
Robot Motion Planning Using
Adaptive Random Walks

Stefano Carpin†

School of Engineering and Science
International University of Bremen

Germany
s.carpin@iu-bremen.de

Gianluigi Pillonetto
Department of Information Engineering

The University of Padova
Italy

giapi@dei.unipd.it

Abstract—We propose a novel motion planning algorithm based
on adaptive random walks. The proposed algorithm turns out to
be easy to implement and the solution it produces can be easily
and efficiently optimized. Furthermore the algorithm can incor-
porate adaptive components, so that the developer is not required
to specify all the parameters of the random distributions involved,
and the algorithm itself can adapt to the environment it is moving
in. Proofs of the theoretical soundness of the algorithm are pro-
vided as well as implementation details. Numerical comparisons
with well known algorithms illustrate its effectiveness.

I. I NTRODUCTION

In the last years the problem of robot motion planning re-
ceived further attention as a consequence of two possibly syner-
gistic events. The massive introduction of randomized motion
planners following the basilar work presented in [9] allowed
to effectively face problems with a high number of degrees of
freedom, not always solvable by formerly developed planners.
Moreover, motion planners are being used for a number of ap-
plications that are beyond traditional robotics, like digital char-
acter motion generation, bioinformatics and many others (see
[13]). The randomized approach appears to be the current main
stream of research in motion planning and originated a wave of
new algorithms which allows to study a wide variety of different
problems. Indeed probabilistic planners are also being used to
solve problems involving kinodynamic constraints ([15]). Re-
cently there has also been an impulse to study algorithms not
only probabilistic complete, but also resolution complete and
to speculate on a possible turn back to efficient deterministic
approaches ([4, 7]). The continuous flow of innovative tools for
efficiently searching configuration state spaces confirms that as
efficient planners are introduced, the frontier of applications is
also being pushed further. Think for example at the problem of
multi-robot motion planning ([6]), or protein folding and ligand
binding, where problem instances with hundreds of degrees of
freedom are common and are being tackled with randomized
motion planners ([16]).
In this context we developed a new motion planner based on
random walks. Preliminary results illustrate that, in spite of the
widespread believe that random walks poorly perform in robot
motion planning problems, by carefully choosing the random

†with the Department of Information Engineering of the University of Padova
while doing this work

distributions involved it is possible to efficiently solve difficult
problems with a good performance. In addition to that, the plan-
ner is well suited for the introduction of adaptive components,
to let it adjust its random components in order to better ad-
dress the environment where it moves. The paper is organized
as follows. Section II illustrates the algorithm and section III
provides details about simulations and numerical results. The
theoretical soundness of the algorithm is sketched in IV, while
conclusions are offered in section V.

II. T HE RANDOM WALK ALGORITHM

For clarity we formalize the motion planning problem we
wish to solve. We are given ann-dimensional space of con-
figurationsC and letCfree be the subset of free configurations
of C. Let xstart ∈ Cfree and letXgoal ⊂ Cfree. Our goal
is to find a path connectingxstart with Xgoal, i.e. a continu-
ous functionf : [0, 1] → Cfree such thatf(0) = xstart and
f(1) ∈ Xgoal.
Most of the randomized planners used so far uses uniform sam-
pling over the entire configuration space (see however [3] for
an example of planner using a Gaussian distribution). Instead,
the algorithm we propose tries to find a solution by building a
random walk growing fromxstart. At every step a new sam-
ple is generated in the neighborhood of the last point in accor-
dance with a Gaussian distribution1 and if the segment connect-
ing them lies entirely inCfree, the point becomes the last point
in the walk, otherwise it is discarded. The basic version of the
algorithm is illustrated in algorithm 1.

A crucial point of the algorithm consists of establishing the
probability distribution used to generate samples. For this aim,
the vk used in line 4 indicates an-dimensional Gaussian vec-
tor with zero−mean vector and covariance matrixΣk. As the
search of the path is carried out in a possibly high dimen-
sional configuration space whose topological shape is usually
unknown, it can be non trivial to fix the values ofΣk. For this
reason it is possible to let the algorithm start with arbitrary val-
ues ofΣk and let them evolve while it runs. As it will be shown

1while using both uniform and Gaussian distribution yields effective plan-
ners, we will concentrate our discussion exclusively on Gaussian distributions.
This because, in addition of exhibiting better performance and being more
suited for adaptivity, it allows easier proofs of the probabilistic convergence
of the algorithm (see section IV)



Algorithm 1 Basic Random Walk Based Motion Planner
1: k ← 0
2: xk ← xstart

3: while NOT xk ∈ Xgoal do
4: Generate a new samples← xk + vk

5: if the segment connectingxk ands lies entirely inCfree

then
6: k ← k + 1
7: xk ← s
8: else
9: discard the samples

10: end if
11: Update the covariance matrixΣ
12: end while

in section IV the conditions required for the probabilistic con-
vergence of the algorithm are very mild so that a wide variety of
update rules can be used while setting the values. The adaptive
rule we are using is the following (see [8]). Let

xk =
1
H

k−1∑
i=k−H

xi (1)

be the average of the lastH accepted samples. Given a square
p-dimensional matrixM let mij be its generic element in posi-
tion i, j. We definediag(M) as follows

diag(M) =


m11 0 · · · · · · 0
0 m22 0 · · · 0
... · · · · · · · · ·

...
0 · · · 0 mp−1,p−1 0
0 · · · · · · 0 mpp

 (2)

i.e. the matrix obtained fromM by setting to0 all the elements
outside the main diagonal. The update rule forΣk is then

Σk = max

(
diag

(
1
H

(
k−1∑

i=k−H

xix
T
i −HxkxT

k

))
,ΣMIN

)
(3)

where the functionmax returns a matrix whose generic element
is the greatest of the corresponding elements in the two argu-
ment matrixes, andΣMIN is a diagonal constant matrix with
strictly positive elements on the main diagonal. It then follows
that Σk is diagonal too. In this preliminary stage, the choice
of working with diagonal matrixes, i.e. to ignore correlations,
has been done to get a simple implementation, but as illustrated
in section IV the probabilistic completeness of the algorithm is
guaranteed under less restrictive hypothesis. By dealing with
diagonal matrix we get that the variance of Gaussian random
vector used is the the variance of the lastH accepted samples.
Of course choosing a good value forH is important for getting
a good algorithm performance and is definitely a point which
needs more investigation.
One of the most important aspects of the random walk algo-
rithm is that its performance is linear in the size of the number
of samples generated, i.e. the time spent to generate a new sam-
ple is always the same and does not depend on the size of the

previously generated samples set. This is different from most of
the formerly developed algorithms, like probabilistic roadmaps
(PRM) and rapidly exploring random trees (RRT), where the
performance is usually quadratic in the number of generated
samples (see however [1] for a version of the RRT algorithm
where the time needed to generate a new sample is logarithmic
in the number of already generated samples).
A natural technique to speed up the termination process is to let
the algorithm perform a bidirectional search, with two random
walks being expanded, one growing from the start point and the
other from the goal region and to periodically verify if it is pos-
sible to join them. In order to avoid the examination of all the
points, the connect trial is performed only between the last two
generated points in the two walks. As already observed, the ex-
pedient of bidirectional search allows a substantial gain in the
performance (see [11]). In addition to this, further opportunism
can be introduced by letting the algorithm to periodically try to
connect the last sample with the goal point (or the start point if
in a bidirectional search we consider the walk growing towards
the start point).
When the algorithm terminates, i.e. when the last generated
point is inXgoal, the sequence of segments connectingxi with
xi+1 indeed makes up a path which solves the problem. How-
ever the quality of such path is extremely poor, because it in-
cludes a wide number of useless motions. Indeed the path ob-
tained resembles a Brownian motion. For this reason a postpro-
cessing stage is needed in order to smooth the generated trajec-
tory. We use adivide and conqueralgorithm similar to binary
search (see algorithm 2). Thepushbackoperations used therein
append the given point to the end of the list.

Algorithm 2 Solution Smoothing
1: SMOOTH (D, first, last, S)
2: INPUT: D vector of points to smooth
3: INPUT: first, last extremes ofD to be optimized
4: INPUT/OUTPUT:S list with the smoothed sequence
5: if first = last then
6: S.pushback(D[first])
7: else if first = last− 1 then
8: S.pushback(D[first])
9: S.pushback(D[last])

10: else if the segment connectingD[first] andD[last] lies
entirelyCfree then

11: S.pushback(D[first])
12: S.pushback(D[last])
13: else
14: SMOOTH(D, first, (first + last)/2, S)
15: SMOOTH(D, (first + last)/2 + 1, last, S)
16: end if

The smoothing procedure is iterated until it is not able to
further smooth the trajectory. It is worth noting that due to the
good performance of the algorithm itself, the smoothing step
turns out to be extremely fast and few iterative steps are needed.
This will be clearly illustrated in section III.



III. S IMULATION DETAILS AND NUMERICAL RESULTS

The proposed algorithm has been developed and integrated
into the MSL software developed at the university of Illinois
([14]), in order to compare it with state of the art motion plan-
ning algorithms over a set of standard problems. The MSL in-
cludes a wide range of variants of RRT based motion planners
as well as the basic PRM motion planner. Many of the prede-
fined problems included in the MSL involve complicated three
dimensional objects moving in difficult environments (see fig-
ure 1 for an example). MSL performs collision detection using
the PQP library developed at the University of North Carolina
([12]).

Fig. 1. Getting the L-shaped object from one side to the other side of the
barrier is one of the many example problems provided with the MSL software.
This example is called 3drigid3.

We first analyze the performance of the various steps of the
proposed algorithm. All the numerical results concerning the
random walk planner illustrated in this section refer to the bidi-
rectional opportunistic planner previously described. The com-
puter used is a Sun Ultra 10 workstation, working at 450 Mhz
and with 256 Mbytes of RAM. History size for adaptivity, i.e.
H, has been fixed to 10, while the square roots of diagonal val-
ues ofΣMIN are set to one fifth of the difference between the
maximal and minimal values which can be assumed by the cor-
responding degree of freedom.
Table I reports the data relative to 9 of the standard environ-
ments provided with the MSL. For lack of space we can not
give an indepth description of every environment, but we use
the same names given in the MSL, so the reader can refer to its
documentation. We just state that the first 4 examples involve
the model of a car with 3 degrees of freedom moving in a 2
dimensional environment (see figure 2), while the others refer
to three dimensional objects moving in 3 dimensional environ-
ments (with 6 degrees of freedom). ColumnT1 is the time spent

to find the solution (seconds) and columnN1 is the number of
samples in such solution, while columnTS is the time spent
to smooth the solution andNS is the number samples in the
smoothed solution.Ttot is the sum ofT1 andTs.

Fig. 2. Car2, one of the environments involving a car moving in a 3d environ-
ment

Environment T1 N1 TS NS Ttot

Car 1 0.106 91.81 0.021 8.34 0.127
Car 2 1.419 311.92 0.154 16.14 1.566
Car 3 0.080 25.46 0.039 7.82 0.119
Car 4 0.013 22.24 0.006 7.76 0.019
Cage 26.54 512.84 2.22 14.32 28.76

Wrench 9.10 138.46 2.37 23.3 11.46
3drigid 1 0.236 896 0.133 5.94 0.369
3drigid 2 52.17 3940.7 1.36 15.27 52.53
3drigid 3 104.02 8247.2 0.453 7.15 104.47

TABLE I
TIME SPENT IN THE VARIOUS STEPS OF THE RANDOM WALK

ALGORITHMS. DATA ARE AVERAGED OVER 100 TRIALS.

Two aspects are evident. First, the time spent by the algo-
rithm is linear in the size of the generated random walk (com-
pare columnsT1 andN1). Second, even if the path produced
by the random walk includes a great number of useless motions,
significant improvements can be gained with the very fast post
processing algorithm illustrated. We then compare the random
walk algorithm with the basic PRM motion planner. Table II
compares the overall time spent by both algorithms to find the
solution. Again, time is expressed in seconds and data have
been averaged over 100 trials.

It is well known that better versions of PRM exists (like lazy
PRMs, see [2]), but it is however evident that adaptive random
walks are indeed competitive. Finally we compare the perfor-



Environment PRM Random Walk
Car 1 0.369 0.127
Car 2 2.643 1.566
Car 3 0.858 0.119
Car 4 0.293 0.019
Cage 3442.76 28.76

Wrench 2526.26 11.46
3drigid 1 566.37 0.369
3drigid 2 871.96 52.53
3drigid 3 917.05 104.47

TABLE II
COMPARISON BETWEENPRM AND RANDOM WALKS

mance of the random walk planner with the RRTConCon al-
gorithm provided in the MSL. RRTConCon is an RRT bidirec-
tional greedy planner based on RRT ([11]). It has to be pointed
out that in this case we compare the performance just for the last
5 problems which are holonomic problems. In fact, while RRTs
are well suited for kinodynamic motion planning problems, the
current version of the planner we are proposing does not handle
kinodynamic contraints. Further investigation on this aspect is
needed. So it is not fair to compare them over the examples in-
volving the car, which is nonholonomic, as either our algorithm
ignores the kinodynamic constraints or RRTs perform poorly
when ignoring such constraints. Instead, while comparing ran-
dom walks with PRM the comparison has been possible since
they both ignore kinodynamic constraints.

Environment RRT Random Walk
Cage 6.29 28.76

Wrench 3.46 11.46
3drigid 1 0.25 0.369
3drigid 2 69.01 52.53
3drigid 3 89.55 104.47

TABLE III
COMPARISON BETWEENRRTCONCON AND RANDOM WALKS

In this case we can observe that in some cases RRTs are bet-
ter, but there also exists environments where the opposite is true
or where their performance is comparable. Of course no defini-
tive conclusion can be drawn from a restricted set of examples.
Moreover both algorithms have been run without trying to find
out the optimal values for the many parameters involved.
We instead wish to outline that in spite of the wide skepticism
against random walks, interesting performance emerges. Fur-
thermore, by adding adaptive components it is possible to get
a variable sampling resolution, which is indeed believed to be
one of the most promising research direction. It should be out-
lined that in the case of single direction search adaptive random
walks outperform RRT based motion planners. Finally, figure
3 illustrates an example of trajectory smoothing. It can be ob-
served that even if the initial trajectory is extremely uneven,
algorithm 2 succeeds in cutting out almost all useless motions.

Fig. 3. Planned path before and after smoothing

IV. T HEORETICAL FOUNDATIONS

In this section we provide the formalism and the proofs about
the probabilistic convergence of the random walk algorithm in-
troduced in the former sections. For lack of space not all the
proofs are provided herein. The interested reader is referred to
[5].

A. Preliminaries

We start defining a probability space as the triplet(Ω,Γ, η)
whereΩ is the sample space, whose generic element is denoted
ω, Γ is a σ − algebra on Ω andη a probability measure on
Γ. Let C be [0, 1]n, whose generic element is denotedx and
equipped with theσ−algebra B(C) consisting of all the Borel
sets inRn which are contained inC. We will also denote with
µ(A) the Lebesque measure of a generic setA in B(C). More-
over, we will denoteNx,Σ(y) the Gaussian probability density
as function ofy, having meanx and covariance matrixΣ.

Definition 1: We defineB+(C) as corresponding to the sets
in B(C) whose measure is strictly positive with respect toµ.
Hereby, we will denote withCfree a fixed open set belonging
to B+(C).



Definition 2: We call{x1, x2} an admissible couple iftx1 +
(1− t)x2 ∈ Cfree for t ∈ [0, 1].
We end this sub-section by introducing the functiong : C ×
C → C such that:

 g(x1, x2) = x1 + x2 if {x1, x1 + x2}
is an admissible couple

g(x1, x2) = x1 otherwise

B. Adaptive Random Walk algorithm

We define the discrete time stochastic process{Xk}k=0,1,2,...

on (Ω,Γ, η) and taking values onC, by the following recursive
formulas:

{
X0(ω) = xstart with xstart ∈ Cfree

Xk(ω) = g(Xk−1(ω), vk(ω)) for k=1,2,...
(4)

where for everyk the random vectorvk(ω) is normal, zero-
mean with covariance matrixΣk(ω) (the dependence of a ran-
dom variable onω will be hereby implicit). We call the stochas-
tic process in eq. 4, Adaptive Random Walk (ARW).

Definition 3: We define the random vectorHk as corre-
sponding to{X0, X1, ..., Xk}. We also denote withσ(Hk) the
σ − algebra generated byHk ([10]).

Assumption 4:For every k,vk is independent fromσ(Hk−1)
onceΣk is known. Moreover, every entry ofΣk is a random
variable which is measurable with respect toσ(Hk−1)
It comes from Assumption 4, that there exists for everyk a
functionLk : Ck → Rn×n such thatΣk = Lk(Hk−1). We call
Lk the learning rule of the random walk at instantk.

Assumption 5:For everyk, ε1In ≤ Σk ≤ ε2In whereIn is
then×n identity matrix andε1, ε2 are strictly positive numbers.

Definition 6: Given Hk−1 and assignedx ∈ C and A ∈
B(C), we denote withPm

k,H(k−1)(x,A) the m-step transition
kernel of the chain, i.e. once known the history of the chain
until instantk, Pm

k,H(k−1)(x, A) provides the probability that
ARW takes value inA at instantk + m.

Definition 7: Assigned a setq belonging toB+(C) and con-
tained inCfree, we denote withV (q) the maximal open set of
pointsx ∈ Cfree such that for everyy belonging toq, {x, y} is
an admissible couple.

We point out that the definition ofV (q) is similar to the one
defined in [4].

C. Probabilistic completeness of the Adaptive Random Walk
algorithm

Lemma 8:Let q a set belonging toB+(C) and contained
in Cfree. Then, given an arbitraryD ∈ B+(C) contained in
V (q), there exists a strictly positivem such that for everyx ∈
V (q), k andHk−1:

P 2
k,Hk−1

(x,D) ≥ m

Proof: By definition ofV (q), we have that for everyx ∈ V (q),
k andHk−1:

P 1
k,Hk−1

(x, q) ≥
∫

q

Nx,Σk
(y)dy ≥ lµ(q) .= m1

wherel is a real number which uniformly bounds from below
the function to be integrated onq (note that the existence ofl
comes from Assumption 5). Moreover, we also have that for
everyx ∈ q, k andHk−1:

P 1
k,Hk−1

(x,D) ≥
∫

D

Nx,Σk
(y)dy ≥ lµ(D) .= m2

Combining the two inequalities, we have that for everyx ∈
V (q), k andHk−1:

P 2
k,D(x,D) ≥ m1m2

Remark 9: It is easy to note that whenV (q) is convex, we
could replaceP 2

k,D(x,D) ≥ m with P 1
k,D(x,D) ≥ m in the

statement of Lemma 8.
Definition 10: Let T and U be subsets ofCfree. We say

thatT andU are adjacent (and we writeAdj(T,U)) when the
following holds:

T ∩ U ∩ Cfree 6= ∅
Lemma 11:Let Ai andAj belong toB+(C) and toCfree,

such thatAdj(V (Ai), V (Aj)). Then, there exists a strictly pos-
itive m, such that for everyx ∈ V (Ai), k andHk−1:

P 3
k,Hk−1

(x, V (Aj)) ≥ m

Proof: SinceAdj(V (Ai), V (Aj)), there exists a point

x0 ∈ Ai ∩Aj ∩ Cfree

Then, sinceCfree is open, there exists a ballBε(x0) with ra-
diusε and centerx0 which is entirely inCfree. We define the
setD1 = V (Ai)∩Bε(x0). Clearly, we haveD1 ∈ B+(V (Ai)).
Then, by applying Lemma 8, there exists a strictly positive con-
stantm1 such that for everyx ∈ V (Ai), k andHk−1:

P 2
k,Hk−1

(x, D1) ≥ m1

Let D = V (Aj) ∩ Bε(x0). Again, by applying Lemma 8 and
by considering thatBε(x0) is convex, there exists a strictly pos-
itive constantm2, such that for everyx ∈ D1, k andHk−1:

P 1
k,Hk−1

(x,D) ≥ m2

Composing the two inequalities, we have that for everyx ∈
V (Ai), k andHk−1:

P 3
k,Hk−1

(x,D) ≥ m1m2

which completes the proof.
Definition 12: A triplet {Cfree, xstart, xgoal} is a solvable

instance of the motion planning problem if the set

S(Cfree, xstart, xgoal) = {f : [0, 1]→ Cfree

such thatf(0) = xstart, f(1) = xgoal, f ∈ C0}

is not empty.
Definition 13: Let {Cfree, xstart, xgoal} a solv-

able instance of the motion planning problem, let



f ∈ S(Cfree, xstart, xgoal) and let A be a subset of
Cfree. We say that a solutionf crossesA once if the set

ta = {t ∈ [0, 1] such thatf(t) ∈ A }

is an interval (either open, closed or half open).
Theorem 14:Let {Cfree, xstart, xgoal} be a solvable in-

stance of the motion planning problem. Let us suppose that
there exists a finite sequenceA1, A2, ..., Ak, where everyAi

belongs toB+(C) and is contained inCfree, such that

Cfree =
k⋃

i=1

V (Ai)

Then, there existsf ∈ S(Cfree, xstart, xgoal) that crosses at
most onceV (Ai) for i = 1, 2, ..., k.

Proof: Omitted.
Theorem 15:Let Cfree be connected and such that there ex-

ists a finite sequenceA1, A2, ..., Ak, where everyAi belongs to
B+(C), is contained inCfree and

Cfree =
k⋃

i=1

V (Ai)

Then, for eachxstart ∈ Cfree andXgoal belonging toB+(C)
and toCfree, the algorithm ARW started inxstart will reach
Xgoal with probability 1.

Proof: Without loss of generality we suppose thatXgoal

is entirely included in one of the sets of the sequence
V (A1), V (A2), ..., V (Ak) denotedV (Al). In the light of
Lemma 8 and 11, there exists a strictly positivem such that
for everyV (Ai) andV (Ak) with Adj(V (Ai), V (Ak)) and for
everyx ∈ V (Ai), k andHk−1:

P 3
k,Hk−1

(x, V (Ak)) ≥ m

and for everyx ∈ V (Al), k andHk−1:

P 2
k,Hk−1

(x,Xgoal) ≥ m

This, in addition with Theorem 14, allows us to conclude that
there exists constantsh ands, independent fromx ∈ Cfree, k
andHk−1 such that

h∑
r=1

P r
k,Hk−1

(x,Xgoal) ≥ s > 0

It follows that the probability that ARW has never entered the
setXgoal afterZh steps is less or equal to(1 − s)Z . Clearly,
whenZ diverges, this probability goes to zero.

V. CONCLUSIONS ANDFUTURE WORK

We introduced a random walk based adaptive motion plan-
ner. The algorithm builds a random walk according to a Gaus-
sian sampling over the configuration space. As the produced
path can be very uneven, an efficient post processing step is
used, yielding a fast smoothing of the produced path. A sim-
ple but effective technique for letting the algorithm adapt the

parameters of the random distribution used have been devised.
Of course, it could also be possible to use more refined tech-
niques, for example using correlation of the last samples, i.e. to
use a non diagonalΣk. A sketch of the theoretical soundness
of the algorithm has been provided. Numerical results illus-
trate that indeed for some problems the adaptive random walk
planner appears to be competitive with previously developed al-
gorithms. In the near future we plan to apply the algorithm to
bioinformatics problems like protein folding. In that context,
we expect the adaptivity to be better exploited, thanks to the
continuous nature of the energetic levels concerning proteins
instead of the boolean nature of the configuration space found
in robot motion planning.

ACKNOWLEDGMENTS

We thank professor Steve LaValle for making available the
MSL software and Peng Cheng for useful hints.

REFERENCES

[1] A. Atramentov and S.M. LaValle. Efficient nearest neighbor searching
for motion planning. InProceedings of the IEEE Conference on Robotics
and Automation, pages 632–637, Washington, May 2002.

[2] R. Bohlin and L.E. Kavraki. Path planning using lazy prm. InProceedings
of the IEEE International Conference on Robotics and Automation, pages
1469–1474, Seoul, May 2001.

[3] V. Boor, M.H. Overmars, and A.F. van der Stappen. The gaussian
sampling theory for probabilistic roadmap planners. InProceedings of
the IEEE International Conference on Robotics and Automation, pages
1018–1023, Detroit, May 1999.

[4] M. Branicky, S. M. LaValle, K. Olsen, and L. Yang. Deterministic vs.
probabilistic roadmaps. Submitted to IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence.

[5] S. Carpin. Advanced techniques for randomized robot motion planning.
PhD thesis, The University of Padova, December 2002.

[6] S. Carpin and E. Pagello. Exploiting multi-robot geometry for efficient
randomized motion planning. In Maria Gini et al., editor,Intelligent Au-
tonomous Systems 7. IOS Press, 2002.

[7] P. Cheng and S.M. LaValle. Deterministic resolution complete rapidly-
exploring random tree. InProceedings of the IEEE International Confer-
ence on Robotics and Automation, Washington, May 2002.

[8] H. Haario, E. Saksman, and J. Tamminen. Adaptive proposal distribution
for random walk metropolis algorithms.Computational Statistics, 14,
1998.

[9] L.E. Kavraki, P.Švestka, J.C. Latombe, and M.H. Overmars. Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

[10] B. Øksendal.Stochastic Differential Equations. Springer, 1998.
[11] J.J. Kufner and S.M. LaValle. Rrt-connect: An efficient approach to

single-query path planning. InProceedings of the IEEE Conference on
Robotics and Automation, pages 995–1001, San Francisco, April 2001.

[12] E. Larsen, S. Gottschalk, M.C. Lin, and D. Manocha. Fast proximity
queries with swept sphere volumes. Technical Report TR99-018, Depart-
ment of Computer Science, University of N. Carolina, Chapel Hill, 1999.

[13] J.C. Latombe. Motion planning: A journey of robots, molecules, digital
actors, and other artifacts.The International Journal of Robotics Research
- Special Issue on Robotics at the Millennium, 18(11):1119–1128, 1999.

[14] S.M. LaValle. Msl - the motion strategy library software.
http://msl.cs.uiuc.edu.

[15] S.M. LaValle and J.J. Kufner. Randomized kinodynamic planning.Inter-
national Journal of Robotics Research, 20(5):378–400, 2001.

[16] G. Song and N.M. Amato. Using motion planning to study protein fold-
ing. In Proceedings the 5th International Conference on Computational
Molecular Biology (RECOMB), pages 287–296, 2001.


