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Abstract—This paper presents HSM3D, an algorithm for global
rigid 6DOF alignment of 3D point clouds. The algorithm works
by projecting the two input sets into the Radon/Hough domain,
whose properties allow to decompose the 6DOF search into a
series of fast one-dimensional cross-correlations. No planes or
other particular features must be present in the input data, and
the algorithm is provably complete in the case of noise-free input.
The algorithm has been experimentally validated on publicly
available data sets.

I. INTRODUCTION

Finding the best alignment between two clouds of 3D
points is a recurring problem in more than one discipline.
Historically, it has been studied first in the vision community,
and has become relevant in robotics only recently, with the
availability of sensor configurations capable of generating
dense 3D data. If a good first estimate of the unknown
roto-translation is available, then the problem can be solved
using “local” alignment methods, usually based on an iterative
process. If such a first estimate is not available, then a different
class of methods must be used. HSM3D belongs to this latter
class of “global” methods.

A. Local alignment methods
Local iterative alignment algorithms usually work by es-

tablishing tentative correspondences between specific parts of
the two inputs, followed by a minimization step that brings
them together. The Iterated Closest/Corresponding Point (ICP)
algorithm has been introduced over 15 years ago [1], [2] in the
vision community and has seen numerous refinements [3]. In
the robotics community, ICP and variants have been used since
a few years for 2D mapping (e.g., [4]), and more recently for
3D (e.g., [5]). Some of the assumptions on the data in vision,
e.g. very dense points clouds and small initial errors, do not
always hold in robotics, therefore there is a wide margin for
fruitful extensions. Another iterative alignment algorithm used
in robotics is 3D-NDT [6], [7], [8], which is a generalization
to 3D of the Normal Distributions Transform (NDT) [9].

These algorithms work very well for small initial errors, but
can get trapped in local minima. The basic problem is that any
procedure for establishing correspondences is inevitably sen-
sitive to outliers. There are various heuristics which improve
the robustness by correspondences rejection or reweighting,
but still there are no guarantees on the basin of convergence.
In practice, in structured environments, these methods tend to
diverge when the initial angular error is sufficiently large.
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B. Global alignment methods

If the error in the initial roto-translation estimate cannot be
handled by a local method, then a different class of algorithms
must be used. We focus on methods that do not rely on
the presence of specific features in the environment. In 3D,
there are six parameters to estimate (three for representing the
translation t ∈ R3, and three for the rotation r ∈ SO(3))
therefore any approach based on a brute-force search is
infeasible. A popular line of attack is transforming the problem
from the Euclidean space to another domain, where the six
degrees of freedom can be partially decoupled. For example,
Reyes et al. [10] show that the problem can be solved, by
using Geometric Algebra, by a voting procedure in a certain
extended space; unfortunately, for general motions, the cost is
quadratic in the number of points in one scan, and therefore
it is not practical.

Another strategy consists in decoupling rotation and trans-
lation by first finding a translation-invariant transformation of
the input, and use this to recover the rotation. After the rotation
has been recovered, finding the translation is relatively simple.
This is the strategy employed by our algorithm, and also by
some previous work. In Makadia et al. [11], the translation-
invariant statistics is the Extended Gaussian Image (EGI) [12].
For each direction s ∈ S2, EGI(s) is the fraction of surfaces
having direction s. The rotation is recovered by computing the
cross-correlation between the two EGIs, by using the Fourier
Transform on SO(3) [13]. The method proposed by [11] has
two main limitations with respect to HSM3D: 1) It can only be
used for smooth surfaces; and 2) It cannot deal with problems
where the EGI is constant and therefore not informative, such
as the case displayed in Fig. 1.

Global algorithms have a different set of challenges. If a
voting/correlation procedure is used, then the computational
complexity depends on the resolution of the solution, while
methods based on correspondences such as ICP do not have
this problem. Choosing the resolution is a trade-off also
between precision and robustness, because large grids filter
more noise in the data. Global methods are necessarily more
complex because they must deal with the inherent ambiguity
of the solution. For example, matching two range scan images
of a corridor will most likely yield one hypothesis in which
the corridor is matched upside-down. Therefore, there must a
criterion for weighting the resulting hypotheses, but formulat-
ing such criterion is not trivial, because it must be robust to
the possible partial overlapping of the two inputs.

C. Overview

HSM3D is designed to obtain a global matching with
limited precision, with the idea that this estimate can be



refined later by a local algorithm such as ICP. HSM3D is
the generalization of the algorithm presented in [14], which
operated in 2D. The inputs to HSM3D are two sets of 3D
points, possibly with associated orientation information. The
output is a weighted list of roto-translation hypotheses. The
overall steps are as follows:

1) The Hough/Radon transforms are computed for the two
inputs.

2) The transforms are further reduced to obtain a translation
invariant called “spectrum”, which is a function defined
on the unit sphere.

3) Hypotheses for the rotation are obtained by matching
the two spectra. An initial guess is obtained by matching
local maxima in the two spectra, and the guess is refined
by a uni-dimensional correlation.

4) For each rotation hypothesis, the corresponding transla-
tions are found by uni-dimensional correlations in the
HT.

5) The hypotheses are weighted according to a similarity
measure in the Euclidean space.

Section II introduces the notation, the Hough/Radon Trans-
form and the relevant properties. HSM3D can use both raw
3D points, and oriented 3D points (i.e. points with a normal
attached); these two cases correspond two slightly different
definitions of the transform. The description of the algorithm
is split in two sections. Section III focuses on the mathematics,
and Section IV focuses on the implementations details, plus
some particularizations for the case of range data. Finally,
Section V reports experiments on publicly available data sets
showing the different behaviors of HSM3D and ICP.

II. THE HOUGH TRANSFORM AND HOUGH SPECTRUM

This section introduces the notation and theory upon which
HSM3D is based. The theory extends the 2D case described
in [14], which might be an easier preliminary reading.

A. Notation
Let S2 be the 2-sphere, i.e. the set of vectors in R3 with

unitary modulus. Points in S2 represent surface orientations.
For example, the set of all oriented planes in R3 is isomorphic
to S2 × R: each plane is identified by a certain surface
orientation s ∈ S2 and a scalar ρ ∈ R which accounts for
the translation from the origin. Let SO(3) be the group of
rotations in the 3D space. In the axis-angle representation we
write a rotation r ∈ SO(3) as r = (a, θ), with a ∈ S2 and
θ ∈ S1, to indicate a rotation of θ along axis a. Rotations
are operators that can be applied to points in R3 and S2. For
p ∈ R3 this operation is indicated as (a, θ) · p. Evidently,
(a, θ) · a = a for all θ. Elements of R3 can be seen as either
points in space or translation operators. For t, p ∈ R3, we
write t · p to indicate the action (translation) of t on p, that
is t · p = t + p. A notation like t · (r · p), with r ∈ SO(3),
is equivalent to a rotation of p followed by a translation. We
use ◦ as the function composition operator. With this notation,
t ·(r ·p) = (t◦r) ·p. We use the term “image” in a loose sense.
A 2D image is a function from the image space to the intensity

space (R+ in this paper). A 3D image is a function from R3

to R+. If the image i2 is a roto-translated copy of i1, functional
notation makes it easy to express that by i2 = i1 ◦ t◦ r, which
is equivalent to i2(p) = i1(r · p + t). We also use “oriented”
3D images, i.e., functions from R3 × S2 to R+.

B. The Hough/Radon Transform

We assume the input data to be a 3D image i : R3 → R+.
If the input data is a list of 3D points {pj}, then i is the sum
of the corresponding Dirac impulses: i(x) =

∑
j δ(pj − x).

Definition 1: The Hough Transform maps a 3D image into
a function defined on S2 × R:

HT : (R3 → R+) →
(
S2 × R → R+

)

Given a kernel k : R → R+, the value of the HT of i at point
(s, ρ) ∈ S2 × R is defined as:

HT[i](s, ρ) =
ˆ

R3

i(v)k (〈s, v〉 − ρ) dv (1)

If k is the Dirac’s delta, then HT[i](s, ρ) is the integral of the
function i along the plane defined by (s, ρ). The presence of
a smooth kernel is useful when dealing with sets of discrete
points, otherwise the HT would be zero for almost all values
of (s, ρ).

A note about nomenclature: strictly speaking, the Radon
transform corresponds to the definition when the kernel k is the
Dirac impulse. The Radon transform has a rich theory behind,
mainly developed in the context of inverse reconstruction
problems arising in medical imaging. We refer the reader
to [15] for a comprehensive explanation. In the engineering
literature, the Hough transform for lines/planes is usually
understood to correspond to a discretization of the continuous
Radon transform. If ρ is discretized with cells of size δ, we
recover a formal definition of the discretized Hough transform
by setting k to be 1 in [−δ/2, δ/2] and 0 elsewhere. Calling
“Hough Transform” the transform with an arbitrary kernel k
is an overloading of terms which we do for simplicity.

C. The Hough/Radon Transform for oriented points

This second definition is used when the points clouds
are dense enough to possibly estimate the orientation of the
surface they lie on. This definition is non-standard and slightly
more complicated than the previous one, so it can be omitted
at a first read without compromising the understanding of
the paper. Suppose the input data is a set of oriented points
(pj , αj) ∈ R3× S2, where αj is the orientation of the surface
at point pj (think of it as an arrow attached to it). Then the
input image i can be thought as a function from R3 × S2

to R+ and defined as i(p, α) =
∑

j δ (‖p− pj‖+ ‖α− αj‖).
The definition of the HT is modified as:

Definition 2: The oriented Hough Transform maps an ori-
ented 3D image into a function defined on S2 × R:

HT : (R3 × S2 → R+) →
(
S2 × R → R+

)



Given two kernels k1, k2 : R → R+, the value of the HT of i
at point (s, ρ) ∈ S2 × R is defined as:

HT[i](s, ρ) =
ˆ

R3

ˆ

S2

i(v,α) k1 (〈s, v〉 − ρ) k2 (〈s, α〉) dv dα

(2)
The formula is way more complicated than the basic idea: for
an oriented point to contribute to the value of the HT at (s, ρ),
it needs not only to lie close (as defined by the kernel k1) to
the plane (s, ρ), but also to have an orientation compatible (as
defined by the kernel k2) with that plane.

D. Properties
The following proposition are two properties of the HT

which are relevant for HSM3D algorithm.
Proposition 1: Let r ∈ SO(3) and t ∈ R3. Then:

HT[i ◦ r](s, ρ) = HT[i](r · s, ρ) (3)
HT[i ◦ t](s, ρ) = HT[i](s, ρ + 〈t, s〉) (4)

The proofs are omitted; these are standard in the case of
Definition 1 and easily derived for Definition 2.

Any other transform which satisfies (3) and (4) can be used
in the algorithm in place of the HT.

E. The Hough spectrum
Next we define the Hough Spectrum, as a successive reduc-

tion of the HT to a function on the sphere, which is invariant
to translations.

Definition 3: Let g be any translation-invariant functional
that maps a function on the reals to R+:

g : (R → R+) → R+

An example of admissible g is f )→ ‖f‖2. Then the Hough
Spectrum (HS) maps a 3D image to a function defined on the
sphere:

HS : (R3 → R+) →
(
S2 → R+

)

and is defined as:

HS[i](s) = g [HT[i](s, ·)]

From the properties of the HT, the following two properties
of the HS follow:

Proposition 2: Let r ∈ SO(3) and t ∈ R3. Then the HS is
invariant to translations of the input:

HS[i ◦ t] = HS[i]

and is rotated by a rotation of the input:

HS[i ◦ r] = HS[i] ◦ r

III. HSM3D IN THEORY

Let us consider the following problem: given two images
i1, i2 : R3 → R+ such that, for some r ∈ SO(3) and t ∈ R3,

i1 = i2 ◦ t ◦ r + ε

where ε is a noise term, determine r and t.
HSM3D first recovers r by comparing the HS of the two

images; then, after r is known, t can be recovered by uni-
dimensional correlation of the HT.

EXAMPLES OF HOUGH SPECTRUM FOR NON-PLANE-STRUCTURED INPUTS

(a) unconstrained rotation (b) one degree of freedom (c) constrained (d) constrained (rotated)

Figure 1. This figure shows that it is not necessary for the input to contain planes or flat features for HSM3D to work, and that it can work in situations
where the Extended Gaussian Image (EGI) [12], used in [11], is constant and therefore not informative. On the top row some sample inputs are displayed,
while the bottom row presents the corresponding HS, as projected to the cylinder oriented along the z axis. Note that while the spectrum is a function on
the sphere the figure presents its projection on a cylinder for display purposes only (see section III for a more detailed description of such projection). (a): If
the input is a perfect sphere, its HS is constant. In the case of random samples of a sphere it is just noise. No alignment is possible: the rotation is totally
unconstrained. (b): If the input is a couple of spheres, then it is possible to constrain two dimensions of the rotation, as there is one axis of symmetry. The HS
can shift in the direction of the belt. (c) If there are three non-aligned spheres, then the rotation is fully constrained. Note the peaks of the HS even though
there are no planes in the input. Finally (d) shows the spectrum of a roto-translated input. Note that the EGI of (b), (c) and (d) would have been constant.



A. Recovering the rotation r

For recovering the rotation, start by computing the HS for
both inputs, obtaining two functions f1 = HS[i1] and f2 =
HS[i2]. An example of how these functions might look like is
shown in Fig. 1 (c) and (d). Proposition 2 implies that

f1 = f2 ◦ r + ε′

Now assume that by observing f1 and f2, one can determine
that a point m1 on f1 corresponds to a point m2 on f2.
One way to do this is by looking at the local maxima of the
functions. If m1 corresponds to m2, it then follows that

m2 = r · m1

This relation provides only two constraints for r. In fact the
solution r can be factorized as r2 ◦ r1, where r1 is a rotation
that moves m1 onto m2, and r2 is a rotation that leaves m2

fixed. Rotation r1 can be written in the axis-angle form as

r1 = (m1 ∧m2, arccos (〈m1, m2〉))

where 〈m1, m2〉 is the usual scalar product. In the axis–angle
representation the rotation r2 that leaves m2 fixed is simply

r2 = (m2, θ)

for some θ yet to be determined.
The angle θ can be inferred by cross-correlation of the

projections of f1, f2 onto certain cylinders. Let K = S1 ×
(−1, 1) be the (truncated) cylinder. Our goal is now to define
a correspondence between S2 and K. By using cylindrical
coordinates for K and the natural embedding of S2 in R3,
the map Q can be written as:

Q : K → S2 − {(0, 0,±1)}
(ϕ, a) )→

(√
1− a2 cos(ϕ),

√
1− a2 sin(ϕ), a

)

Let e3 be the unit vector identifying the z axis. Then a rotation
around e3 commutes with Q: (e3, θ) ◦Q = Q ◦ (e3, θ).

Next define the transformation Λ : S2 × S2 → SO(3) such
that, for 〈u, v〉 = 0, Λ(u, v) is the rotation that maps e3 to u
and e1 to v (where e1 is the unit vector that identifies the x
axis). Notice this definition is well-posed because a rotation is
uniquely identified by its action on two linearly independent
vectors. Note also that for all r ∈ SO(3),

r ◦ Λ(u, v) = Λ(r · u, r · v)

Λ(u, v) ◦ (e3, θ) = Λ(u, (u, θ) · v)

We then define c1 and c2, two functions from the truncated
cylinder to the positive reals, that are the projection of f1 and
f2 to the cylinders aligned to m1 and m2. Choose any q such
that 〈q, m1〉 = 0 and define c1, c2 : K → R+ as

c1 ! f1 ◦ Λ(m1, q) ◦Q (5)
c2 ! f2 ◦ Λ(m2, r1 · q) ◦Q (6)

This is the relation between c1 and c2:

c1 = f1 ◦ Λ(m1, q) ◦Q

= f2 ◦ r2 ◦ r1 ◦ Λ(m1, q) ◦Q

= f2 ◦ r2 ◦ Λ(r1 · m1, r1 · q) ◦Q

= f2 ◦ (m2, θ) ◦ Λ(m2, r1 · q) ◦Q

= f2 ◦ Λ(m2, (m2, θ) · r1 · q) ◦Q

= f2 ◦ Λ(m2, r1 · q) ◦ (e3, θ) ◦Q

= f2 ◦ Λ(m2, r1 · q) ◦Q ◦ (e3, θ)
= c2 ◦ (e3, θ)

That is, in coordinates, c1(α, z) = c2(α+θ, z). Hence θ can be
recovered by cross-correlation of c1 and c2. Notice that even
though c1 and c2 are bi-dimensional, only a one-dimensional
correlation is needed.

B. Further improvement for the rotation estimate
We have seen that the first rotation r1 is obtained by match-

ing m1 and m2, and then we can find r2 for compensating
the rest of the rotation. In practice, however, some error will
inevitably affect the first correspondence. This error stems
from noise in the images, and because of the finite resolution
of the buffer where the local maxima search is performed. The
idea, then, is to do further adjustments of the alignment along
other axes.

Given that we have just compensated along direction m1,
a direction perpendicular to m1 is chosen, then the other
perpendicular direction, and so on, cycling through these three
axis and repeating the previous procedure. Viewing the sphere
from the “top” of m1, this amounts of locally roto-translating
the images to obtain a better overlap1.

In formulas, we seek (small) rotations r3, r4, etc. This is
the procedure to obtain the j-th rotation rj . Let r1:j−1 =
rj−1 ◦ · · · ◦ r1. Let aj be the axis we choose at this step,
and let sj be any support vector such that 〈aj , sj〉 = 0. Then
compute:

cj
1 ← f1 ◦ Λ(aj , sj) ◦Q (7)

cj
2 ← f2 ◦ Λ(r1:j−1 · ai, r1:j−1 · sj) ◦Q (8)

θ̂ ← arg max
θ∈S1

〈
cj
1, c

j
2 ◦ (e3, θ)

〉
(9)

rj ←
(
r1:j−1 · aj , θ̂

)

C. Alternative methods for recovering the rotation
Once one has obtained the two spectra, an alternative

method to recover the rotation is the one detailed in [11].
The advantage is that it is more robust, because it considers
all possible rotations, instead of relying of the heuristics of
matching local maxima. The drawback is that it is slower:
the computational complexity is O(L3 log2 L), where L is the
number of harmonics considered. L is roughly proportional
to the resolution of the solution. For HSM3D, the complexity
can be computed as follows. The resolution of the solution is

1Actually, that is exactly what is happening, given that the action of SO(3)
on S2 is locally isomorphic to the action of SE(2) on R2.



roughly equivalent to the resolution R of the grid representing
the function on the sphere. Looking for the minima takes
O(R2) and O(R2) is also the cost for computing of the
cylindrical images c1 and c2 according to (5)-(6). The circular
cross-correlation of O(R) × O(R) cylindrical images along
one direction can be done in O(R) × O(R log R) using the
Fast Fourier Transform. The cost of successive refinements
is negligible with respect to the first correlation. Overall, the
cost is O(kR2 log R) where k is the number of matchings. The
precise value of k depends on the complexity of the input.

D. Recovering the translation

Let us suppose now that the rotation r is known. Choose a
direction s ∈ S2. Define the two functions hs

1, h
s
2 : R → R+

as

hs
1(ρ) = HT[i1](s, ρ)

hs
2(ρ) = HT[i2](r · s, ρ)

These are uni-dimensional slices of the HT. From Proposi-
tion 1 it follows that

hs
1(ρ) = HT[i1](s, ρ)

= HT[i2 ◦ t ◦ r](s, ρ)
= HT[i2 ◦ t](r · s, ρ)
= HT[i2](r · s, ρ + 〈r · s, t〉)
= hs

2(ρ + 〈r · s, t〉)

Therefore, by cross-correlation of hs
1 and hs

2 one can get
an estimate δs of 〈r · s, t〉. By repeating this over at least
three linear independent directions s = {s1, s2, s3, . . . } it is
possible to obtain an estimate of t by linear least squares:




(r · s1)

T

(r · s2)
T

...



 t =




δs1

δs2

...





Evidently, when doing the correlation of hs
1 and hs

2 there will
be more than one local maxima which should be considered
if one expects ambiguous data. In general, there will be more
than one translation hypothesis for each rotation.

E. Weighting the hypotheses

If one assumes the data generation model is i1 = i2◦t◦r+ε,
that is, there is additive noise, then to evaluate the quality of
an hypothesis

〈
r̂, t̂

〉
, it suffices to evaluate the dot product〈

i1, i2 ◦ t̂ ◦ r̂
〉

in the image space, or the dot product in the
Hough domain. This works as a generic mechanism, but there
are cases, such as the scan-matching scenario, in which the
“noise” is mainly the fact that there is only partial overlap
between scans. Moreover, the fact that input data are coherent
scan views gives much more structure to the problem that can
be exploited to define a better measure than the dot product. In
general, the assessment of the solution quality must be related
to the data generation model.

F. Completeness
This algorithm is complete if there is no noise on the inputs,

in the sense that it reports the correct solution, along with all
symmetries, if any. To see why, note that, if there is no noise,
the spectra are exactly two rotated copies of each other. Hence,
by considering enough local maxima, eventually one correct
pairing will be determined. If the first match between m1 and
m2 is correct, the rest of HSM3D finds the correct solution
because of the properties of the cross-correlation operator:
if two signals are identical up to a delay, that delay is the
absolute maximum of the cross-correlation (up to symmetries
and periodicity).

IV. HSM3D IN PRACTICE

After having presented the general ideas underlying the
HSM3D algorithm, we now discuss its actual implementation,
along with some tweaks that are advantageous in the particular
case of range-finder data. Obviously, not all details can be
covered in this section. The source code for HSM3D is
available in Matlab at http://purl.org/censi/2008/hsm3d and in
C++ at http://robotics.ucmerced.edu/Software.

A. Representing functions on the sphere
Since the HS maps 3D images into functions defined on

the unit sphere, a suitable representation for these functions is
needed. This can be achieved by putting into correspondence
cells in a buffer to points on the sphere. More precisely, each
cell in the buffer shall correspond to a small patch on the
surface of the unit sphere. The requirement is that the size of
the patches is somehow regular. The value stored in a buffer
cell corresponds to an approximated value of the function in
the associated patch. A tradeoff between efficiency and ease
of implementation guided our design choice. Specifically, we
project the unit sphere into the smallest cube that contains the
sphere, using the diffeomorphism

ϕ : S2 → cube
s )→ s/ ‖s‖∞

and we then use a regular lattice on each of the six faces of
the cube. Fig. 2 shows the resulting map.

B. Computing the HT/HS
To compute the HT, set up a three-dimensional buffer (a

lattice on S2×[ρmin, ρmax]) that represents a sampled version
of (1). The HT can be computed by cycling through each
discretized orientation s and 3D point in the input, with a
complexity which is linear in the number of points, quadratic
in the angular resolution, and independent of the ρ resolution.
However, if the input image has been produced by dense laser
scans, this computation can be greatly sped up by estimating
the surface normals and using the oriented HT. Then, the
kernel k2 can be chosen such that each oriented point (p, α)
influences only one discretized orientation s (the closest to
α). Apart from employing a different definition for the HT,
the rest of the algorithm remains the same as described in the
previous section. We treat each sensor point as a small surface



patch. The orientation s of the patch is given by the extracted
normal. The area A of the patch is estimated by the distance
to the neighboring points in the 3D scan. The computation of
the HT is greatly simplified because only the entry for (s, ρ) is
increased by A, therefore there is no costly loop for iterating
over all possible iterations. In practice, for 3D scans containing
about 20 000 points, using the alternative definition cuts the
time for creating the HT of various orders of magnitude and
yields a computational time of fractions of a second.

C. Finding the maxima of the spectra
After the HS has been computed, its local maxima can

be easily found by inspection of the local maxima on the
buffer cells associated with the cube. Correspondences could
be sought by a brute force pairing of all maxima, but this
approach would be computationally too demanding. For this
reason only a small subset of the local maxima are considered
for mutual correspondences. In particular, we limit the search
to the first n1 maxima of f1 and the first n2 maxima of f2. The
choice for the values of these parameters is once again driven
by a tradeoff between accuracy and speed (in the experiments,
n1 = 2 and n2 = 6).

D. The least-square step
The directions for the least-squares estimations of t are

chosen to be the local maxima of the HS as they are those
for which t is well constrained. At least 3 are needed and we
chose up to 8, as estimating the translation turns out to be
computationally cheap with respect to estimating the rotation.
The LS can arrange a weight for each observation; we choose
this to be the value of the correlation between hs

1 and hs
2.

E. Evaluating the quality of one hypothesis
As outlined in section III, HSM3D does not produce a

single solution, but rather a number of possible solutions. This
proliferation derives from the various ways that maxima in f1

can be matched to maxima in f2, and from the multiple local
maxima emerging when computing the translations associated
with a given rotation. For this reason, a method to evaluate the
quality of this set of potential solutions is needed. The idea
shortly mentioned in section III-E is not robust enough in the

general case where point clouds not completely overlapping
have to be matched. We here describe an approach appropriate
for the case of a robot equipped with a three dimensional
range scanner. To evaluate the quality of a roto-translation
guess, points in one scan are put in the same reference frame
as the other scan according to the guess. Each point is then
compared with the closest sensor reading. If it is coherent
(according to a threshold), it scores as one point in the metric.
This is a very crude approximation to the computation of a
particularly relaxed log-likelihood; it has to be relaxed because
we expect the roto-translations to be affected by moderate
error. In order to expedite the ranking, the consistency check is
not performed for all points, but rather for a randomly chosen
subset. The size of the random set is subject to an obvious
tradeoff between accuracy and speed. Eventually, solutions are
ranked accordingly to the number of consistencies found in the
random set. Before concluding this section it is worth outlining
that the presence of multiple hypotheses to be ranked is not
necessarily a nuisance. On the contrary, in highly symmetric
environments where multiple transformations may consistently
relate two successive scans, the ability to identify a set of
roughly equivalent solutions is a plus, because the algorithm is
not required to commit too early to a single model explaining
the data gathered by the sensors.

V. EXPERIMENTS

In order to evaluate the performance of HSM3D, we have
performed a number of experiments with 3D scans from three
dimensional laser range finders. In the experiments described
in the following we used the public dataset dat_avz available
from http://kos.informatik.uni-osnabrueck.de/3Dscans/2. Each
scan features about 21000 points, and was taken while explor-
ing the interior of a building. Results presented in this section
were obtained with the C++ implementation of the HSM3D
algorithm. Due to the still exploratory stage of this research,
parameters were not fine tuned, and the current implementation
of the algorithm favors clarity rather than performance. Just to
give the reader a rough idea about the current computational

2The data set was recorded by Andreas Nüchter from the University of
Osnabrück.

REPRESENTING FUNCTIONS ON THE SPHERE

(a) Mapping S2 to buffer cells (b) Projection to the cylinder (0, 0, 1) (c) Projection to the cylinder (0, 1, 1)

Figure 2. To implement HSM3D, it is necessary to establish correspondences between patches on the sphere with cells in a buffer. We chose to map the
sphere to the cube that contains it, and map a simple buffer for each cube face. Fig. (a) shows the resulting patches on the sphere. The other needed operation
is mapping the sphere to a cylinder wrapped around it. In (b), the sphere is mapped to the cylinder with orientation along the z axis. In (c), it is mapped to
a rotated cylinder.



cost of HSM3D, on a 2.13GHz Pentium the average execution
time is slightly above 3 seconds.

A. Global versus local performance: a comparison with ICP

The goal of this experiment is to show the ability of HSM3D
to provide an appropriate estimate of the roto-translation inde-
pendently from the magnitude of the involved translations and
rotations. The setup is as follows: image i1 is generated from
a random 3D scan extracted from the dataset, and image i2
is obtained by applying a random rotation r and a random
translation t to i1, i.e. i2 = i1◦t◦r. To be precise, 12 different
angles are considered, ranging from 15 to 180 degrees with
increases of 15 degrees. For every angle, 40 random axis are
generated. Translations are instead generated using a uniform
distribution over the interval [−0.5, 0.5] along the x, y and
z axis. The data are then processed by HSM3D and ICP in
order to retrieve an estimate for r and t. For comparison
with ICP, we used the ICP implementation provided by the
Insight Toolkit [16]. In all experiments, ICP’s starting point
for the alignment process is set to the identity transformation.
Figure 3(a) illustrates the results we obtained with ICP. As
expected, the error affecting its solutions gets progressively
worse as the rotation angle increases, i.e. as the identity
transformation becomes a much less accurate starting point
for the minimization process. This trend is consistent with
the expectations, since ICP implements a gradient descent
approach whose final outcome depends on the goodness of the
starting point. For the specific data set used in the experiment,
ICP’s performance breaks down for random rotations of 75
degrees. While this specific value for the cutting point is
ultimately dataset and problem dependent, its existence is
instead a general fact. On the other hand, as outlined in
Fig. 3, HSM3D’s performance exhibits instead a consistent
trend, thus substantiating our initial claim concerning the
algorithm’s ability to perform global scan matching. In order
to better understand the charts describing its performance,
and the few outliers occasionally appearing therein, the reader
should keep in mind that we have considered only the first
solution according to the ranking formerly described. Due
to the random sampling involved in the ranking process, the
existence of symmetries and under-constrained situations in
the data, and the relative precision of HSM3D, the best ranked
solution is not necessarily the “correct” one. For the cases with
large error, a solution closer to the ground truth is usually
present with a lower ranking.

B. Sensitivity to noise

The goal of this experiment is to evaluate how HSM3D’s
performance degrades with increasing noise affecting the input
data. The setup is similar to the previous one, i.e. a 3D
image i2 is obtained from i1 through the application of
random rotations and translations. However, before applying
these transformations, i1 is in this case corrupted by Gaussian
noise with zero mean and increasing variance. More precisely,
random noise is added to the range-finder readings, while
the directions of the beams are not affected. This artificial

noise sums with the natural noise contained in the data. In
particular the reader should observe that increased noise in
the data will eventually invalidate the assumptions we made
in Section IV-B, i.e. that normals can be directly extracted
from the range scanner data. Table. ?? shows the results,
for a specific rotation angle, namely 15 degrees (we can
consider only one angle as the previous experiment showed
that HSM3D is insensitive to the magnitude of the roto-
translation), for increasing noise variance. 5000 runs were
considered for each combination of angle and variance. The
table shows the percentage of “success” cases, defined as those
for which the recovered rotation had a rotation error smaller or
equal than 5 degrees. The experiments confirms that HSM3D
with the oriented Hough transform is rather robust to a high
level of noise in the range readings.

σ 0 0.01 0.02 0.04 0.06 0.08 0.1 0.12
% 96.2 95.7 94.5 95 90 91.5 91.5 90

Table I
PERCENTAGE OF SOLUTIONS WITH A ROTATION ERROR SMALLER THAN 5

DEGREES AS A FUNCTION OF THE STANDARD DEVIATION (σ) OF THE
ARTIFICIAL NOISE.

VI. CONCLUSIONS AND FUTURE WORK

We have presented HSM3D, an algorithm that decomposes
a global 6DOF search into a series of uni-dimensional cor-
relations. After having projected the input data sets in to the
Hough domain, the algorithm sequentially recovers the rota-
tion and then the translation. The most appealing characteristic
of HSM3D resides in its ability to efficiently perform a global
search, a quality not found in formerly presented solutions like
ICP and 3D-NDT. When the two inputs correspond perfectly it
is possible to prove that the algorithm returns the true solution
along with symmetries, if any. The completeness of the actual
algorithm depends on the amount of noise in the data and
on the resolutions chosen for computing the transform. This
analysis is part of future work. Moreover it is necessary to
better understand how to choose two important parameters: the
angular (s) and linear (ρ) resolution of the Hough transform.
Coarser grids give more robustness/speed, while finer grids
offer more precision. The gain/loss ratio is still to be inves-
tigated and is most likely problem dependent to some extent.
For the experiments in this paper, little care was devoted to
fine tuning these parameters. Future work includes coming
up with a rational way of choosing these two numbers and
other parameters like for example the number of hypothesis
to track. As of now, the algorithm is under-engineered, in the
sense that it works in cases like 3D range-finder data and
cases such as the inputs pictured in Fig. 1. That is because we
have been trying to understand the wide applicability before
specializing it to particular tasks. A different domain in which
we will try it is the case of stereo-vision, where one can
hopefully exploit HSM3D’s tolerance to noise. HSM3D is
currently implemented in a very naive way, and it produces
hundreds of possible hypotheses (say a dozen rotations, and
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(b) Results for HSM3D

Figure 3. (a) The chart illustrates the accuracy of ICP for random transformations (a, θ) where the axis a is randomly sampled and angle θ is progressively
increased from 15 to 180 degrees with steps of 15 degrees. The top panel displays the error of the recovered translation, while the middle panel displays
error in the recovered translation. The bottom panel contrasts the absolute rotation estimations provided by ICP with the ground truth, and clearly shows the
increasing trend in the angle θ. (b) This chart outlines the global aspect of HSM3D. The errors in the recovered translation and rotation do not increase when
the random rotation gets larger. The reader should notice that the plot displays only the result provided by the transformation with the highest ranking.

a dozen translations for each rotation) even though many
of them could be discarded in an early phase. The main
operation, cross-correlation, can be also implemented much
more efficiently by using the Fast Fourier Transform. There
are many possible improvements in the particular case of 3D
robotic mapping with range-finders and many improvements
may be obtained including domain specific knowledge in
the search. For example, when the robot is in a corridor,
HSM3D routinely produces not only the right solution, but
also three solutions that correspond to the symmetries of the
environment: one with a flip around the z axis, one with a flip
around the x axis, and one with the double flip. However, in
most practical applications, the robot is very unlikely to flip
upside-down and this prior information can be incorporated in
the algorithm to narrow the search domain.

Acknowledgements. Thanks to Li Na for tips on integra-
tion.
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