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Abstract—We propose a novel motion planning algorithm based distributions involved it is possible to efficiently solve difficult
on adaptive random walks. The proposed algorithm turns out to - problems with a good performance. In addition to that, the plan-
be easy to implement and the solution it produces can be easily hor j5 well suited for the introduction of adaptive components,

and efficiently optimized. Furthermore the algorithm can incor- to let it adiust it d ts i der to bett d
porate adaptive components, so that the developer is not required 0 let It adjust Its random components In order to better ad-

to specify all the parameters of the random distributions involved, dress the environment where it moves. The paper is organized
and the algorithm itself can adapt to the environment it is moving as follows. Section Il illustrates the algorithm and section IlI

in. Proofs of the theoretical soundness of the algorithm are pro- provides details about simulations and numerical results. The

vided as well as implementation details. Numerical comparisons theqretical soundness of the algorithm is sketched in 1V, while
with well known algorithms illustrate its effectiveness. . . .
conclusions are offered in section V.

. INTRODUCTION Il. THE RANDOM WALK ALGORITHM

In the last years the problem of robot motion planning re- i ) , .

ceived further attention as a consequence of two possibly syne_r'-:Or clarity we formallz_e the m‘?“o” plannlng problem we
gistic events. The massive introduction of randomized motigfSh © solve. We are given am-dimensional space of con-
planners following the basilar work presented in [9] aIIowengrat'onSC and 1etCyr.. be the subset of free configurations
to effectively face problems with a high number of degrees 8f( C. _Let Tstart € Cfree, and IetX_goal - Cf_’“ee' Our gpal
freedom, not always solvable by formerly developed plannefs.t find a path connectingsa,: With Xg,a1, i.€. a continu-
Moreover, motion planners are being used for a number of Is functionf : [0,1] — Crec such thatf(0) = zstare and

plications that are beyond traditional robotics, like digital cha F(1) i domized ol dsof i
acter motion generation, bioinformatics and many others (s4@St of the randomized planners used so far uses uniform sam-

[13]). The randomized approach appears to be the current mBif§9 OVer the entire configuration space (see however [3] for
stream of research in motion planning and originated a wave} €x@mple of planner using a Gaussian distribution). Instead,
new algorithms which allows to study a wide variety ofdifferentthe algorithm we propose tries to find a solution by building a
problems. Indeed probabilistic planners are also being used'%'qom walk growing fror_msmrt. At every step a new sam-
solve problems involving kinodynamic constraints ([15]). Re2'€ IS generated in the neighborhood of the last point in accor-
cently there has also been an impulse to study algorithms fg1c€ With @ Gaussian distributfoand if the segment connect-
only probabilistic complete, but also resolution complete arfgd them lies entirely irCy, ., the point becomes the last point
to speculate on a possible turn back to efficient determinisift (e walk, otherwise itis discarded. The basic version of the
approaches ([4, 7]). The continuous flow of innovative tools f gorlthm_ IS |IIL_|strated In algo_nthm 1. ) L
efficiently searching configuration state spaces confirms that ad* crucial point of the algorithm consists of establishing the
efficient planners are introduced, the frontier of applications REebability distribution used to generate samples. For this aim,
also being pushed further. Think for example at the problem t€ vx used in line 4 indicates a-dimensional Gaussian vec-
multi-robot motion planning ([6]), or protein folding and ligandior With zero-mean vector and covariance matbl. As the
binding, where problem instances with hundreds of degrees327ch of the path is carried out in a possibly high dimen-
freedom are common and are being tackled with randomiz&igna! configuration space whose topological shape is usually
motion planners ([16]). unknovv_n,. it can .be non trivial to ﬂx. the values fﬁf“' qu this

In this context we developed a new motion planner based BifSON it is possible to let the algonlthm start V\.nth.arbnrary val-
random walks. Preliminary results illustrate that, in spite of tH&S 0« and let them evolve while it runs. As it will be shown

widespread believe that random walks poorly perform in robo
P P yp lehile using both uniform and Gaussian distribution yields effective plan-

motion planning problems, by carefully choosing the randof,s, we will concentrate our discussion exclusively on Gaussian distributions.

This because, in addition of exhibiting better performance and being more
twith the Department of Information Engineering of the University of Padovsuited for adaptivity, it allows easier proofs of the probabilistic convergence
while doing this work of the algorithm (see section 1V)



Algorithm 1 Basic Random Walk Based Motion Planner
1. k<0
2! Tp < Tstart
3: while NOT 2, € X0q, dO

4;  Generate a new sample— z, + vy
5. if the segment connecting ands lies entirely inC',.c.
then
6: k—k+1
7 Ty < S
8 else
9 discard the sample
10. endif
11:  Update the covariance matrix
12: end while

previously generated samples set. This is different from most of
the formerly developed algorithms, like probabilistic roadmaps
(PRM) and rapidly exploring random trees (RRT), where the
performance is usually quadratic in the number of generated
samples (see however [1] for a version of the RRT algorithm
where the time needed to generate a new sample is logarithmic
in the number of already generated samples).

A natural technique to speed up the termination process is to let
the algorithm perform a bidirectional search, with two random
walks being expanded, one growing from the start point and the
other from the goal region and to periodically verify if it is pos-
sible to join them. In order to avoid the examination of all the
points, the connect trial is performed only between the last two
generated points in the two walks. As already observed, the ex-
pedient of bidirectional search allows a substantial gain in the
performance (see [11]). In addition to this, further opportunism

in section 1V the conditions required for the probabilistic concan be introduced by letting the algorithm to periodically try to

vergence of the algorithm are very mild so that a wide variety

@bnnect the last sample with the goal point (or the start point if

update rules can be used while setting the values. The adaptiva bidirectional search we consider the walk growing towards

rule we are using is the following (see [8]). Let

k—1
_ 1
i=k—H

(1)

the start point).

When the algorithm terminates, i.e. when the last generated
point is in X ;,.;, the sequence of segments connectinwith

x;+1 indeed makes up a path which solves the problem. How-
ever the quality of such path is extremely poor, because it in-

be the average of the lagt accepted samples. Given a squareludes a wide number of useless motions. Indeed the path ob-

p-dimensional matrix/ letm;; be its generic element in posi-

tion, j. We definediag(M) as follows

mi1 0 AN 0
0 moo 0 0
diag(M) = : ... : (2)
0 0 mp—1,p—1 0
0 0 Mpp

i.e. the matrix obtained from\/ by setting ta0 all the elements
outside the main diagonal. The update ruleXgris then

k—1
Y = max (diag ( Z l‘l.CCZT - H.%‘}C$Z>> ,Z]\,{]N>

<1¢=k—H
®3)

1

H

tained resembles a Brownian motion. For this reason a postpro-
cessing stage is needed in order to smooth the generated trajec-
tory. We use alivide and conquealgorithm similar to binary
search (see algorithm 2). Theishbacloperations used therein
append the given point to the end of the list.

Algorithm 2 Solution Smoothing
SMOOQOTH (D, first,last, S)
INPUT: D vector of points to smooth
INPUT: first, last extremes ofD to be optimized
INPUT/OUTPUT:S list with the smoothed sequence
if first = last then
S.pushback(D][first])
else if first = last — 1 then

L

N g N

where the functiomax returns a matrix whose generic element8,
is the greatest of the corresponding elements in the two argy:
ment matrixes, an,;;y is a diagonal constant matrix with
strictly positive elements on the main diagonal. It then follows
that ¥, is diagonal too. In this preliminary stage, the choiceh:
of working with diagonal matrixes, i.e. to ignore correlations, .

o

has been done to get a simple implementation, but as iIIustratPg

in section IV the probabilistic completeness of the algorithm i§4_
guaranteed under less restrictive hypothesis. By dealing wi{g
diagonal matrix we get that the variance of Gaussian random.

S.pushback(D][first])
S.pushback(D(last))

10: else if the segment connectinB|first] and D[last] lies

entirely C,.. then
S.pushback(D]first])
S.pushback(Dllast])

else
SMOOTH(MD, first, (first + last)/2,S)
SMOOTH(MD, (first + last)/2 + 1,last, S)

B end if

vector used is the the variance of the |&saccepted samples.
Of course choosing a good value fris important for getting
a good algorithm performance and is definitely a point which
needs more investigation.

The smoothing procedure is iterated until it is not able to

One of the most important aspects of the random walk algfither smooth the trajectory. It is worth noting that due to the

rithm is that its performance is linear in the size of the numbgood performance of the algorithm itself, the smoothing step
of samples generated, i.e. the time spent to generate a new siamms out to be extremely fast and few iterative steps are needed.
ple is always the same and does not depend on the size of Tiis will be clearly illustrated in section lIl.



[1l. SIMULATION DETAILS AND NUMERICAL RESULTS to find the solution (seconds) and columi is the number of

The proposed algorithm has been developed and integra?@t'f]ples in such so_lut|0n, Wh'_le colunty is the time spent
into the MSL software developed at the university of lllinoid® smooth the SOIUUOO andls is the number samples in the
([24]), in order to compare it with state of the art motion plangmo‘)th(Ed solutiorlTy,, is the sum off’} andT.
ning algorithms over a set of standard problems. The MSL i
cludes a wide range of variants of RRT based motion planneg
as well as the basic PRM motion planner. Many of the predt
fined problems included in the MSL involve complicated threg
dimensional objects moving in difficult environments (see fig
ure 1 for an example). MSL performs collision detection usin
the PQP library developed at the University of North Carolini

([12]).

K ' MSL Library University of lllinois

MSL Library  University of llinois

Fig. 2. Car2, one of the environments involving a car moving in a 3d environ-
ment

Environment| T} Ny Ts Ng Tiot
Carl 0.106 | 91.81 | 0.021| 8.34 | 0.127
Car2 1.419 | 311.92| 0.154| 16.14| 1.566

Car 3 0.080 | 25.46 | 0.039| 7.82 | 0.119
Car4 0.013 | 22.24 | 0.006| 7.76 | 0.019
Cage 26.54 | 512.84| 2.22 | 14.32| 28.76

Fig. 1. Getting the L-shaped object from one side to the other side of the Wrench 9.10 1 138.46| 2.37 | 233 11.46
bar.riel-' is one of the many example problems provided with the MSL softwafre. 3dr!g!d 1 0.236 896 0.133] 5.94 0.369
This example is called 3drigid3. 3drigid 2 52.17 | 3940.7| 1.36 | 15.27| 52.53

3drigid 3 104.02| 8247.2| 0.453| 7.15 | 104.47

We first analyze the performance of the various steps of the

proposed algorithm. All the numerical results concerning the TABLEI
random walk planner illustrated in this section refer to the bidi- ~ TIME SPENT IN THE VARIOUS STEPS OF THE RANDOM WALK
rectional opportunistic planner previously described. The com- ALGORITHMS. DATA ARE AVERAGED OVER 100TRIALS.

puter used is a Sun Ultra 10 workstation, working at 450 Mhz

and with 256 Mbytes of RAM. History size for adaptivity, i.e.

H, has been fixed to 10, while the square roots of diagonal val-Two aspects are evident. First, the time spent by the algo-
ues of¥ ;7N are set to one fifth of the difference between thgthm is linear in the size of the generated random walk (com-
maximal and minimal values which can be assumed by the cpare columns/; and N;). Second, even if the path produced
responding degree of freedom. by the random walk includes a great number of useless motions,
Table | reports the data relative to 9 of the standard envirosignificant improvements can be gained with the very fast post
ments provided with the MSL. For lack of space we can ngrocessing algorithm illustrated. We then compare the random
give an indepth description of every environment, but we ugelk algorithm with the basic PRM motion planner. Table II
the same names given in the MSL, so the reader can refer tocitgnpares the overall time spent by both algorithms to find the
documentation. We just state that the first 4 examples involselution. Again, time is expressed in seconds and data have
the model of a car with 3 degrees of freedom moving in al#en averaged over 100 trials.

dimensional environment (see figure 2), while the others referlt is well known that better versions of PRM exists (like lazy
to three dimensional objects moving in 3 dimensional enviroPRMs, see [2]), but it is however evident that adaptive random
ments (with 6 degrees of freedom). Coluffinis the time spent walks are indeed competitive. Finally we compare the perfor-



Environment| PRM Random Walk

Carl 0.369 0.127
Car 2 2.643 1.566
Car 3 0.858 0.119
Car4 0.293 0.019
Cage 3442.76 28.76
Wrench 2526.26 11.46
3drigid 1 566.37 0.369
3drigid 2 871.96 52.53

3drigid 3 917.05 104.47

TABLE Il
COMPARISON BETWEENPRM AND RANDOM WALKS

mance of the random walk planner with the RRTConCon al-
gorithm provided in the MSL. RRTConCon is an RRT bidirec-
tional greedy planner based on RRT ([11]). It has to be pointed
out that in this case we compare the performance just for the last
5 problems which are holonomic problems. In fact, while RRTs
are well suited for kinodynamic motion planning problems, the
current version of the planner we are proposing does not handle
kinodynamic contraints. Further investigation on this aspect is
needed. So it is not fair to compare them over the examples in-
volving the car, which is nonholonomic, as either our algorithm
ignores the kinodynamic constraints or RRTs perform poorly
when ignoring such constraints. Instead, while comparing ran-
dom walks with PRM the comparison has been possible since
they both ignore kinodynamic constraints.

Environment| RRT | Random Walk

Cage 6.29 28.76
Wrench 3.46 11.46
3drigid 1 0.25 0.369 Fig. 3. Planned path before and after smoothing

3drigid 2 | 69.01 52.53
3drigid 3 | 89.55 104.47

IV. THEORETICAL FOUNDATIONS

TABLE Il In this section we provide the formalism and the proofs about
COMPARISON BETWEENRRTCONCON AND RANDOM WALKS the probabilistic convergence of the random walk algorithm in-
troduced in the former sections. For lack of space not all the

proofs are provided herein. The interested reader is referred to

In this case we can observe that in some cases RRTs are [)56]’(
ter, but there also exists environments where the opposite istrue
or where their performance is comparable. Of course no defifii- Preliminaries
tive conclusion can be drawn from a restricted set of examplesWe start defining a probability space as the trigletT", n)
Moreover both algorithms have been run without trying to findthere(2 is the sample space, whose generic element is denoted
out the optimal values for the many parameters involved.  w, T' is ac — algebra on 2 andn a probability measure on
We instead wish to outline that in spite of the wide skepticisii. Let C' be [0, 1]", whose generic element is denotednd
against random walks, interesting performance emerges. Feguipped with ther — algebra B(C) consisting of all the Borel
thermore, by adding adaptive components it is possible to getts inR™ which are contained i’. We will also denote with
a variable sampling resolution, which is indeed believed to hg A) the Lebesque measure of a generics@t B(C'). More-
one of the most promising research direction. It should be owiver, we will denoteV, »(y) the Gaussian probability density
lined that in the case of single direction search adaptive randamfunction ofy, having mean: and covariance matrix.
walks outperform RRT based motion planners. Finally, figure Definition 1: We defineB*(C) as corresponding to the sets
3 illustrates an example of trajectory smoothing. It can be ol B(C') whose measure is strictly positive with respectto
served that even if the initial trajectory is extremely uneveijereby, we will denote witlC',... a fixed open set belonging
algorithm 2 succeeds in cutting out almost all useless motion® B*(C').



Definition 2: We call{z1, zo} an admissible couple if:; + wherel is a real number which uniformly bounds from below

(1 —t)xe € Cpree fort € [0,1]. the function to be integrated an(note that the existence of
We end this sub-section by introducing the functipn C' x  comes from Assumption 5). Moreover, we also have that for
C — C such that: everyx € q, kandHy_q:
g(x1,m0) = 21 + 2o if {21, 21 + 22} 1 )
is an admissible couple Prm, (@, D) 2 /D Nesy (y)dy = lu(D) = mo
g(x1,29) = a1 otherwise

Combining the two inequalities, we have that for every
B. Adaptive Random Walk algorithm V(g), kandHy_1:

We define the discrete time stochastic proce¥s }x—o.1.2....

2
on (2, T, n) and taking values o@, by the following recursive Pip(w, D) 2 mimy

formulas: Remark 9:1t is easy to note that wheVi(q) is convex, we
could replaceP; j,(x, D) > m with P} ,(z, D) > m in the

Xo(w) = Trart With Zszart € Clree @ Stateme_n_t of Lemma 8.
Xp(w) = g(Xp_1(w), vp(w)) fork=1,2,... Definition 10: Let T" and U be subsets o€,... We say

that7T andU are adjacent (and we writédj (7, U)) when the

where for everyk the random vectopy(w) is normal, zero- following holds:
mean with covariance matriX;(w) (the dependence of a ran-
dom variable o will be hereby implicit). We call the stochas- TNnUN Chree 0
tic process in eq. 4, Adaptive Random Walk (ARW). Lemma 11:Let A; and 4; belong toB*(C) and toC,..,

Definition 3: We define the random vectadl;, as corre- such thatddj(V (4;),V(A;)). Then, there exists a strictly pos-
sponding to{ Xo, X1, ..., Xi. }. We also denote withr(H},) the itive m, such that for every € V(4,), k andHy,_:
o — algebra generated byd,. ([10]).

Assumption 4:For every kyy, is independent frorar( Hy, 1) Plf,kal (z,V(A;)) >m
onceX is known. Moreover, every entry df; is a random
variable which is measurable with respect{d;—1) Proof: SinceAd;j(V (4;),V(A;)), there exists a point
It comes from Assumption 4, that there exists for evkra
functionL;, : C* — R™*" such that;, = Ly (Hj_1). We call 0 € A NA; N Cree

Ly, the learning rule of the random walk at instént ) ) ) .
Assumption 5:For everyk, e,1,, < ¥, < o1, wherel,, is T'hen, SinceC e IS op.en,.there' EXIS.tS a ball. (xo) W!’[h ra-

then xn identity matrix anct,, <, are strictly positive numbers. diuse and center;, which is entirely inCy,.... We define the
Definition 6: Given H;_, and assigned: € C and A e S€tD1 = V(A;)NB:(xo). Clearly, we havé), € B¥(V(4;)).

B(C), we denote Withp];nH(k_l (z, A) the m-step transition Then, by applying Lemma 8, there exists a strictly positive con-

kernel of the chain, i.e. once known the history of the chaffantm. such that for every € V(A4;), k andHj_1:

until instantk, P;"; ;. (z, A) provides the probability that )

ARW takes value ind at instantk + m. Pg oy, (x,D1) = m

_Defiqition 7: Assigned asef belonging toB_*(C) andcon- | ot p — V(A;) N B.(z0). Again, by applying Lemma 8 and
tained inCy,., we denote with’(¢) the maximal open set of )y, considering thaB. () is convex, there exists a strictly pos-
pointsz € Cjr.. such that for every belonging tog, {, 4} 1S jtive constantm.,, such that for every: € Dy, k and Hy_;:

an admissible couple.
We point out that the definition df (¢) is similar to the one pl (2, D) > my
defined in [4]. k,Hy 1\ T L) 2

Composing the two inequalities, we have that for every
C. Probabilistic completeness of the Adaptive Random WalKA:), k andHj_1:
algorithm
Lemma 8:Let q a set belonging taB*(C) and contained
in Ctrec. Then, given an arbitranp € BT (C) contained in which completes the proof.
V(q), there exists a strictly positive. such that for every: € Definition 12: A triplet {C,ce, Tstart; Tgoar} IS @ Solvable
V(g), kandHy_1: instance of the motion planning problem if the set

P/?,Hk,l(IaD) = mims

2
Pk’kal(‘r’ D) Z m S(Cf’l‘667 xstartamgoal) = {f : [Oa 1] - Cfree
Proof. By definition of(q), we have that for every € V(q), such thatf (0) = @sart, £(1) = Zgoat, f € C°}

kandHj_q:
ol is not empty.

Definition 13: Let  {Cree; Tstarts Tgoal } a  solv-

P} > [ N, > = _ : ;
’“’H’Cfl(m’q)_/ e (y)dy = Li(g) = ma able instance of the motion planning problem, let

q



[ € S(Ctree, Tstart: Tgoar) and let A be a subset of parameters of the random distribution used have been devised.
Cree. We say that a solutiofi crossesA once if the set Of course, it could also be possible to use more refined tech-
nigues, for example using correlation of the last samples, i.e. to
to = {t € [0,1] such thatf(¢t) € A } use a non diagonal;. A sketch of the theoretical soundness
. . . of the algorithm has been provided. Numerical results illus-
is an interval (either open, closed or half open). . .
( P pen) trate that indeed for some problems the adaptive random walk

Theorem 14:Let {Crec, Tstart; Tgoai} DE @ solvable in- " ! :
stance of the motion planning problem. Let us suppose ﬂ%?nnerappears to be competitive with previously developed al-

there exists a finite sequench , Ay, ..., Ay, where everyA; gorithms. In the near future we plan to apply the algorithm to

; ; ; bioinformatics problems like protein folding. In that context,
+
belongs toB™(C') and is contained ii's.., such that we expect the adaptivity to be better exploited, thanks to the

continuous nature of the energetic levels concerning proteins
instead of the boolean nature of the configuration space found

k
Cfree = U V(Az)
i=1

Then, there existg € S(Cfrec, Tstarts Tg0ar) that crosses at
most once/ (A;) fori =1,2,... k.

Proof: Omitted.
Theorem 15:Let Cy,.. be connected and such that there ex-
ists a finite sequencé, A,, ..., Ax, where everyd; belongs to
B*(C), is contained irC',.. and "
1
k
Ofree = U V(Az)
=1
Then, for eachr 4t € Cree @andX 04 belonging toB* (C)
and toC,.., the algorithm ARW started i, Will reach
X goa1 With probability 1.

[2

(3]

[4]
Proof: Without loss of generality we suppose that.q;

is entirely included in one of the sets of the sequencg,
V(A41),V(Az),...,V(Ag) denotedV(4;). In the light of
Lemma 8 and 11, there exists a strictly positivesuch that
for everyV (A;) andV (Ay) with Adj(V (A;), V(Ax)) and for
everyx € V(A;), kandHy_:

(6]

(71

Pl (2, V(4) = m
and for everyr € V(A;), k andHy_1:

(8]

, ]
Pk,Hk,l(l‘7Xgoal) >m

This, in addition with Theorem 14, allows us to conclude th 1%
there exists constantsands, independent fromx € Cyee, k
andH;,_ such that
[12]
h

ZPI:,Hk,l(mvxgoal) >s5>0

r=1
It follows that the probability that ARW has never entered th 4]
set X .q after Zh steps is less or equal {@ — s)%. Clearly,
whenZ diverges, this probability goes to zero.

(23]

[15]

[16]
V. CONCLUSIONS ANDFUTURE WORK

We introduced a random walk based adaptive motion plan-
ner. The algorithm builds a random walk according to a Gaus-
sian sampling over the configuration space. As the produced
path can be very uneven, an efficient post processing step is
used, yielding a fast smoothing of the produced path. A sim-

ple but effective technique for letting the algorithm adapt the

in robot motion planning.
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