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Abstract— A learning method capable of empowering a
robot to successfully grasp a novel object through vision has
recently been demonstrated, and generated much interest in
the robotics community. In this paper we carefully analyze this
new approach and apply dimensionality reduction techniques
to decrease the number of features that need to be computed
in order to classify whether a given pixel in an image is
associated with a good or bad grasping point. Exploiting the
ideas behind principal component analysis, we formulate two
hypotheses about possible ways to eliminate certain features
from training and classification. We then experimentally verify
that the feature reduction significantly improves speed while
retaining classification accuracy. Overall, the combination of
the two hypotheses leads to a speedup factor of almost ten.
The hypotheses are validated on third party synthetic data and
also demonstrated on a seven degrees-of-freedom manipulator.

I. INTRODUCTION

One of the major stumbling blocks on the way to a massive
use of robotic devices assisting humans in a variety of daily
tasks is found in the current limits in robots’ ability to
grasp and manipulate objects. Robotic manipulators helped
the very development of the discipline, however they almost
exclusively carry out highly repetitive tasks in carefully
conditioned operating environments. Evidently, it would be
highly profitable if robots were capable of grasping and
manipulating a variety of objects under different conditions
and limited knowledge.
A major development in this direction was recently reported
by Saxena et al. [15], who developed a robotic system ca-
pable of grasping novel objects based on vision alone. Their
approach relies on machine learning and exploits a huge
training set of synthetic images labeled with so-called good
grasping points. As described later on, the algorithm learns
to identify good grasping points in the image-space of a novel
object by computing a high dimensional feature vector for
every pixel in the image, and applying logistic regression
for classification. The feature vector characterizing a pixel
in the novel images is obtained by applying a battery of
filters in a 5×5 patch surrounding the pixel to be classified.
As reported by the authors, a feature vector in R459 is
computed for classification at every pixel of an image. This
high dimensionality has two significant drawbacks. First, the
training stage requires fitting a probabilistic model of high
dimensionality that leads to time consuming computations
in addition to requiring significant amounts of memory. In
principle this is not an overwhelming problem as long as the
training stage is performed rarely. However, as evidenced in
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the conclusions, we are pursuing a long range investigation
where the robot needs to frequently be re-trained, and this
time/space complexity becomes a major nuisance. Second, in
order to identify good grasping points at run time one needs
to compute these high dimensional feature vectors over an
entire image. As a consequence, the amount of frames per
second that can be processed is severely limited. This issue
is particularly relevant when considering the case of a robot
attempting to grasp an object that is not only novel, but also
moving.
After having re-implemented Saxena’s original algorithm,
and having noticed the aforementioned limitations, we con-
sidered the possibility to carefully analyze the algorithm
and to apply dimensionality reduction techniques in order
accelerate the algorithm. The reduction is obtained through
selection, i.e. many features are removed altogether from the
training and classification stage, as opposed to methods that
achieve reduction through feature combination. The results
presented in this paper confirm that significant speedups
through dimensionality reduction are indeed possible, and
we eventually produced a refined version of the algorithm
that achieves a high classification precision while relying
on feature vectors with only 54 elements (as opposed to
the 459 originally mentioned). The improvement is not only
theoretical, but supported by practical experiments performed
with a Barett WAM robot equipped with a stereo camera.
The paper is organized as follows. Section II briefly discusses
related literature. Saxena’s algorithm is shortly presented in
section III, and, in section IV, we present an analysis based
on principal component analysis that leads to two hypothe-
ses capable of reducing the feature vector size. Section V
experimentally validates the two hypotheses individually and
jointly both in terms of simulated data and on a real robotic
platform. Finally, conclusions and future work are addressed
in section VI.

II. RELATED WORK

Research related to robotic grasping and manipulation is
vast, and we therefore here touch only a few selected contri-
butions relevant to place our work into context. Specifically,
due to the feature-based nature of our approach, we skip liter-
ature concerning model-based techniques for grasping. Piater
builds upon an already-established mechanical framework
that tries a variety of grasps for an object until a stable one is
found. More specifically, in [13], this mechanical framework
is enhanced by utilizing visual features from an overhead
camera as a learning tool for good grasps. While the paper
introduces a good series of concepts such as the need for
task decomposition and learning and the focus on visual



features that remove the need for scene reconstruction or
geometric reasoning, it focuses exclusively on simple objects
(e.g. triangle, circle, square), and experiments are limited to
simulation. A similar work has been published in [10], where
the authors present an algorithm intended at finding grasps of
unknown planar objects not limited to primitive shapes. The
paper contributes a good algorithm for its intended applica-
tion while coming up with important cornerstones such as the
necessity of vision and sensing for grasping in unstructured
environments. It, however, has some limiting assumptions,
namely the fact that the input image is only comprised of
the object contour and that the objects are extrusions of these
contours. This work is subsequently implemented on a real
platform in [9], where the authors identify the decoupling
between finding stable grasps (i.e. visual processing) and
physically grasping the object. In addition, they correctly
identify the visual processing step as being independent from
the end-effector configuration. Last but not least, the authors
revisit their framework [11], in greater detail, contributing
more realistic examples and pointing out the very desirable
characteristic that their system is modular with respect to the
manipulator’s hand configuration.

Moving away from the limitations of two-dimensional
grasps of planar objects, Anglani et al. propose a grasping
algorithm by utilizing a controller capable of learning in
a trial-and-error methodology [1]. Even though the paper
is focused on the different problem of visual servoing,
it encompasses some nice and surprising results such as
running the learning phase of the algorithm in simulation,
transporting the results on the real platform, and achieving
good experimental results. The biggest limitation, however,
is that the presented approach only works, as presented
and implemented, for a spherical object of known size
randomly placed in the environment. A similar paper, also
exploiting visual servoing, tries to remove some of the most
constraining assumptions made [14]. More specifically, the
authors propose an environment-independent algorithm that
does not rely on information about the objects in advance.
These assumptions are however weakened by using an
operator to draw a box around the object to be picked up
rather than an autonomous algorithm. In our opinion, the
highest impact approach to solve this specific problem was
recently proposed by Saxena et al. [15]. The authors come
up with the idea of image features as a representation of
good grasping points. The main idea behind image features
stems from the fact that different objects are grasped
similarly by humans and that image features should be a
good representation of grasping points. This paper is heavily
influenced on this work and a thorough description of the
algorithm is presented in the next section.

It is crucial to recognize the importance of human
grasping as an insight to come up with viable solutions to
robotic manipulation and, as such, we briefly summarize
some interesting research about human subjects and
grasping. Through a case study, Goodale et al. found that
there exists a dissociation between recognizing objects

and grasping them [6]. This work is substantiated in [4],
where the author mentions that several neural pathways
are used during a grasping task and, more specifically, that
separate neural activities encode object features and move
the fingers appropriately. In addition, the author reviews
a variety of human and monkey studies that establish a
correlation between object features and grasping parameters.
Another interesting publication describes the irrelevance,
for humans, of maintaining visual contact with the hand
and the object during a reaching or grasping phase [7]. In
other words, humans do not need to use visual-servoing
techniques to grasp objects and we do not either on our
robot implementation.

III. GRASPING NOVEL OBJECTS

Given the aforementioned related work, our primary
motivation for working with a feature-based approach is
that, when properly implemented, they are manipulator-
independent, they can account for untrained objects, they
attempt to replicate visual cues used in human grasping, they
can use a single visual sensor (i.e. cheap sensor), and they do
not make apriori assumptions on the objects or the environ-
ment. In this section we shortly recap what we consider to be
the best feature-based algorithm to date, from Saxena. The
reader is referred to [15] for a more detailed description, also
including suggestions about integrating depth information
(at the cost, however, of increasing the size of the feature
vector). We purposefully do not take into account depth
information because it rarely can be obtained for all pixels
in an image and, as such, could introduce bias resulting in
classification errors.

A. Training

The starting point for the learning algorithm is a huge
set of synthetic images where good grasping points have
already been identified. We define a good grasping point as
any point on an object that a human would use to grasp
the object. Consequently, objects have many good grasping
points that are manually labeled for the training data. Objects
in the training set include everyday entities, such as a cereal
bowl, a pencil, an eraser, etc... Every image comes in two
versions. The first one is the synthetic image, while the
second is a binary version labeling pixels associated with
good grasping points1. In order to learn how to discriminate
pixels associated with good grasping points from bad ones,
17 filters are applied in a 5×5 patch surrounding a pixel. In
addition, the same 17 filters are also applied to the pixel in
two suitably scaled versions of the image itself, yielding a
feature vector of size 459. This process is performed on every
pixel of the image. The filters are applied to a YCbCr image
as follows: six edge filters and nine Law’s masks applied on
the intensity channel of the image (i.e. Y), one average filter
applied on the blue-difference chroma component (i.e. Cb),
and one average filter applied on the red-difference chroma

1The whole data set is freely available for download on the authors’
websites.



component (i.e. Cr). The feature vector is then obtained by
concatenating the energy of these filters into a vector in R459.
Therefore, the synthetic data leads to a set of (xi, zi) couples,
where xi ∈ R459 and zi is a binary label indicating whether
the associated pixel in the image is a good grasping point
or not (with the value 1 associated to good grasping points).
A parameter θ∗ is then learned through maximum likelihood
as follows:

θ∗ = arg max
θ

ΠiP (zi|xi; θ). (1)

B. Finding good grasping points

When the robot needs to grasp a novel object given an
image of it, it starts computing the same filters for every
pixel in the image, thus getting a feature vector xi ∈ R459

for the ith pixel. The point is probabilistically classified as a
good grasping point based on logistic regression, i.e.:

P (zi = 1|x; θ∗) =
1

1 + e−xT θ∗
.

In order to appreciate the power of the technique, it is
worth observing that the authors report remarkable results in
terms of prediction accuracy both for objects similar to those
in the training set, but also, and more importantly, for novel
objects of classes not found in the data set. For example, it is
shown that the system can predict how to grasp a coffee pot,
a marker, and duct tape even though none of these objects
were part of the training set. Consequently, we define, as was
done by Saxena et al., a novel object as an object that was
not part of the training data.
In our opinion, the weakest point of the presented solution,
and the one that we address in this paper, comes from
the authors’ choice to rely on a highly dimensional vector
of features. From a practical standpoint, a large feature
vector is computationally expensive, both during training
and execution time, as substantiated in section V. Features,
moreover, are highly dependent on each other since they are
both similar and spatially close together. This observation
suggests that dimensionally reduction techniques would be
prime candidates to reduce the size of feature vectors, and
boost algorithm efficiency.

C. Modification to the Original Algorithm

In this paper, we use a slightly modified version of the
algorithm. First, we remove the two features that are based
on the color channels of the image. We believe that the color
of an object should not affect how a robot grasps an object,
as is the case for human grasping [16]. We also remove
the features acquired on scaled versions of the original
image since they do not capture sufficient information about
different object sizes or views. Instead we suggests that it
would be more beneficial to scale the images and treat them
as new images (i.e. computing the full feature vector on
the scaled images) to better account for different camera
views representing smaller or bigger objects. In order to
have a similar feature vector size, and to further test our
dimensionality reduction theory, we add five more filters: a

first-order 5× 5 Sobel operator, a second-order 5× 5 Sobel
operator, a first-order 7 × 7 Sobel operator, a second-order
7×7 Sobel operator, and a Laplacian operator. As such, our
final feature vector size is 500, with the original 15 filters
from the algorithm added to the new 5 filters and performed
in a 5× 5 window around each pixel.

IV. AN EXPERIMENTAL STUDY AIMED AT
DIMENSIONALITY REDUCTION

Dimensionality reduction techniques have become main-
stream tools in machine learning when high dimensional
data sets hide an intrinsic lower dimensionality. The number
of tools developed is high, and very often tailored to the
specific problem being tackled. The reader is referred to [12]
for a general introduction about the topic. One of the most
common, yet powerful, techniques is Principal Component
Analysis (PCA) [3]. PCA has already been used in the recent
past in the context of robotic grasping, leading to the well-
known concept of eigen-grasps [5]. PCA can be formulated
in various and eventually equivalent ways. In essence, given a
set of data points X = [x1,x2, . . .xn] from which the mean
has been subtracted in order get a 0 mean data set, we seek a
change of bases capturing the dimensions associated with the
highest variance. For the specific problem at hand, the matrix
X has d rows and n columns, where each column corre-
sponds to a d dimensional feature extracted from the training
images. PCA is performed by solving an eigenvalue problem
on the matrix XXT . Arguably the most important aspect
of PCA is that by sorting the eigenvectors according their
associated eigenvalues (in decreasing order), it is possible to
select a subset of eigenvectors, say e1, . . . , em, retaining a
prescribed level of energy from the original data set. Once
such eigenvectors have been identified, they can be used in
various ways. The most straightforward approach consists
in using them as bases to express a novel feature vector
as a linear combination of the various ei eigenvectors. This
corresponds to projecting the original data set X along the
directions identified by the eigenvectors (perhaps the most
notorious example of this procedure is face recognition [8]).
Alternatively, one can analyze the eigenvectors directly to
identify patterns outlining which components of the original
feature vectors contribute to more variability.
Figure 1 plots the ratio between the first 100 eigenvalues and
the largest one (λMax). This chart was obtained by analyzing
feature vectors of size 500.

It is evident from the plot that only a small subset of
dimensions contribute to the variability found in the set of
features. In particular, the first 9 eigenvectors retain 99% of
the energy found in the data set. More insightful information
can be discovered by examining the eigenvectors themselves.
Figure 2 shows a plot for the components of the first
eigenvector normalized to the largest one.

A periodic pattern is evident, as well as the fact that certain
components have normalized values close to 0. A similar
trend is evidenced in the other 8 eigenvectors accounting for
99% of the energy. Two aspects are important:
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Fig. 1. Spectrum of the first 100 eigenvalues normalized to the value of the
largest eigenvalue λMax. The reader should note the scale is logarithmic.
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Fig. 2. Plot of the normalized coefficients of the eigenvector associated
with the largest eigenvalue.

• the data shows a periodic trend with period 20 (i.e. the
number of applied filters). In particular, it is always the
same set of six filters that have normalized coefficients
significantly larger than 0, and always the same filters
that have negligible coefficients. This suggests that
feature selection is possible.

• the repetitive trend stems from the fact that each feature
is produced by concatenating together the energy of the
filters applied to a 5×5 patch centered around the pixel
to be classified. Figure 2 seems to suggest that the size
of the window may be larger than what is needed in
order to account for most of the variability in the data.

These two observations respectively lead to the formula-
tion of two hypotheses:

Hyp 1 it is possible to identify good grasping points
relying on a subset of filters, which are, based on
the eigenvector analysis, the six edge filters.

Hyp 2 it is possible to identify good grasping points by
only processing a 3×3 window around a candidate
point rather than a 5× 5 patch.

It is worth outlining that if the first hypothesis is verified
the dimension of the feature space drops from 500 to 150

(6 filters applied to a 25-pixel patch) and if the second
hypothesis is verified it drops to 180 (20 filters applied to 9
pixels). Moreover, if both hypotheses hold, the dimension
of the feature space drops to 54 (6 filters on 9 pixels).
PCA is often used to identify a suitable change of bases
that are used to project high dimensional data along the
directions of the most significant eigenvectors. However, this
approach is not viable in our scenario because the high
dimensional feature vector needs to be projected into a
lower dimensional subspace at runtime, a time consuming
process. Consequently, we focus on avoiding the extraction
of many, possibly insignificant, features by relying on feature
selection.

Having observed such a potentially dramatic decrease in
the number of features, one may wonder whether an even
more radical simplification is possible. Referring to literature
related to dimensionality reduction for face detection [2], it
makes sense to explore whether Linear Discriminant Analy-
sis (LDA, also known as Fisher Discriminant Analysis) may
be used in order to exploit the fact that features are assigned
to two classes, namely good or bad grasping points. LDA is a
technique similar to PCA, in the sense that it also involves a
change of bases. However, rather than looking for directions
that maximize variation within the data, it looks for directions
that maximize between-class covariance, while minimizing
within-class covariance. Therefore, at least in principle, LDA
has the potential to overcome PCA since it also exploits the
training labels that are instead ignored by PCA. The limit
however, is that, for the problem at hand, we are dealing
with only two classes. Therefore, LDA will attempt to find a
linear separation between the two classes2. Not surprisingly,
a preliminary investigation of this idea evidences that a linear
separation leads to a significant compromise in terms of
accuracy. The confusion matrix obtained processing a set
of 330035 labeled features is as follows:[

178864 26853
10232 114086

]
.

The fraction of false positives is of particular concern (about
13%) because it may drive the robot to try to grasp objects
in points that are not appropriate. What can be concluded
is that the training data cannot be linearly separated while
retaining a sufficient accuracy and that LDA appears not to
be suitable to further reduce the dimensionality of the feature
vector.

V. EXPERIMENTAL RESULTS

In order to validate the two hypotheses formulated on
the basis of eigenvector analysis, we have performed three
series of experiments. First, we compute the accuracy of
finding good grasping points on the synthetic data using
the different hypotheses as well as real data collected from
a camera. Second, we evaluate the tradeoff between speed
and accuracy when the number of features is progressively

2In general for a classification problem involving c classes, LDA will
determine c− 1 separation hyperplanes.



reduced. Finally, we implement the proposed accelerated
techniques on a real robotic system.

A. Accuracy with Synthetic and Real Data

The entire synthetic data is comprised of 13247 images,
divided into the following nine object classes: cereal bowl,
eraser, martini glass, mug, stapler, tea cup, pencil, two
tea cups, and two mugs. Each object class has a number
of images ranging from 120 to 2001. We first train our
algorithm using 20% of the entire synthetic data, a number
chosen based on both the speed of the training and the
empirical observation that 10%-20% captured enough varied
information about the data. The training is performed for
the original algorithm (500 features), hypothesis 1 (150
features), hypothesis 2 (180 features), and the combination
of hypotheses 1 and 2 (54 features).

Our goal is to deduce the accuracy of the dimensionally-
reduced data compared to the full data. Given a new image,
we start by assigning each pixel two good grasping point
probabilities: Hi, based on the training from one of our
three hypotheses, and Gi, based on the training from the
full data. We then take the 15 pixels with highest Hi

probabilities and compare them to the Gi probabilities in a
5 × 5 window centered around the ith pixel. If any pixel
in the 5 × 5 window is within 2% of Hi, the grasping
point of our hypothesis is clasified as accurate. We use a
5 × 5 window to account for the fact that good grasping
points tend to be co-located and a 2% threshold for the
inherent variability in determining good grasping points
from percentages.

We first run our accuracy measure on synthetic data,
the results of which is shown in Table I. As can be seen
from the table, the results corroborate our hypotheses. More
specifically, we can observe that hypothesis two (i.e. reducing
the size of the window) has very little effect on the accuracy.
Hypothesis one (i.e. reducing the number of filters) and, as
a result, the combination of hypothesis one and two have
slightly lower accuracies, explained by the possibility that
a small portion of the objects might have been strongly
influenced by the removed features.

Having verified the validity of our hypotheses on the
same objects that were trained on, we move on to novel
objects by training on synthetic data and executing our
algorithm on real data. The real data, collected directly
from our robot’s camera, is significantly different than the
training data, being comprised of a bottle, a calculator, a
very small cup, a hammer, a shampoo bottle, and duck tape.
Each object is associated with a set of 30 different images
portraying different poses and light conditions. We use the
same training (i.e. 20% of training data) as the previous
experiment.

The result of the experiment is shown in Table II, which
shows a very similar trend as the one in Table I. More
specifically, reducing the window size (Hypothesis 2) has

Object Hyp 1 Hyp 2 Hyp 1 & 2
Cereal Bowl 96.28% 97.84% 96.10%
Eraser 94.70% 97.22% 94.85%
Martini 97.37% 98.43% 96.61%
Mug 97.89% 95.99% 96.50%
Stapler 96.48% 98.31% 96.15%
Tea Cup 97.11% 96.71% 95.87%
Pencil 95.53% 98.01% 95.61%
Two Mugs 93.39% 98.12% 85.69%
Two Tea Cups 96.21% 97.24% 93.99%
All 96.14% 97.74% 95.68%

TABLE I
ACCURACY MEASURE OF THE HYPOTHESES TRAINED AND EXECUTED

ON SYNTHETIC DATA. RESULTS ARE SHOWN FOR EACH HYPOTHESIS,
EACH OBJECT CLASS, AND THE COMBINATION OF ALL THE OBJECT

CLASSES (LAST ROW).

very little effect on accuracy while reducing the filters
(Hypothesis 1) has a slightly more, yet reasonable, negative
effect on accuracy.

Object Hyp 1 Hyp 2 Hyp 1 & 2
Bottle 99.25% 97.18% 99.26%
Calculator 90.44% 98.44% 92.00%
Cup 81.06% 95.96% 82.75%
Hammer 89.74% 98.12% 90.57%
Shampoo 90.44% 99.11% 88.57%
Tape 80.56% 92.59% 78.26%
All 88.73% 97.22% 89.30%

TABLE II
ACCURACY MEASURE OF THE HYPOTHESES TRAINED ON SYNTHETIC

DATA AND EXECUTED ON REAL IMAGES. RESULTS ARE SHOWN FOR

EACH HYPOTHESIS, EACH OBJECT CLASS, AND THE COMBINATION OF

ALL THE OBJECT CLASSES (LAST ROW)

This series of experiments clearly indicate that our ap-
proach to dimensionality-reduction, in this context, works
for objects that have been trained on and that are completely
novel. It is important to note that objects have multiple good
grasping points and that techniques only need to find a few
good ones to be successful. Figure 3 attempts to illustrate
this fact with a couple of representative examples of our real
images representing novel objects. As can be seen from the
pictures, the best grasping point generated by our methods is
part of the subset of points generated by the original method.

B. Speed-accuracy tradeoff

As suggested earlier, the principal reason for
dimensionality-reduction is to speed up the entire process in
order to, eventually, grasp moving objects. While lowering
the time that it takes to train on the data is a welcomed
benefit, it is not a crucial part of this algorithm (i.e. it is
only performed once) and, as such, we focus on the running
time of the algorithm. Figure 4 shows the speed of the
algorithm as a function of the feature vector size. Displayed
timing information refers to a C++ implementation using
OpenCV for image processing, and executed on a 3GHz
Linux system. The time is measured from the acquisition



Fig. 3. For two objects, a bottle (1st row) and a hammer (2nd row), black
pixels show all the good grasping points with a confidence level of 98%
or more for the original method (1st column), along with the best grasping
point (i.e. the grasping point chosen by the robot) for hypothesis 1 (2nd
column), hypothesis 2 (3rd column), and hypothesis 1 and 2 combined (last
column).

of a 640×480 image to the determination of all good
grasping points within that image. Evidently, and as
supported by the plot, a decrease in the number of features
results in a linear decrease in the algorithm’s running
time. The dimensionality-reduction’s influence on speed is
substantiated by two operations of the algorithm, namely
the application of filters (i.e. less filters to apply) and
the logistic regression (i.e. smaller vectors to multiply).
As a side note, the speed decrease for training is even
more significant since determining the maximum likelihood
involves a variety of matrix inversions.
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Fig. 4. Processing time to identify good grasping points as a function of
the number of features. The plot refers to a 640×480 images.

C. Validation on a WAM manipulator

The proposed algorithm has been implemented on the
robotic torso displayed in Fig. 5. The robot is composed
of two WAM robotic arms, and is complemented by a
Bumblebee 2 stereo camera mounted on two servos providing
pan and tilt capabilities. Both arms are equipped with the
Barrett Wrist and the Barrett Hand, thus providing 7 degrees

of freedom per arm (excluding the degrees of freedom
controlling spread and closure of the fingers).

Fig. 5. George is a humanoid torso composed by two WAM arms and a
Bumblebee 2 stereo camera.

For the experimental purposes relevant to our validation,
we used only one arm, namely the right one, and the camera
was kept at a fixed position, so that possible variations in
performance can be attributed to the algorithm identifying
grasping points, and not to changes in the operating con-
ditions. The control software acquires one image from the
camera, computes a set of good grasping points according to
the techniques formerly described, and then selects the upper-
rightmost one. The upper-rightmost one is chosen because
the object will be approached from the right by the right
arm and to provide enough clearance from the table. The
pixel’s 3D coordinate is inferred from a typical three-step
stereo process involving 1) the undistortion and rectification
of the images so that they are row-aligned, 2) finding pixel
correspondences between the left and right images using
a block matching algorithm, and 3) triangulating the 3D
location of a pixel. The 3D point is then transformed into
an appropriate robot coordinate and passed to the inverse
kinematics module that computes an appropriate posture to
approach the object. We performed a simple approach-and-
closure technique where the manipulator would be moved
to the good grasping point and the end-effector would fully
close. For this experiment, 2 trained object (e.g. an eraser
and a mug) and 5 novel objects (plastic and steel water
bottles, a shampoo bottle, an hexagonal mug, and a box)
were presented under different locations, orientations, and
lighting conditions. For all the objects except the mugs,
the grasping success rate was the same regardless of the
technique used. The mugs had differing outcomes, mainly
due to our simple approach-and-closure technique that did
not take into account the proper finger positioning related to
the mug’s handle. A companion video associated with this
submission shows a few examples of the robot approaching
and grasping the water bottle and the hexagonal mug with
the original method and the three different hypotheses. It is
worthwhile to mention that, in order to preserve the same



operating conditions for each method, clear tape was used
on the table to make sure that the objects were positioned
in the exact same manner. In other words, the video should
be viewed as an example and we stress the fact that the
algorithm works equally well for other objects of different
and unknown rotations and orientations.

The implementation on the real robot suggested some pos-
sible interesting directions for future research. Given a target
grasping point, the problem of computing a good position
from which the grasping point can be used is not trivial. The
reader should note these are two different problems. This
paper deals with the problem of computing good grasping
points, i.e. to determine where contact between the hand and
the object to grasp should happen. Once one of these points is
chosen, there is the additional problem of moving the hand to
a vantage point from which chances of successfully grasping
the object at the given point are maximized. As the focus
of this paper is about efficiently computing good grasping
points, we have opted for a simplified motion strategy, i.e.
to approach the object through a simplified sequence of
elementary moves of the right arm. The aforementioned
decision to always commit to the rightmost grasping point
is a consequence of this strategy. However, following an
approach similar to the one of identifying good grasping
point, one can envision using a learning algorithm to come up
with a good position from which the object can be grasped.

VI. CONCLUSIONS

In this paper we have presented an accurate study of a
recently proposed algorithm for computing good grasping
points from images [15]. After having implemented the
algorithm and performed an analysis based on principal
components, we formulated two hypotheses. The first is that
good grasping points can be reliably inferred using only a
small number of filters, and the second postulates that these
points can be identified using only a small patch around the
point of interest. We have experimentally verified that not
only these two hypotheses hold separately, but also jointly,
i.e. good grasping points can be identified using a few
filters applied to a small patch. More specifically, we have
determined that, out of the numerous different filters, only
the edge filters significantly contributed to the classification
of good grasping points. This finding is sensible since robots
and humans alike tend to mostly grab objects by their edges.
Moreover, we verified that the possibly competing LDA
technique seems inappropriate for the task at hand. The
joint verification of these hypotheses leads to a dramatic
reduction in the dimension of the feature space, namely from
more than 450 down to 54. Our accuracy measure shows an
attractive tradeoff between loss of accuracy and reduction of
the dimensions of the feature space. This finding has two
main consequences. Firstly, the overall computation time to
identify good grasping points in a 640×480 image drops
from about 8 seconds to below one second, thus paving the
way to grasp objects while in motion. Secondly, and not less
importantly, the training time also dramatically drops, mostly
when it comes to compute the maximum likelihood shown

in equation 1. This finding is particularly relevant for our
future research, where we envision the robot to perform the
training step frequently in order to integrate the experience it
acquires while successfully or unsuccessfully trying to grasp
new objects. The study builds upon public available training
data and has been validated on a real robot. Validation on
the real robot also suggests that a similar approach may be
valuable in order to learn how to approach an object given
a good grasping point.
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