the
obstacle still in the way, Robot 1 enters the Robot-
Remote-Wait behavior, causing the other two robots
to enter the Robot-Remote-Recover behavior. At time
T2, Robot 3 itself then encounters an obstacle, caus-
ing it to go into the Robot-Local- Wait behavior. When
that obstacle does not move, Robot 3 enters the Robot-
Local-Recover behavior at time 7'3. However, since
Robot 1 had not yet completed moving around its ob-
stacle, it also enters the Robot-Local-Recover behav-
ior at this time. Robot 2 enters the Robot-Remote-
Recover behavior. Then, at time T4, Robot 1 success-
fully passes its obstacle moves to the Robot-Remote-
Recover behavior to wait on Robot 3 to complete the
bypass around its obstacle. At time T'5, Robot 3 com-
pletes its obstacle bypass, and all robots return to the
Robot-Follow behavior.

The introduction of the wait behavior proved to
be effective in reducing the number of recover stages,
where it is more difficult to both go around an obstacle
and to keep track of the leader.

Follow Wait Recover Wat Recover Follow Team

Remote Recover
Local Recover
Remote Wait
Loca Wait
Follow

Robot &

Remote Recover
Local Recover
Remote Wait
Loca Wait
Follow

Robot 2

Remote Recover

Local Recover

Remote Wait

Loca Wait
Follow ! ! ! L !

TO T1 T2 T3 T4 T5 t

1 Robot 1

Fig. 8. An example of local behavior scheduling in the case of a
three robot team. In this figure, the behaviors in the left-most
column refer to robot behaviors, while the behaviors across the
top refer to the team behaviors.

VIII. CONCLUSIONS

A distributed technique for the coordinated motion
in a linear pattern of a multi-robot team has been il-
lustrated. The framework, based on explicit anony-
mous broadcast communcation, is fully scalable with
the size of the team and deals with communcation fail-
ures. The proposed approach has been implemented
and validated over a heterogeneous multi-robot team
performing both in indoor and outdoor environments.
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