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Abstract— This paper introduces a probabilistic model for
multirobot surveillance applications with limited range and
possibly faulty sensors. Sensors are described with a footprint
and a false negative probability, i.e. the probability of failing
to report a target within their sensing range. The model
implements a probabilistic extension to our formerly developed
deterministic approach for modeling surveillance tasks in large
environments with large robot teams known as Graph-Clear.
This extension leads to a new algorithm that allows to answer
new design and performance questions, namely 1) how many
robots are needed to obtain a certain confidence that the
environment is free from intruders, and 2) given a certain
number of robots, how should they coordinate their actions
to minimize their failure rate.

I. INTRODUCTION

In the recent past we have studied the problem where
multiple robots with limited sensing capabilities are used
to detect all intruders possibly hidden in a complex envi-
ronment. This preliminary study led to the formal definition
of a new graph theoretic problem dubbed Graph-Clear [4],
[5], [6]. Informally speaking, Graph-Clear asks to determine
the minimum number of robots needed to spot all intruders,
and how these robots should coordinate their actions to
achieve this goal. Besides the modeling effort, we have also
investigated the computational properties of this problem,
showing that in its most general formulation it is NP-
hard. For the special case of trees we have also determined
efficient polynomial-time algorithms that determine so-called
strategies, i.e. a sequence of coordinated actions that will
eventually detect all intruders. One of the appealing aspects
of Graph-Clear is that, despite its high-level theoretical
formulation, and differently from many similar studies that
remained purely theoretical, it is possible to easily implement
it in contemporary robots. On the other hand, one of the
limits of our previous study has been the deterministic
assumption. To be precise, in the past we have assumed
an error-free sensing process. In fact, it was hypothesized
that whenever an intruder was within the sensing range of a
robot its presence was always reported. In practice, however,
no sensor is error-free. In this paper we extend our previous
deterministic formulation to include possibly faulty sensors.
In particular, we here account for sensors that may give false
negatives, i.e. with a certain known probability they may
report that no intruder is within their sensing range even
if there is one or more. The use of robots equipped with
these faulty sensors naturally leads to a number of design
and performance questions, like for example the following:
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• if after having cleared an environment the robot team
reports that no intruders were found, what is the prob-
ability that instead n intruders (with n being a positive
natural number) successfully managed to remain unde-
tected due to errors in the sensing process?

• given r robots, what is the clearing strategy that mini-
mizes the probability that one or more intruders remain
undetected?

• given a certain environment and a target probability p,
how many robots are needed in order to be sure that if
the team reports no detection, then with probability at
least p there are indeed no intruders in the environment?

The main contribution of this paper is twofold. First, the
deterministic model is extended into a probabilistic one in
order to account for faulty sensors. This modification entails
a number of updates in the model components that are fully
worked out in this manuscript. Moreover, an appropriate
model for faulty sensors is presented. Secondly, in the light of
the new model, one of the algorithms we formerly developed
for the deterministic case is extended in order to answer the
above questions.

The paper is organized as follows. Section II shortly re-
vises related research in the field of multi-robot surveillance.
Next, Section III presents the deterministic Graph-Clear
problem in informal terms, outlining the elements that need
a new definition when transitioning to the probabilistic case.
The probabilistic model is then introduced in section IV,
and a model for faulty sensors is discussed in V. Finally, the
algorithmic core is illustrated in section VI, and conclusions
are provided in VII.

II. RELATED WORK

Probabilistic aspects of multi-robot surveillance have been
investigated in a variety of forms. Most often the problem
of detecting mobile intruders in an environment is known
as pursuit-evasion. In [1] Adler et al. defined a Hunter vs.
Rabbit game on a graph and devised probabilistic strategies
to solve it. Only the movement of the agents, hunter and rab-
bit, is probabilistic and not the actual detection of the rabbit,
which always occurs exactly when rabbit and hunter occupy
the same vertex. In [2] Isler et al. also consider randomized
strategies, albeit in a polygon instead of a graph. In [3] Isler
et al. investigate the hunter and rabbit game on a graph with
local visibility, i.e. the rabbit can see the hunter when it is on
an adjacent vertex. In [14] a probabilistic approach is used in
the design of an actual robot team for pursuit-evasion. The
approach casts map building and pursuit-evasion into one
probabilistic framework and emphasis is put on the design
of a distributed architecture. Targets are assumed to move



on a grid according to a Markov model. The environment
in which the system is tested is fairly open and several
heuristic policies for moving the robots are tested in real
experiments. A similar probabilistic approach is developed
in [10]. Therein the target moves according to a worst-case
Markov process. Motion coordination is achieved with an
A*-like search on a graph representation of the environment.
Robots move on the graph following a heuristic function
which encourages movement towards closer nodes with high
probabilities for targets being located therein. Deterministic
pursuit-evasion problems on a graph were introduced by
Parsons in [11]. The problem, also known as graph searching,
involves capturing an arbitrarily fast intruder on a graph with
a team of agents that can either block the intruder’s motion
through a vertex, or catch it when moving along an edge.
The possibility of an intruder being located somewhere is
considered as contamination and the agents actions remove
contamination until the entire graph is cleared. In [7] La-
Paugh showed that optimal strategies for this problem do
not require recontamination. In combination with the NP-
hardness result from Megiddo et al. [9] this result leads
to a proof of NP-completeness for finding the minimum
number of agents needed to clear the graph of contamination.
The graph-search problem has been studied in many other
variations and it also has a relationship to visibility-based
pursuit-evasion introduced by Suzuki and Yamashita [13].
Visibility-based pursuit-evasion is concerned with detecting
an intruder in a planar environment with an unlimited range
sensor. This problem has also been investigated in a number
of variations, such as the k-searcher which emits k sensing
beams to detect intruders with k ∈ {1 . . . ,∞} [13], [8].
Sachs et al. present in [12] an online algorithm to solve the
visibility-based pursuit-evasion problem for a point pursuer
moving in an unknown, simply-connected, piecewise-smooth
planar environment. The pursuer is assumed to be equipped
only with a sensor that measures depth-discontinuities, and
can perform only wall-following or a movements along the
perceived depth-discontinuities.

III. DETERMINISTIC GRAPH-CLEAR:
MODEL AND ALGORITHM

We formalized the deterministic Graph-Clear problem in
[4]. It is based on the concept of a surveillance graph
defined as an undirected graph G = (V,E) with vertex
set V (with n elements), edge set E (with m elements),
and a weight function w : V ∪ E → N+ (N+ denotes
the set of positive natural numbers). Weights on edges and
vertices describe the costs in terms of the number of robots
needed to execute certain actions known as blocking on edges
and sweeping on vertices. These abstract actions represent
routines that after their execution guarantee that 1) in the
case of blocks no intruder crosses the edge undetected or 2)
in the case of sweeps no intruder present in a vertex remains
undetected. To represent the possibility of intruders being
located in G, the concept of contamination is used. Initially
all of G is contaminated and sweeping and blocking removes
contamination. Also, contamination spreads from each vertex

or edge to any other vertex or edge to which a path without
blocked edges exists. This spreading of contamination is
instantaneous and represents a target moving with unbounded
speed and complete knowledge of the environment and the
actions of the robot team. The abstraction of a graph is used
to model complex environments, with vertices representing
places, and edges representing connections between places.
We recently presented an algorithm that extracts both the
graph G and the w function from a grid map representation
of the environment and a simple sensor model [5].

The Graph-Clear problem asks to find a sequence of
actions, a so-called strategy, that removes all contamination
from G and requires the least number of robots. To formalize
this optimization problem the concepts of action set and cost
of actions are introduced. Note that formally an action allows
also multiple simultaneous blocks or sweeps.

Definition 1 (Action set and actions): The action set of a
surveillance graph G is the subset of {0, 1}n+m where each
element a = {a1, . . . , an+m} (called action) satisfies the
following constraint:
• if ai = 1 with 1 ≤ i ≤ n, then an+j = 1 for each edge
ej ∈ edges(vi)

If ai = 1 with 1 ≤ i ≤ n, we say that the action a sweeps
vertex vi, and if an+j = 1 with 1 ≤ j ≤ m we say that
action a blocks edge ej . The action set of G is indicated as
A(G).
The reader should observe that the definition of action
mandates that while a vertex v is being swept all edges
ending on v (indicated as edges(v)) must be blocked. This
constraint is introduced to model situations where large areas
are represented by a single vertex. In such scenario if all
edges are not kept blocked during the sweeping, a malicious
intruder may recontaminate an area already cleared.

Definition 2 (Sweeping and blocking cots): Let G be a
surveillance graph. The sweeping cost of a vertex v ∈ V
is w(v), while the blocking cost of an edge e ∈ E is w(e).

Definition 3 (Cost of an action): Let G be a surveillance
graph and let a ∈ A(G) be an action. The cost of action a
is:

c(a) =
n∑
i=1

aiw(vi) +
m∑
j=1

an+jw(ej)

We can now denote the cost of clearing a vertex
v while avoiding recontamination by s(v) := w(v) +∑
e∈Edges(v) w(e), i.e. sweeping the vertex while keeping

all its edges blocked. This cost definition will be used to
extend the deterministic model to the probabilistic variant, in
which the cost function is more flexible in as much as it will
provide a relationship between the cost and the probability of
missing a target. Finally, the concept of strategy is needed.
Informally speaking, a strategy is a sequence of block and
sweep actions that remove all contamination from G1.

We will use the algorithm from [4] which computes
contiguous strategies on trees as a basis for our probabilistic

1The formal definition of strategy is hereby omitted for lack of space.
Its formalization is not challenging, but requires the formal definition of a
variety of terms not relevant for the scope of this paper



algorithm. A contiguous strategy has the additional constraint
that, at every step during the execution of the strategy, cleared
vertices need to form a connected subgraph. The algorithm
to compute such strategies is based on an auxiliary label
defined on the edges. Given an edge e = [vx, vy] between
vertices vx and vy , the label λvx

(e) denotes the number of
robots needed to clear all vertices one can encounter when
crossing edge e while coming from vx. If vy is a leaf there
are no other neighbors and then

λvx
(e) = w(vy) + w(e). (1)

Otherwise consider all neighbors of vy different from vx
written as v1, . . . , vm where m = degree(vy) − 1 and let
them be ordered by ρi = λvy (ei) − w(ei) s.t. ρi ≥ ρi+1.
Figure 1 shows a visualization of this concept. We now clear
vy and then subsequently all the subtrees roots at each vi in
the reverse order defined by ρ, i.e. the largest index i first.
The cost in terms of robots needed for each vi is then:

c(vi) = λvy
(ei) +

i−1∑
l=1

w(el). (2)

Hence the label becomes the maximum cost encountered in
this process:

λvx
(e) = max{s(vy), max

i=1,...,m
{c(vi)}}. (3)

Figure 1 shows a contiguous strategy.

vx

vy

v3 v1v2

ρ3 ρ2 ρ1

e1e2e3

vx

vy

v3 v1v2

vx

vy

v1v3 v2

vx

vy

v1v3 v2

vx

vy

v3 v1v2

Fig. 1. An illustration of the computation of labels for the algorithm
computing contiguous strategies (gray vertices are clear, and edges with
double strokes are blocked). On the left we have vx cleared and vy and
subtrees rooted at v1, v2, v3 contaminated. In each step moving towards the
right the next vertex in the ordering is cleared and blocks are released.

The label λvx
(e) captures the maximum number of robots

used. From equation 2 it already becomes apparent that
these labels are computed recursively. By first computing
the labels on all edges towards the leaves, using equation 1
we can bootstrap the computation of all other labels. Once
the labels towards leaves are computed there is at least one
internal vertex that has all neighbors except one as leaves.
This vertex becomes vy and the non leaf neighbor vx and
all leaf neighbors v1, . . . , vm. Since v1, . . . , vm are all leaves
we have λvy (ei) already computed and can hence compute
λvx(e) according to equation 3. Once this is computed there
will be another vertex vy that has at least m = degree(vy)−1
outgoing labels, i.e. λvy

(ei), computed and we can compute
its incoming labels λvx

(e) where e = [vx, vy] and so on
until every edge has two labels, one for each direction. Once
all the labels are computed we can compute the total cost
ag(Sv) for clearing the tree with a strategy Sv starting for a

vertex v by considering all its neighbors v1, . . . , vm where
now m = degree(v) and equation 3 in a slightly modified
form:

ag(Sv) = max
{
s(v), max

i=1,...,m
{c(vi)}

}
. (4)

The precise algorithm and details about contiguous strategies
are found in [4]. Similarly, when a block is first installed on
an edge, it will be maintained for a certain time, but after
it has been released, it will never be reinstantiated again.
For these reasons, in the following we can talk about the
event clearing vertex v without ambiguity, because this event
occurs only once. A similar consideration holds for edge
blocking.

IV. PROBABILISTIC MODEL

In order to extend the Graph-Clear formalism from a
deterministic to a probabilistic scenario, various concepts
need to be accordingly updated or introduced. Before getting
into the details we clarify one important point concerning the
remaining of the discussion. From now on we concentrate
on the case of robots not reporting intruders. We hereby
assume that when a robot reports an intruder this event is
separately handled, e.g. a human operator is dispatched, a
tracking behavior is triggered or the like. Also, while we
assumed the possibility of false negatives, we do not assume
false positives, i.e. an intruder is detected only when it is
really present. For this reason the event intruder detected
never occurs in the discussion. Our interest in this paper
is in drawing conclusions upon a sequence of negative
observations reported by the robots.

1) Worst case adversary: As previously mentioned, the
deterministic Graph-Clear framework has been formulated
under a worst case scenario. More precisely, in the de-
terministic scenario this hypothesis implies targets moving
with unbounded speed and with complete knowledge of
the environment and of the actions of the robots. Hence,
whenever a strategy leaves room for recontamination, it
will certainly happen. To maintain this idea, the worst
case adversary has to be differently defined when faulty
sensors are used. In the probabilistic scenario the worst
case adversary still has complete knowledge of the robots’
positions, as well as of their sensors error rates. Each of
the intruders will try to maintain their undiscovered status
by crossing blocks or sweeps where the highest error rate
occurs. As anticipated, these crossing events must occur,
since ultimately all elements in the graph will be swept or
blocked. This concept will be clearer after the probabilistic
sensor model will be formally specified.

2) Environment: A probabilistic surveillance graph is sim-
ilar to a deterministic surveillance graph, with the important
difference that instead of w : V ∪ E → N+ we introduce
w : V ∪ E → F , where the set F is defined as follows:

F := { f | f : N→ [0, 1], f(0) = 1,∀r, r′ ∈ N r ≥ r′

⇒ f(r) ≤ f(r′)}.



That is, in the probabilistic case each graph element is not
associated with a constant cost, but rather with a mono-
tonically decreasing function mapping the natural numbers
to the interval [0, 1]. Throughout the paper, with a slight
abuse of notation, we will write wx(r) for w(x)(r) for some
x ∈ V ∪E and r ∈ N. Also, in order to ease the discussion,
whenever we write x we mean either a vertex or an edge.
What was previously understood as the weight, namely the
number of robots needed for a block or sweep, now becomes
a function defining the probability of a false negative (i.e.
no intruder reported even if there was at least one passing
through the sensor footprint during the block or sweep) while
executing a block or a sweep using a certain number of
robots. According to the intuition, for every x, wx(0) = 1,
i.e. if no robot is used then the probability of not reporting
any intruder is always 1. Using more robots hence leads to
an improvement in the detection capabilities. Moreover, we
assume that each vertex and edge are associated with a grid
representation that roughly represents their planar layout.

3) Probabilistic Actions and Probabilistic Strategies: As
a consequence of the new definition of w, the notion of a
strategy also needs to be extended. While it was formerly
defined as a sequence of actions which essentially determines
which block and sweep operations are executed at which
time step, a probabilistic strategy now describes the number
of robots allocated to a each sweep or block of an action.

Definition 4 (Probabilistic action): The probabilistic ac-
tion set of a probabilistic surveillance graph G is Nn+m

where each element a = {a1, . . . , an+m} (called probabilis-
tic action) has an associated cost c(a) =

∑n+m
i=1 ai.

The reader should observe the fundamental difference
with the deterministic case, where actions are elements of
{0, 1}n+m. In the deterministic scenario a block or a sweep
is either executed or not. In the probabilistic case these
operations are instead executed using a certain number of
robots. Also, due to the way the set F was defined, we
relax the explicit requirement that edge blocks are executed
concurrently to vertex sweeps. With the new definition of
probabilistic action, if these blocks are not executed than the
corresponding function yields a probability of non detection
equal to 1, rendering such a strategy useless. The functions
wx are the essential probabilistic element in the graph G.

4) Undetected intruders and false negatives: We describe
the number of undetected intruders in the environment with
the discrete random variable T , and we write p(T = i), i ∈
N, for its mass distribution. For each edge or vertex x we
will write px(N |t, r) for wx(r), i.e. the probability of a false
negative. A negative observation is written as N and the
event of a target crossing is written as t. The number of
robots that are executing the corresponding sweep or block
operation on x is given by r. For notational convenience we
will drop the r and write px(N |t) assuming that there is a set
number of robots. Keeping in mind that each x is blocked or
swept once during the execution of a fixed strategy S, let N̄
denote a sequence consisting of only negative observations
during the execution of S. We are interested in studying the

following probability, that is here written using Bayes rule:

p(T = i|N̄) =
p(N̄ |T = i) · p(T = i)

p(N̄)
(5)

where for a fixed strategy p(N̄) is a normalization constant.
Now, p(T = i) is simply the prior target distribution of the
number of targets, and the most important part is p(N̄ |T = i)
which we intend to relate to wx. It is in this term that the
smart target assumptions has significant consequences. We
restrict the collection of observations to robots engaged in a
sweep or a block. Recall that an undetected target after the
entire strategy is executed must have crossed either through
a block or been in a vertex during a sweep. The undetected
target then crosses from the contaminated part to the cleared
part at some x. An individual smart target will choose its
crossing point x so that px(N |t) is largest. A smart group of
i targets acting in a cooperative way will each choose an x s.t.
p(N̄ |T = i) is maximized. This is an important distinction
since the probability for detections may be different for
sensors that are more sensitive when multiple targets cross
at once. In the general case, for each x we should then
specify px(N |Tc = i), i.e. the probability of a negative
observation given that i targets cross x during its block or
sweep. However, it is not practical to specify px(N |Tc = i)
for all i and doing so also leads to more complications. It
may be the case that i targets in the environment achieve the
lowest likelihood of detection if split into i1 + i2 = i with
some crossing on x1 ∈ G and some on x2 6= x1 ∈ G if
px(N |Tc = i) < px1(N |Tc = i1) · px2(N |Tc = i2),∀x ∈ G.
For simplicity we prefer to describe the sensing in terms of
px(N |t) = px(N |Tc = 1). Therefore we assume that all
targets crossing an element x are detected independently.
This assumption leads to px(N |Tc = i) = px(N |t)i. In
this case a group of smart targets would all choose to cross
at the same x with px(N |t) largest, but not necessarily at
the same time. Alternatively, we could have chosen e.g.
px(N |Tc = i) = px(N |t),∀i, then a group of smart targets
will all choose to cross at x with px(N |t) = px(N |Tc = 1)
largest and they will choose to cross at once. This choice has
different implications and the choice should ideally coincide
with the actual sensor properties. To summarize, all this taken
together we now get that p(N̄ |T = i) = pxmax

(N |t)i where
xmax = argmaxx∈G{px(N |t)} from the assumption that
targets are detected independently, choose the worst case
path and have complete knowledge about actions of the robot
team. Before we proceed with an algorithm that computes
probabilistic strategies let us shortly discuss how to obtain
px, or equivalently wx, from basic sensing on the grid.

V. MODELING FAULTY SENSORS

The actual sensors of the robot team are described by
their footprint, i.e. their coverage of part of the grid g
representing the environment, and their probability for misses
which may differ for each cell the sensor covers. They
produce observations in discrete time intervals and may at
any given interval either return a positive observation, i.e.
a flagged target detection or a negative observation, i.e. no



target detection. Fig. 2 shows an example of a sensor placed
in a grid and shows its coverage. In general, the sensor
may have any number of cells covered and any probability
associated with any cell, so there is no restriction on the type
of sensor except that its covered area is discretized on a grid.

Fig. 2. A grid with a sensor placed in its center as a black circle and
with the cells observed by the sensor in grey. A darker grey tone denotes a
smaller false negative probability.

From the sensing probabilities on individual cells, we
need to obtain probabilities for the blocks and sweeps. The
details on how to execute these actions, however, are only
given when they are actually implemented in a specific
application. In the deterministic model the requirement for
the implementations on a block are that it has to guarantee
that an intruder attempting to cross the block will be detected.
In the probabilistic scenario we can modify this into having
the intruder cross through at least one grid cell covered
by a sensor so that the probability of detecting it is non-
zero. The main difference, however, is that we can increase
the probability of detecting the intruder if we utilize more
robots than the minimum necessary, hence the monotonically
decreasing trend for the function wx for x ∈ G. Given that
we assumed worst case targets, we assume that a target
chooses the path with the smallest probability of being
detected. The probability for a miss on the edge will then
become the probability of a miss of a target on this path.
Fig. 3 shows two robots blocking a hallway and the worst
case target path as well as four robots blocking and leading
to a higher probability of detecting the target.

For an edge e let Ct = {g1, . . . , gnp} be a set of grid cells
that are covered by the sensors of the block on e and that
are traversed by the target on its worst case path through
the block. Now the probability of a miss on the block of
e becomes pe(N |t) = Πnp

i=1pgi
(N |t), where pgi

(N |t) is the
probability of a miss on grid cell gi. Hence a target can
only pass undetected if it is undetected on each cell. Note
that the equation assumes independence in the detections.
Here pgi

(N |t) is given by pgi
(N |t) = Πngi

j=1psj
where

{s1, . . . , sngi
} are the ngi

sensors covering cell gi. One may
increase the probability of detecting the target by increasing
the number of robots for the block action. This may not
always be possible, depending on the constraints of the
environment. We may e.g. not be able to add additional
robots to a block due lack of space or we may need many
more robots to yield an improvement. The latter case is seen
in fig. 4. This is the motivation for having wx as a general
function that is only required to be monotonically decreasing
and starting at wx(0) = 1 and otherwise unrestricted, since
it can then also capture the above cases.

Fig. 3. An illustration of the computation of detection probabilities for
blocks through the worst case path a target can take through a block.

Fig. 4. The basic block in this figure only needs one robot, while the first
reinforcement leading to an improvement in the detection capability needs
two additional robots. In order to get this fact the reader should consider
that intruders may also move diagonally on the grid.

An analogue case can be made for a sweeping routine,
even though its derivation is slightly more tedious to describe
and hereby omitted. Either way, we assume a sweep routine
also gives a final wx, i.e. in this case the probability that a
negative observation is made when targets are present in the
corresponding vertex vi and r robots are used.

VI. PROBABILISTIC GRAPH-CLEAR

In this section the deterministic Graph-Clear algorithm is
extended to a variant that considers the probabilistic nature
of the sensors. We focus on the conservative scenario with
worst case adversarial targets and the model introduced in the
previous section. Recall that for each edge and vertex we are
given a monotonically decreasing function wx : N → [0, 1],
which gives us a miss probability px(N |t, r) when using
r robots for the block or sweep on x. In the light of the
model just developed, the last two questions raised in the
introduction can then be reformulated as follows:

1) Given a desired p(T = 0|N̄) ∈ [0, 1] how many robots
are needed?

2) Given r robots what is the strategy producing the
highest p(T = 0|N̄)?

Recall the computation in the deterministic algorithm for
Graph-Clear of a label λvx(e) on an edge e = [vx, vy].
The label λvx(e) is the number of robots needed to clear
all vertices beyond e when coming from vx towards vy .
At this point we are considering the neighboring vertices
v1, . . . , vm of vy different from vx and compute λvx

(e) =
max{s(vy),maxi=1,...,m{c(vi)}}.

For the probabilistic variant we can employ a similar
reasoning, except that we now need to get a function λevx

(r)
instead of just a label, analogue to having a function wx
instead of just a constant weight on a vertex or edge. λevx

(r)
will return the probability of failing to report one or more



Algorithm 1 Compute all lambda functions(T,B)
1: Set all label functions to 0 and initialize empty queue O
2: O.enqueue(leaves(G))
3: while not O.empty() do
4: vy ← O.dequeue()
5: Compute lambda function(vx, vy, B)
6: a ← number of neighbors of vx s.t. λ[vx,v]

vx is com-
puted

7: if a = degree(vx)− 1 then
8: O.enqueue(vx)
9: else if a = degree(vx) then

10: for all v ∈ neighbors(vx) s.t. λ[v,vx]
v not computed

do
11: O.enqueue(vx)
12: end for
13: end if
14: end while

targets for all clearing steps when moving from vx towards
vy and clearing all neighboring subtrees with r robots. Due to
the assumption about target movement the overall probability
for a miss will be the maximum of all probabilities of misses
during any of the steps. Let us illustrate how to construct
λevx

(r). For each wx we have a minimum number of robots
required to get a miss probability of less than 1. Formally
we have for each x ∈ G a rmin,wx

with

rmin,wx
= min{r ∈ N | wx(r) < 1}.

Using this rmin,wx
as the deterministic weight w(x) on each

x ∈ G for the deterministic Graph-Clear algorithm we can
compute λvx(e) as before using equation 3. Now, obviously
λevx

(r) = 1,∀r < λvx
(e), i.e. if we use less robots than

λvx
(e) we have at least one block or sweep that does not have

sufficiently many robots, and the miss probability will be 1.
Let us now describe the procedure that computes λevx

(r). We
will consider

Fvx,e := {λe1vy
, . . . , λem

vy
, we1 , . . . , wem

, wvy
}

a set of functions instead of fixed weights and labels, the
key difference to the deterministic case. For each of these
f ∈ F we will have an auxiliary term rf which denotes the
current argument for f , i.e. how many robots are allocated to
the respective edge for blocking the subtree or for clearing
it. Also, let deterministic contiguous label(G, vx, e) be a
function that computes the deterministic label λvx(e) on G
using the current rf . Hence, it computes λvx

(e) according to
equation 3 but with w(ei) = rwei

and similarly for λvy
(ei) =

rλei
vy

. Intuitively, this computes the current cost for clearing
the subtree rooted at vy given a certain cost assignment for
each f .

Algorithms 1 and 2 shows the entire procedure to compute
λevx

(r). Algorithm 1 can be used to compute all label
functions by first considering all leaves and then moving
upwards through the tree and process all non-leaves that have
all neighbors but one with label functions already computed.

Algorithm 2 Compute lambda function(vx, vy, B)
1: if degree(vy) == 1 then
2: λevx

← wvy

3: else
4: Locate all neighbors v1, . . . , vm and create Fvx,e.
5: Initialize rf to rf,min for all f ∈ F
6: deterministic contiguous label(vx, e)
7: Set λevx

(r) = 1,∀r < λvx
(e)

8: for r ← λvx(e) to B do
9: repeatable← true

10: while repeatable do
11: fmax ← argmaxf∈Fvx,e

f(rf )
12: addbots ← argmini∈N(fmax(rfmax

+ i) <
fmax(rfmax))

13: rfmax ← rfmax + addbots
14: deterministic contiguous label(vx, e)
15: if λvx

(e) > r then
16: rfmax

← rfmax
− addbots

17: repeatable← false
18: λevx

(r)← fmax(rfmax)
19: end if
20: end while
21: end for
22: end if

This part of the procedure identical to the computation of
deterministic labels on a tree. Algorithm 2 shows this in
detail. Its complexity is O(e ·B · d2 · log(d)). Here e = |E|,
B is a bound given as input and d is the maximum vertex
degree. The complexity results from line 14 in algorithm
2 which is itself O(d log(d)) and executed within the while
loop O(d·B) times. Finally, algorithm 2 is called O(e) times
in the queuing in algorithm 2.

To illustrate the algorithm let us consider two examples.
First, let vy be a leaf. In this case Fvx,e = {wvy

} and
λevx

(r) = wvy
(r). Secondly, consider the slightly more

complicated example in fig. 5. All λei
vy

are available since
v1, v2, v3 are just leaves. The algorithm then computes
λevx

(r) by first trying the smallest possible values rf,min for
each function involved and then allocates additional robots
to those functions that determine the overall maximum to
reduce the probability that a target can cross undetected
until the overall cost is larger than allowed. The necessity
for checking whether we can improve the functions that
determine the maximum is that the maximum cost during
the clearing may occur when clearing v1, v2, v3 or vy , since
each vertex is cleared at a different step in the strategy. Let us
assume the maximum cost that determines the deterministic
label occurs when clearing vertex v2. The function that
determines the maximum for the probability of letting a
target through may, however, be wv3 . If we use less robots
than the maximum cost at v2 while clearing v3 then we could
try to use more to decrease wv3(rwv3

) without increasing the
overall number of robots needed as long as it is still below
what we need during the clearing step for v2.



vx

vy

v3 v1v2

wvy
we1

λv1

we2
λv2

we3
λv3 r

we1(r)

1

1 2 3 ...

λv1(r)

rmin,e1 rmin,e1

ey ey ey

ey

Fig. 5. An example of algorithm 2

Once all lambda functions are computed up to using
B robots, both questions we formulated can be answered.
For each possible starting vertex v ∈ G we can compute
a probabilistic strategy by only considering the lambda
functions computed for the neighbors. To determine the
number of robots needed for a certain p(T = 0) we set all
auxiliary terms rf for the lambda functions, wv and all wx
on the edges of v s.t. each function achieves a value small
enough s.t. we get the desired P (T = 0) from equation 5
by having the appropriate P (N̄ |T = i). Note that we may
not obtain p(T = 0) exactly since the lambda functions are
discrete, but we get the next possible value smaller or equal.
Finally, to obtain the strategy we proceed exactly as for the
deterministic variant utilizing equation 4 to obtain the final
cost for a strategy starting at v. Now we do this for every
starting vertex and select the best as a desired starting point
and return the needed number of robots. To determine the
best p(T = 0) reachable with a certain number of robots we
simply compute the lambda function of a virtual edge from
a new vertex v to a vertex vi ∈ G. Fig. 6 illustrates this
graphically. This lambda function can now be read and the
value for the available number of robots can be determined.
Doing this for every vi ∈ G and selecting the best starting
vertex yields the answer to our the last question.

v7 v6

v5 v4

v3

v1 v2

G

v

Fig. 6. Adding a virtual edge to compute the cost of clearing G starting
from v3. The lambda function on the virtual edge, represented as a dotted
line will represent the probability of clearing everything beyond that edge.

VII. DISCUSSION AND CONCLUSION

In this paper we have presented a probabilistic extension
to the Graph-Clear formalism we formerly introduced under
deterministic assumptions. The probabilistic extension allows
to model faulty sensors that may return false negatives, i.e.
they may fail to detect an intruder crossing their sensing
range. This failure rate is characterized by a probability
distribution that can be easily computed once specific sensors

are considered. The introduction of this function is the main
change to the deterministic model and entails a different
concept of a solution strategy for the problem at hand. Build-
ing upon this change in the model, a formerly developed
algorithm for the deterministic case has been extended to
answer performance and design questions introduced in the
introduction. It is worth outlining that while extending the
formalism towards the probabilistic scenario we have re-
tained the hypothesis of worse case adversaries, i.e. intruders
that have complete knowledge of the environment, of the
position of the robots and of their error rates. The results
presented in this manuscript have to be therefore accordingly
interpreted, namely they describe the system performance
when facing the smartest possible set of intruders. The
benefit of the probabilistic extension is a more accurate
reasoning about the inherent uncertainty in sensing and
reflects the reality of robotic applications more accurately
than the deterministic approach. More work in this direction
is envisioned and we could also consider uncertainty in the
robots motion when computing the miss rates for blocks and
sweeps, e.g. robots may with a small probability not execute
a block accurately due to faulty information about their
location and give a target the opportunity to pass through
undetected.
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