
Exploring Different Coherence Dimensions
to Answer Proximity Queries for Convex Polyhedra

Claudio Mirolo, Stefano Carpin and Enrico Pagello

Abstract— Different coherence dimensions can be considered
to improve the performances of an algorithm for computing
collision translations of pairs of convex polyhedra. The algo-
rithm’s peculiar approach, based on convex minimization, is
well suited to work without initialization and also endowed
with an inherently embedded mechanism to exploit spatial
coherence in a broader sense than other related approaches
usually do. After a brief outline of the algorithm, we summarize
the outcomes of several numerical experiments meant to explore
extensively the incremental behavior of the algorithm while
controlling the coherence parameters. In order to assess the
efficacy and the potential of the approach, the performances
are also discussed in the light of the results on H-Walk, an
algorithm specifically designed to adapt to variable coherence.

I. INTRODUCTION

This work is rooted in a reflection on the topics addressed
by Guibas, Hsu and Zhang in [1]. First, they introduce the
concept of variable coherence and point out that an interest-
ing property of the algorithms designed to answer proximity
queries is the ability to adapt to variable coherence. Second,
they propose a particular type of experiments to test how well
an algorithm adapts to variable coherence. The experiments
in [1] suggest criteria to control the coherence level in order
to compare the behavior of the algorithms on a platform-
independent basis. To this aim, two independent parameters
are used to control the coherence degree and the strength of
the initialization of an incremental algorithm. Here is how
the authors motivate the relevance of the concept [1]:

Two techniques are most commonly employed to obtain fast
distance computation between two moving convex objects: hi-
erarchical data structures and incremental distance computation
by exploiting the coherence of motion. Previous work on this
problem usually applies one of the two techniques; the former
performs better for complex objects exhibiting low level of
coherence, while the latter performs better for simple objects
exhibiting high level of coherence. However, in real-time col-
lision detection applications, what is required is consistently
good performance across different levels of coherence.

An appropriate re-interpretation of the criteria in [1] is
also meaningful for the algorithm we are developing. Fur-
thermore, there is a richer structure behind the coherence
notion, that suggests a variety of strategies to improve the
algorithm’s performances. To investigate this potential, we
have studied the algorithm’s behavior under the control of
the coherence and initialization parameters. In this paper we
discuss the results in the light of Guibas’ et al. experiments
on the capability of H-Walk to adapt to variable coherence.

Claudio Mirolo is with Dept. of Mathematics and Computer Science, Uni-
versity of Udine, Italy, claudio@dimi.uniud.it; Stefano Carpin
is with School of Engineering, University of California-Merced, USA,
scarpin@ucmerced.edu; Enrico Pagello is with Dept. of Informa-
tion Engineering, University of Padova, Italy, epv@dei.unipd.it.

Our algorithm computes an exact solution of the following
proximity problem, which has not received much attention in
the literature: Given two convex polyhedra P , Q and a vector
d, find the collision translation for P moving in direction d. If
P and Q cannot collide, suitable items are returned to witness
the separation. The key idea characterizing our approach is
that computing collision translations of two convex bodies
can be reduced to computing collision translations of pairs
of planar sections and minimization of a bivariate convex
function. On this basis we can design an algorithm running in
O(log2 n) average time for a total number n of vertices [2],
when the computations are performed without initialization,
i.e. no previous proximity information is processed.

Since in common application fields huge numbers of prox-
imity tests have to be run after subsequent short movements
of the objects, in order to speed up the computations it can
be effective to exploit the spatial coherence. In this respect,
the core approach of our algorithm is quite peculiar, since
a powerful incremental mechanism is inherently embedded
in the computation model, as shown in [3], [4], where in
addition the results of various experiments are discussed and
contrasted with those of other related techniques.

However, to exploit the coherence we can do more than
simply instantiate the idea of starting the next computation
from the features that answered the last one, which is the
most usual approach inspired by [5], and consider different
coherence dimensions, concerning:
a) The features on the bodies’ surface, as it is standard.
b) A seed that depends on the specific computation model:

the point of minimum of a convex function in our case.
c) A measure of the change of the seed between subsequent

queries: the shift of the point of minimum in our case.
d) A measure of the coherence degree: the size of a region

where to focus the search for the point of minimum.
We will refer to items like (a, b) as first-order coher-

ence parameters, relative to the coherence of the spatial
configuration, and to items like (c, d) as second-order
coherence parameters, relative to the coherence of the spatial
change. While first-order features are often addressed, only
[1] introduces some “second-order processing” relative to the
adaptation to variable coherence. As we will see, our com-
putation model can also deal with second-order coherence.

Related work. Since the early models of robot workspaces,
there has been a steady interest in the proximity-query
algorithms [6], which are generally thought of as being
crucial for motion planning and for other applications in
such fields as simulation, animation, virtual reality. The best
asymptotic bound in the worst-case for various proximity



problems on convex polytopes is O(log2 n) [7], and can
be attained by exploiting the hierarchical representations
of polyhedra. However, several algorithms proposed in the
literature apply to convex polyhedra, e.g. [8], [9], as well as
to other kinds of models, e.g. [10]. Since the work by Lin
and Canny [5], much investigation has also been addressed to
incremental algorithms, e.g. [1], [11], [12], [13], [14] and to
the design of hierarchies to speed up the search of primitive
volumes for the proximity tests, e.g. [15], [16], [17].

Organization of the paper. In section II we outline our
approach to computing collision translations and recall how
coherence can be exploited. In section III we summarize the
work of Guibas et al. that has inspired our investigation.
Finally, the experimental results are discussed in section IV.

II. THE COLLISION TRANSLATION ALGORITHM

The structure of the core algorithm is described in [18] and
the interested reader is referred to that paper for a thorough
discussion. Here we provide a short overview for the sake
of completeness. The starting point is a proposition proven
in [2], which is the basis of a convex minimization approach
to determine collision translations: Let P , Q be two closed
convex regions, d a direction vector, {ρ(x)|x ∈ R} and
{σ(x)|x ∈ R} independent families of parallel planes. Then

ϕ(x, y) = colld(P ∩ ρ(x), Q ∩ σ(y))

is a convex function with a bounded domain in R2.
In the above proposition colld(X, Y ) is the extent of the

collision translation in direction d for X and Y , while ρ(x)
and σ(y) identify the planes by their distances x, y ∈ R from
two independent reference planes. If colld is defined, i.e. if
there exist positive or negative translations of X such that X
and Y intersect, clearly colld(P,Q) is the minimum ϕ(x, y).

From our point of view, further steps are needed to cast
the search for the minimum from a continuous to a discrete
domain. This problem can be addressed by observing that ϕ’s
graph is faceted and projects into a polygonal partition of ϕ’s
domain, where to search for the region containing the point
of minimum [18]. Since the initial region is the rectangle
M = {(x, y)|P ∩ ρ(x) 6= ∅∧Q∩σ(y) 6= ∅} representing all
possible pairs of planar sections of P and Q, it is necessary to
extend the partition also outside ϕ’s domain. This is possible
by considering certain invariant properties for the orientation
of the cut lines built during the minimization process. A cut
line is either a straight line perpendicular to ϕ’s gradient,
when drawn through points inside ϕ’s domain, or else a
straight line that does not intersect ϕ’s domain. The search
for the minimum therefore proceeds by repeatedly slicing
M with cut lines through a suitable vertex of the cell of the
polygonal partition containing M ’s center of mass c. This
process is sketched in figure 1.

It is effective to approach incrementally a next query by
starting the minimization from within a suitable neighbor-
hood of the previous point of minimum p, in our case the
isothetic square N δ(p) of size 2δ centered in p, but being
prepared to recover if the solution lies outside N δ(p). Then,
the new search starts from p, but the minimization region

input : convex polyhedra P ,Q and direction d ;
if available, previous solution p and change δ ;

1 M := rectangle of all pairs of planar sections of P , Q ;
2 if p is provided then c := p

3 else c := centroid of M ;
loop

4 s := cut line through c ;
5 cell-shift s to point q ;
6 if q solves the problem then exit ;
7 update M w.r.t. s ;
8 c := centroid of M ;
9 if appropriate, update c w.r.t. Nδ(p)

end ;

output : collision translation ϕ(q) = colld(P, Q)

Fig. 1. Pseudocode of the core algorithm. For simplicity, the output refers
only to the situations where a collision translation is defined.

M is initialized as in the case without initialization. When
during the minimization process the centroid c falls outside
N δ(p), the intersection point c∗ between the boundary of
N δ(p) and the segment pc is examined: if c∗ lies in M it
is chosen as the next cut point, otherwise c is kept and the
neighborhood is dismissed. The parameter δ is related to
the strength of the incremental behavior. Therefore, it may
be appropriate to tune it according to the coherence between
two successive queries. If we denote by θ the ratio between δ
and the height of M (assumed to be a square for simplicity),
it can be shown that the expected speedup of this strategy
when the solution lies inside N δ(p) is O(log(1/θ)) [18].

III. THE HIERARCHICAL WALK ALGORITHM

The ability to adapt to variable coherence, that our algo-
rithm shares with H-Walk, is quite peculiar in the literature
on proximity measures. It would be interesting to compare
directly the behavior and the performances of the two algo-
rithms, but unfortunately the authors were no longer able to
provide an implementation of H-Walk. For this reason, we
carried out a few experiments strongly connected to those
discussed in [1], to guarantee a basis for the comparison
anyway. In particular, we have measured the performances
on a platform-independent basis, by counting appropriate
computation steps, in order to compare the two algorithms in
terms of how (much) the performance measures change for
different coherence degrees and for stronger/weaker initial-
izations. In this way, we think that the results characterize
the behavior quite accurately, up to constant factors.

It should be noticed that H-Walk reports distances between
convex polyhedra, whereas our algorithm computes collision
translations. Nevertheless, we think that a comparison makes
sense since both proximity measures can be applied in the
same fields. Moreover, the bulk of the available results are
relative to distance computation, and then provide the natural
benchmarks against which to compare new techniques. (In
principle, it would be possible to consider Dobkin and Kirk-
patrick’s approach [7], but we only know about experiments
based on its instantiation to compute distances.)



H-Walk [1] combines the advantages of the algorithms pro-
posed by Dobkin and Kirkpatrick [7] and by Lin and Canny
[5]. Lin and Canny introduced the key idea of exploiting
the coherence, by observing that, when a query is asked
frequently, the two closest features (points, edges or faces)
can be updated more efficiently by starting from the former
pair of closest features. Their algorithm starts from the
previous closest features and walks (traverses) different pairs
of features until the new solution is found. Since the length
of the walk is also an accurate measure of the computational
costs, it follows that the query time is nearly constant for
high levels of coherence, but deteriorate seriously if there
are jumps between subsequent configurations.

On the other hand, Dobkin and Kirkpatrick introduced a
preprocessed representation of the convex polyhedra to an-
swer a variety of proximity queries in poly-logarithmic time,
after a preprocessing step that builds a layered hierarchy
approximating the body from the interior. The original al-
gorithm [7], however, does not capitalize on the information
gathered from formerly solved instances of the proximity
problem. The main contribution of [1] has been to combine
the two approaches by extending Lin and Canny’s walk,
which is constrained on the surface of the bodies, to a
hierarchical walk, that can also attempt shortcuts through
the inner layers of the Dobkin-Kirkpatrick hierarchy if the
coherence is low.

H-Walk is a key yardstick for the ability to adapt to
variable coherence, and the experiments discussed in [1]
suggest interesting criteria to control the coherence level and
to characterize the strength of the initialization.

IV. NUMERICAL EXPERIMENTS

Now we summarize the results of several thousand tests
planned to assess the incremental behavior of the algorithm
under the control of the coherence and initialization param-
eters. In order to compare the results with those available
for H-Walk, we have run our algorithm on the same kind of
settings presented in [1], with translation directions chosen
so as to ensure that the polyhedra can collide. In such
settings a polyhedron rotates and orbits around the other, a
parameter ω regulating both the atomic angular rotation and
the angular advancement along the orbit between subsequent
configurations. In this way, the value of ω allows us to control
the degree of coherence: higher values in the range [0, 180]
(degrees) correspond to lower coherence and viceversa. As
in [1], the motion is made less regular by superimposing a
periodic translational fluctuation to the rotational movements.

In addition, we have investigated on the algorithm’s incre-
mental behavior for some of the motions considered in [3],
[4], which provides us with a measure of the effects of the
new coherence-related techniques.

As in [1], the input polyhedra are characterized by fairly
regular arrangements of vertices on the surface of spherical
shapes, in such a way that almost all the faces are trapezoids.
The number of vertices, or size, of each polyhedron varies
from 8 (cubes) to about 200,000. The reported average query
times (qt) or numbers of iterations are always relative to 100

Fig. 2. Improvement of CTA’ incremental performances by first checking
if the previous features are still a solution. Abscissae: thousands of vertices;
ordinates: query time ratios qt(old version)/qt(new version); labels: δ as a
fraction of the diameter D of the bodies (rot = rotation + translation).

tests on subsequent configurations of the same pair of bodies.
For ease of reference, we will denote the algorithms by short
acronyms, namely: CTA (Collision Translation Algorithm)
for our algorithm, H-W (Hierarchical Walk) for H-Walk, and
sometimes we will also refer to Cameron’s extended GJK
[11] by EGJK. CTA and EGJK have been run on a Macintosh
platform PowerPC G5 (Dual 1.8 GHz, 768 MB RAM).

A. First-order coherence

This is the usual interpretation of the concept of coherence,
including feature-based [5] and seed-based [11] coherence.

Feature coherence. The term feature usually denotes one
of a pair of items on the surface of the polyhedra (edge-
edge or face-vertex) that are candidate as “witnesses” of
the solution. Several incremental techniques start a new
computation by first checking the most recent solution and
then walking through adjacent pairs of features. However, the
version of CTA discussed in our previous papers only dealt
with a particular computational seed. Thus, we have refined
the incremental technique by passing also the information
on the features to the next computation, and by verifying if
they persist to be a solution before entering the minimization
process (before line 1 in figure 1). We have then re-run
the algorithm on a large subset of the experiments [4]
for a comparison. The settings are based on sequences
of 100 slightly changing configurations, where every next
arrangement is obtained by a short translation and/or rotation
of a polyhedron.

The results are summarized in figure 2, where the x- and
y-axes report the size of polyhedra (thousands of vertices)
and the ratio of the average query-times between the old and
the new versions of CTA. The plots are relative to different
values of δ (see section II): about 2%, 1%, 0.5%, 0.25% and
0.13% of the diameter of the polyhedra (see labels, where rot
= rotation + translation). As we can see, the improvement in
performance can be significant when δ is of the order of the
size of the faces: in the most favorable situations the average
query time is now reduced up to a factor 3. It may also be
interesting to see how the performances relative to EGJK
change as a consequence of the new refinement. Whereas in
[4] the ratio was systematically in favor of EGJK by a factor
2 to 10, now for the same experiments the ratio falls in the



range 0.8÷ 5.5, is less than 2 in several cases and close to
1 or even slightly favorable to CTA for δ of the order of the
face size.

Seed coherence. By seed we mean a structure maintained
in the computation model, whose final content determines the
solution. In particular, a proximity query can be answered
promptly if the seed represents the solution. Instances of
seeds are EGJK’s simplex structure and CTA’s minimization
cut point, whose final value is the point of minimum. Seed
coherence has already been considered in [3], [4], where new
computations start from the previous point of minimum.

B. Second-order coherence

By the attribute second-order we refer to how things
change, i.e. other possible dimensions of coherence that have
not yet been clearly settled in the literature on incremental
algorithms.

Change coherence. This concept applies when the change
of the features or of the seed’s configuration between sub-
sequent queries can be represented in a computationally
effective way. In CTA’s computation model, the displacement
of the point of minimum, our seed, can be easily coded and
processed as a vector. Presumably, short regular movements
of the polyhedra in the workspace give rise to smooth
variations of the shifts of the point of minimum (between
successive computations) in the appropriate two-dimensional
space. A natural idea is to try to exploit the change coherence
by tracking its position, which we did by averaging k recent
displacements in order to tune the algorithm initialization.
More specifically, let a be this average vector and p the
previous solution (see figure 1), the initial cut point and
neighborhood are set as c := p + a (line 2) and N δ(p + a)
(referred to in line 9).

We have then tested the effectiveness of this “prediction”
technique for k = 1, 2, 3, 4. The upgraded algorithm has
been run on the set of experiments of subsection IV-A, i.e.
for polyhedron sizes of about 800, 3200, 12800 and 51200
vertices and for δ of about 2%, 1%, 0.5%, 0.25% and 0.13%
of the bodies’ diameter. The analysis of the results shows
that the tracking mechanism may improve or worsen the
performance of about ±25% and that the best results can
be obtained when k = 1 or k = 2; for greater values of
k the behavior tends to be unstable. Moreover, we have
run CTA for the “orbits” introduced at the beginning of
this section, for k = 1, 2, and for the above polyhedron
sizes, in order to test the trends for variable coherence
under the control of ω. The plots for k = 1 are shown
in figure 3, where the x- and y-axes report the control
parameter ω and the ratio of the average query-times with
and without considering the change coherence (the ratio
of the iteration numbers would be roughly the same); the
labels refer to polyhedron sizes. The trends for k = 2
are similar. As we can see, the change prediction can be
beneficial for high coherence, but disadvantageous otherwise.
For high coherence, the performance improvement is often
between 15% and 20%, but stronger improvements seem to
be fortuitous.

Fig. 3. How trying to predict the shift of the point of minimum can
affect CTA’s incremental performances. Abscissae: ω; ordinates: query
time ratios qt(with prediction)/qt(without prediction); labels: thousands of
vertices.

Coherence degree. The way how H-W adapts to variable
coherence pertains to this kind of coherence. Here, however,
we consider the possibility to control the value of δ within
CTA’s computation model, whereas a discussion of the
experiments in the style of Guibas et al. will be the subject of
the next subsection. By analogy with the case of coherence
change, the intent is to try to predict an appropriate level
of coherence for the next computation, based on the recent
history, what could be measured in terms of values of δ,
the initial size of the search neighborhood. Two types of
information can be used for this purpose: the trend of the
number of minimization steps, if we assume that higher
numbers may indicate a decreasing level of coherence; the
extent of the displacement of the point of minimum, larger
extents being evidence of low coherence.

Both criteria have been tested on the “orbit” settings as
above, and the results have been compared with those relative
to the standard control of δ as a heuristic function of the
movement [3]. As far as the former criterion is concerned,
the results seem to show that in most cases it is almost incon-
sequential, and it may be disadvantageous for high coherence
levels. In these experiments δ was corrected up to a slightly
higher value for increasing numbers of steps, relative to the 2
or 4 most recent computations, and viceversa. To implement
the latter criterion, the neighborhood size (line 9 of figure
1) has been set as follows: δ = max(

∑
k ∆x,

∑
k ∆y)/k,

where
∑

k ∆x (∆y) represents the sum of the abscissae
(ordinates) of the last k displacements of the point of
minimum. For k = 1, 2, the results relative to polyhedra of
about 3200 vertices are plotted in figure 4, where the axes
report the control parameter ω and the ratio of the average
query-times with and without applying the adjustment of
δ. The trends for bodies of 800 vertices are similar, and
show a relative performance improvement of around 15%
for low coherence levels, whereas the adjustment appears to
be definitely unfavorable if the coherence is high. For huge
number of vertices and low coherence, on the other hand, the
effects tend to be negligible, probably because of the small
size of the faces with respect to δ.

C. General behavior under variable coherence

The experiments presented in [1] characterize H-W’s be-
havior for variable levels of coherence. Basically, the testing
scheme uses a pair of spherical polyhedra, one of which



Fig. 4. How adjusting δ based on 1–2 samples of the shift
of the point of minimum affect CTA’s performances for poly-
hedra of 800 vertices. Abscissae: ω; ordinates: query time ratios
qt(with adjustment)/qt(without adjustment).

rotates and orbits around the other, under two independent
control parameters: the angular rotation step ω, and the layer
l in the Dobkin-Kirkpatrick hierarchy [7] where the initial-
ization features are picked. Thus, ω controls the degree of
coherence; l allows a gradual tuning from strong (outermost
layer) to weak initialization (innermost layer, as for the
original algorithm [7] without initialization). Interestingly,
Guibas and colleagues chose to measure the performances,
independently of any particular platform, in terms of steps
walked per run.

We have arranged for a related set of experiments to test
CTA’s behavior under as far as possible similar conditions.
Because of the differences in structure between CTA and
H-W: (i) we introduced the direction vectors d in such a
way that the polyhedra can always collide by translation;
(ii) we replaced the control parameter l by δ, which also
realizes a fine tuning from strong (small values) to weak
initialization (δ of the order of the diameter D of the bodies);
(iii) we chose the total number of iterations at any level
(i.e., outer minimization steps plus all inner binary search
steps) as an accurate platform-independent measure of CTA’s
performances. We ran several tests in this way for polyhedra
with size 8, 400, 800, 1600, 3200 and 8000, that are also
considered in [1], and also for 12800, 51200 and 204800
vertices. The results are summarized in figure 5 for polyhedra
of about 800 vertices, all the other cases being very similar.
Unlike the previous experiments, notice that here δ is an
independent variable, unrelated to the coherence degree, for
consistency with [1]. Furthermore, again as in [1], we have
analyzed the standard deviation.

Of course, it wouldn’t make sense to compare directly the
numbers of H-W’s walk steps and CTA’s iterations. What
is interesting to see is how the performance measures vary,
relative to the changes of the control parameters. On the
one hand, H-W and CTA’s trends share some qualitative
and quantitative features: the initialization parameters clearly
affect the performances when the coherence is either very
high or very low; if the coherence is high, the speedup factors
for strong initialization w.r.t. no initialization are roughly the
same; for ω > 30 degrees, strong initialization either does
not appreciably influence or worsens the performances.

On the other hand, two main differences emerge from the
analysis. First, CTA seems to adapt better than H-W to low

Fig. 5. CTA’s behavior for different degrees of coherence and for different
choices of δ; polyhedra of 800 vertices. Abscissae: coherence parameter ω;
ordinates: average number of iterations; labels: initialization parameter δ (D
is the diameter of the bodies).

Fig. 6. CTA’s behavior for different degrees of coherence and for different
ratios between δ and the extent of the movement; polyhedra of 800 vertices.
Abscissae: coherence parameter ω; ordinates: average number of iterations;
labels: rules for δ.

coherence, in the sense that the relative worsening of CTA’s
performance while changing the initialization parameter is
more moderate: about 35% against 65% taken from the plot
in [1] for 800 vertices; 25% against 80% for 3,200 vertices.
This means that a suboptimal choice of the initialization
parameter would result into a slightly smoother behavior
in the case of CTA. The worsening due to an unsuitable
choice of δ is even slighter if measured in terms of response
time, since it does never exceed 25% in our experiments.
Second, the ratio between the standard deviation and the
corresponding performance measure is favorable to H-W:
about 14% against 70% for high coherence; 4% against 35%
for low coherence. In other words, there is more dispersion
among the costs of individual runs of CTA, which means
higher levels of uncertainty to predict the time required
by a single computation. As pointed out in [1], this may
be a relevant issue for time-critical planning, since a low
standard deviation “allows for more accurate predication of the
time for each distance computation, which is important [...] when
the computation resource is allocated for each time step and not
allowed to exceed the given limit.”

However, with CTA it is easier to dynamically update
the value of δ on the basis of the workspace configuration
change. Figure 6 shows how the plots look like for δ varying
according to the standard heuristic function we were used to
apply and for other rules related to the standard one by con-
stant factors, more specifically 2.5 and 10. All the other cases
look analogous, with the number of iterations increasing by a
factor of about 1.2 when the size of the polyhedra is doubled.
For this kind of experiments, the resulting plots are more



regular than in the case of fixed values of delta, and allow a
clearer interpretation of the phenomenon. They also seem to
support the appropriateness of the adopted heuristic function.
Moreover, the worst reported query times are only about
12% higher than the corresponding times of the computations
without initialization, and could be ascribed to a bad choice
of the initial cut point rather than to the value of δ.

We end this section with some comments on EGJK’s
behavior in the “orbit” experiments, whereas for a broader
comparison with CTA we refer the reader to [4]. When
considering EGJK, it is no longer appropriate to contrast
the performances of computations from scratch with the
incremental ones, since the gap between the two is big
independently of the coherence degree. In the tests with
lowest coherence, i.e. ω = 180◦, the ratio between the query
times of incremental computations and of those without
initialization ranges from 50% (polyhedra with 800 vertices)
to about 26% (51200 vertices): once initialized, EGJK is very
efficient. However, the loss in performance while lowering
the coherence level (from ω = 1◦ to ω = 180◦) tends to
be more pronounced than for CTA, especially for complex
polyhedra (−87% vs. −52% of CTA for 51200 vertices).
Finally, the relative standard deviation is just a little worse
than that of H-W when the coherence is high and close to
that of CTA when it is low.

V. CONCLUSIONS

In this paper we have investigated the impact of exploiting
different coherence dimensions on the performances of a
collision-translation algorithm we designed in the past. The
motivation comes from the work of Guibas et al., who
introduced the idea of adaptation to variable coherence and
discussed its significance to approach proximity problems.
Our algorithm, dubbed CTA, is based on a computation
mechanism that shows interesting performances without ini-
tialization and can also exploit different coherence degrees.
The latter point is one of the main findings of the work
described here, since in the past its incremental performance
was measured on a coarser level only. Numerical platform-
independent measurements suggest that CTA is less sensitive
to abrupt coherence changes than H-W. At the same time, the
identification of four different coherence dimensions pushed
us to extend CTA in order to investigate how it is possible
to further strengthen its incremental performance. These
modifications yield a refined version of CTA that outperforms
the previous implementation.

To sum up, the main contributions of this paper are:
• A deeper multidimensional analysis of the concept of

coherence in the field of incremental algorithms;
• The integration into CTA of new techniques to exploit

different types of coherence;
• A broad set of numerical experiments as a basis to

assess the effectiveness of each technical refinement.
Like the distance algorithms, our algorithm could be

appropriate as a building-block operation to plan collision-
free paths, both on-line and off-line, e.g. via randomized

sampling, in the presence of fine-grain polyhedral descrip-
tions of the objects, common for the geometric modelers
based on CAD systems. The algorithm may be especially
useful to achieve more balanced performances across vari-
able degrees of coherence, as it may be the case in real-time
motion planning. Another specific task for which a collision-
translation algorithm may be considered arises with the CAD
programs that are applied to perfect parts design, so that
certain products can be easily assembled or disassembled, as
it is required, e.g., in the case of aircraft engines that need
periodic inspections: in order to determine the feasibility of
a quick maintenance plan, indeed, it is critical to know the
clearance in certain directions.

ACKNOWLEDGMENTS

Part of the subsection IV-C builds upon and extends some
results included in [18].

REFERENCES

[1] L. J. Guibas, D. Hsu, and L. Zhang, “A hierarchical method for real-
time distance computation among moving convex bodies,” Comput.
geometry: theory and applications, vol. 15, no. 1-3, pp. 51–68, 2000.

[2] C. Mirolo, “Convex minimization on a grid and applications,” Journal
of Algorithms, vol. 26, no. 2, pp. 209–237, 1998.

[3] C. Mirolo and E. Pagello, “Flexible exploitation of space coherence
to detect collisions of convex polyhedra,” in Proc. of the IEEE Int.
Conf. on Robotics and Autom., 2001, pp. 3783–3788.

[4] S. Carpin, C. Mirolo, and E. Pagello, “A performance comparison of
three algorithms for proximity queries relative to convex polyhedra,” in
Proc. IEEE Int. Conf. on Robotics and Autom., 2006, pp. 3023–3028.

[5] M. C. Lin and J. Canny, “A fast algorithm for incremental distance
calculation,” in Proc. of the IEEE Intl. Conf. on Robotics and Autom.,
1991, pp. 1008–1014.

[6] M. C. Lin and S. Gottschalk, “Collision detection between geometric
models: a survey,” in Proc. IMA Conf. on Math. of Surfaces, 1998.

[7] D. P. Dobkin and D. G. Kirkpatrick, “Determining the separation of
preprocessed polyhedra: A unified approach,” in Proc. of ICALP, ser.
LNCS 443, 1990, pp. 400–413.

[8] E. Gilbert, D. Johnson, and S. Keerthi, “A fast procedure for computing
the distance between complex objects in three-dimensional space,”
IEEE J. of Robotics and Autom., vol. 4, no. 1, pp. 193–203, 1988.

[9] K. Sridharan and S. S. Keerthi, “Computation of a penetration measure
between 3D convex polyhedral objects for collision detection,” J. of
Robotic Systems, vol. 18, no. 11, pp. 623–631, 2001.

[10] P. G. Xavier, “Implicit convex-hull distance of finite-screw-swept
volumes,” in Proc. of the IEEE Int. Conf. on Robotics and Autom.,
2002, pp. 847–854.

[11] S. Cameron, “A comparison of two fast algorithms for computing the
distance between convex polyhedra,” IEEE Trans. on Robotics and
Automation, vol. 13, no. 6, pp. 915–920, 1997.

[12] B. Mirtich, “V-clip: Fast and robust polyhedral collision detection,”
ACM Trans. on Graphics, vol. 17, no. 3, pp. 177–208, 1998.

[13] Y. J. Kim, M. C. Lin, and D. Manocha, “Incremental penetration depth
estimation between convex politopes using dual-space expansion,”
IEEE Trans. on Visual. and Comp. Graphics, vol. 10, no. 2, pp. 152–
163, 2004.

[14] C. J. Ong and E. G. Gilbert, “Fast versions of the Gilbert-Johnson-
Keerthi distance algorithm: Additional results and comparisons,” IEEE
Trans. on Robotics and Automation, vol. 17, no. 4, pp. 531–539, 2001.

[15] L. J. Guibas, F. Xie, and L. Zhang, “Kinetic collision detection:
Algorithms and experiments,” in Proc. of the IEEE Int. Conf. on
Robotics and Autom., 2001, pp. 2903–2910.

[16] J. Cohen, M. C. Lin, D. Manocha, and M. Ponamgi, “I-collide:
An interactive and exact collision detection system for large-scaled
environments,” in Proc. ACM 3D Graphics Conf., 1995, pp. 189–196.

[17] G. Zachmann, “Minimal hierarchical collision detection,” in Proc.
ACM Symp. on Virtual Reality Softw. and Techn., 2002, pp. 121–128.

[18] C. Mirolo, S. Carpin, and E. Pagello, “Incremental convex mini-
mization for computing collision translations of convex polyhedra,”
accepted for publication on the IEEE Trans. on Robotics, 2007.


