Human-Inspired Grasping of Novel Objects through Imitation Learning

Benjamin Balaguer and Stefano Carpin

Abstract— A robotic algorithm capable of grasping novel
objects is presented. With a single stereo image as input, a
supervised machine learning framework is developed that is
both fast and accurate. The algorithm is trained by a human in
a learn-by-demonstration procedure where the robot is shown
a set of valid end-effector rotations to grasp various objects.
Learning is then achieved through a multi-class support vector
machine, orthogonal distance regression, and nearest neighbor
searches. The presented approach requires little sensor input,
generalizes to novel objects, and is demonstrated to work in in
real-time an a Barret WAM manipulator.

I. INTRODUCTION

We consider the problem of grasping an unknown ob-
ject with a multi-fingered robotic hand mounted on an
anthropomorphic robot. Recent advances in machine learning
techniques have given a new perspective to this challenge.
In particular, a paper by Saxena et al. [9] presented a novel
machine learning method to identify good grasping points
in a picture of a previously unseen object. The method
is feature-based: given an unseen object’s image, a feature
vector is associated with every pixel and then used to classify
the pixel as being a good or bad grasping point. More
recently, we have demonstrated that this technique can be
further accelerated using dimensionality reduction techniques
and can be executed in real time [1]. In this contribution,
we extend this line of research and consider plan execution,
after a candidate grasping point has been identified. More
precisely, after a pixel in image space is selected as a good
grasping point, one is left with the problem of correctly
orientating the end-effector to grasp the object at the grasping
point. Consequently, the question we answer is the following:
given a target grasping point, determine the end-effector
pose and orientation in order to grasp the object at the
given point. More formally, indicating with T the 4 x 4
transformation matrix specifying pose and orientation of the
end effector, the problem is cast as determining a function
f : R® — SE(3), where SE(3) is the Special Euclidean
group of dimension 3. Since we consider the translation
component of T’z a solved problem [9], [1], the paper focuses
on the 3 x 3 rotation component of 7. The rest of the
paper is organized as follows. Our proposed algorithm is
detailed in Section II. Section III describes the robotic system
used to validate our method, and a battery of experiments
substantiating its performance. Finally, in section IV, we
outline the algorithm’s strengths and contributions to the
community.

School of Engineering, University of California, Merced, CA, USA,
{bbalaguer, scarpin}@ucmerced.edu

II. LEARNING HOW TO GRASP

A. Design choices

Our algorithm is heavily influenced by human grasp
strategies, developed in the first two years of infancy, which
relies primarily on learning (imitated [6] and reinforced [11])
and human senses (sight [5] and touch [7]). Furthermore,
evidence suggests that, for humans, imitated learning is
supplemented by sight, whereas reinforcement learning is
driven by touch [8]. Following human grasping, and given
the fact that we are interested in imitation learning, we
abstain from touch sensors, sensor-fusion, and object/model
reconstruction and limit our algorithm’s sensory input to
a single stereo image. Human grasping research has also
shown that there exists a dissociation between recognizing
objects and grasping them [2]. We also follow this finding
in our approach, by separating grasp planning from grasping
execution (i.e. we do not use reaction-based grasping or
visual-servoing). Our solution to the problem of finding an
appropriate end-effector orientation, given a stereo image
and a point to grasp in image space, uses a supervised
machine learning algorithm. Since we view human grasping
strategies as a basis for comparison, we train our algorithm
using a kinesthetic approach. We note that off-the-shelf
learning algorithms (e.g. Support Vector Machines, Radial
Basis Functions, Artificial Neural Networks) are not directly
applicable since they all have problems with the many-to-
many mappings in continuous space inherent to our problem
(i.e. one image pixel maps to many valid wrist orienta-
tions, while the same wrist orientation maps to different
image pixels). Therefore, we introduce a hierarchical method
comprised of an object classification layer, followed by the
calculation of the object’s rotation, and finalized by a nearest
neighbor search in the training data. The hierarchical nature
of the approach allows the algorithm to aggressively prune
the search space at run time. Furthermore, each layer of
the algorithm offers a tradeoff between speed and accuracy.
Last but not least, we put an emphasis in generating a
manipulator-independent algorithm that is scale, rotation, and
translation invariant for the objects.

B. Finding good grasping points

To find a good grasping point in image space, one of the
two inputs of our algorithm, we use our own algorithm [1],
a modification of [9]. Due to space limitations, we only
give a brief overview of the method and direct interested
readers to the aforementioned publications. A feature vector,
acquired by a set of convolution filters, is associated with
each pixel in image space and used to classify it as being a



good or bad grasping points. This binary learning approach
allows to use logistic regression, resulting in a very accurate
yet efficient algorithm. The authors report remarkable results
for objects similar to those in the training set, but also, and
more importantly, for novel objects. This is a very desirable
property, which we preserve in our algorithm, since it allows
for grasping tasks in uncertain and unforeseen scenarios (i.e.
scenarios for which we have not trained our robot).

C. Acquiring Training Data

We have attempted to make the training data acquisition,
which requires a human-in-the-loop, as automatic as possi-
ble. A diverse set of 6 objects shown in Figure 1 are used for
training. For each object, we account for rotation-invariance
by taking 36 images, with each image representing a different
rotation around the axis perpendicular to the plane where
they lay. We take the images uniformly around the full 360-
degree spectrum, thus having one image every 10 degrees.

Fig. 1.

The six objects used to generate training data.

For each object class ¢, we have a set of stereo images,
so the training set is S¢ = [I{,I§---IS] where ¢ is an
integer between 1 and 6 and n = 36. The use of a stereo
camera triggers a straightforward conversion from images
to point clouds. Therefore S§ can be converted into a set
of point clouds, S§ = [Pf,Ps---P¢|. Each point cloud
P¢ suffers from two drawbacks: it is inherently noisy and
includes the surrounding environment (i.e. the table the
object is on). We first remove the table in the environment
by using orthogonal distance regression [10] to find the best
fit plane and removing all of the points within a certain
distance from the plane. We then remove additional noise
using an outlier detection algorithm based on quartile ranges
[4]. The two-step denoising process is fast, requires little
human supervision, and works well in practice. From now
on, Pf refers to the denoised point cloud.

Our learning algorithm relies on a human showing the
robot how to grasp some objects, in a kinesthetic framework.
This knowledge can then be exploited by the robot to grasp
both trained and novel objects (we refer to a trained object
as an object used to train the robot and a novel object as an
object not used in the training stage). Specifically, we put
the manipulator in a gravity-compensated state such that a
human can freely interact with it. For each object view the
human moves the manipulator to a valid grasp position and
records the corresponding robot configuration, ¢q. For each
point cloud P, a set of configurations ¢; ; represents good
grasps positions and orientations. The j variable denotes that,
for a given image, there exists many valid robot configura-
tions capable of yielding valid grasps throughout the surface
of the object. From a practical standpoint, the human moves

the manipulator into as many good grasping positions as
possible, covering as much object surface area as possible.
To reduce the time-consuming aspect of acquiring training
data, we only record this information for 12 of the 36 views,
uniformly spaced by 30 degrees. Readers are encouraged to
view videos of this process on our website!, where the entire
data set used for this paper can also be downloaded.

D. Classifying Objects

We start the hierarchical process by classifying the object
to grasp. We approach the problem of classification by
exploiting a multi-class SVM [3], since they work well with
discrete classes. We are classifying between 6 categories,
one for each of our trained objects. We chose to use the
one-against-one multi-class SVM method with a polynomial
kernel, after empirically determining that it produced better
results while being faster (e.g. more accurate and faster than
a Gaussian Radial Basis Function kernel).

The SVM requires a constant-sized feature vector across
all of the training and input data. Since we want to use
point clouds to differentiate between objects, and each point
cloud will have a different number of points, we re-factor
the original point clouds Pf into fixed-sized feature vectors
F¢. We start by generating a new point cloud centered
at the origin, P/°, by subtracting the mean from every
point in the point cloud, satisfying the translation-invariant
algorithm property. We then generate our feature vector
by encompassing the object, in image space, into a two-
dimensional matrix of fixed sized. Since objects vary in size,
the matrix is scaled uniformly to maintain its given size.
Each cell in the matrix then corresponds to a number of
pixels, each of which being represented by a 3-dimensional
Cartesian coordinate in P;°. We compose our feature vector,
F¢, by taking the average Cartesian coordinate of all the
pixels within the cell, a process we repeat for each cell. We
use a 50x50 grid, producing a feature vector size of 7500
(2500 cells, each comprised of the 3 Cartesian coordinate
numbers for X, Y, and Z). This encoding accounts for two
important properties. First, each point cloud can be encoded
with a same-sized feature vector, a desirable element for
SVM. Second, the feature encoding indirectly achieves scale
invariance since the grid automatically adjusts to changes in
size.

Since subsequent components of the hierarchical method
depend on classification accuracy, we now provide results
showing the validity of the SVM classification in our feature
space. In our first experiment we train the algorithm with all
the training data except for one object view, and classify
the omitted object. We repeat this process removing and
classifying a different view every time, until all views have
been classified. We achieved a classification accuracy of
97.69%. The next set of experiments test the scale, trans-
lation, and rotation invariance properties of the algorithm.
We acquire new data, with each of our 6 objects, at 10
random locations and rotations in front of the robot. The

Thttps://robotics.ucmerced.edu/Robotics/ICRA2011Workshop



multi-class SVM is trained on the full training set (i.e. the
36 views for each of the 6 objects) and the new images
(i.e. 10 images for each of the 6 objects) are classified. This
is a harder experiment due to the translation changes, dif-
ferent viewpoints from the robot’s perspective which create
different scales for the objects, and various rotations. The
overall accuracy rate lowers down to 88.33%. For the last
classification experiment, we test the algorithm’s ability to
generalize to previously unseen (i.e. untrained) objects. The
idea behind novel object grasping stems from the observation
that many different objects can be grasped similarly based
on shared geometry. For the sake of the experiment, we have
chosen novel objects that are fairly similar to the trained
objects (see Figure 2), so that a quantitative classification
success rate can be exploited. We note that the novel objects
are different from the trained objects by their texture, size,
or geometry. For the novel object experiment, we acquire a

Fig. 2. The six objects used as novel objects. The row order in which they
are presented corresponds to our expected classification in Figure 1.

set of 10 images, for each novel object, placed at random
locations and rotations throughout the field of view of the
robot. The SVM is trained on all of the training data we have
acquired and each image is classified. The experiment shows
an overall expected-classification rate of 85%. We emphasize
that the classification accuracy presented are based on our
prior belief as to how the novel objects should be classified.
In some cases, this prior belief is correct (i.e. for the drill, the
spray bottle, the water bottle, and the mug) while, in other
cases, it is not obvious (i.e. the DVD case matches the coffee
can and the shampoo bottle matches the mouth wash bottle).
This latter observation is especially evident with the DVD
case, which is classified 60% of the time as a coffee can (i.e.
our belief, due to the rectangular nature of both objects) and
40% of the time as a drill. While our expected classification
rate is 85%, our grasping success rate will be better because
misclassifying an object will not necessarily result in a poor
choice of wrist orientation. It simply means that a different
object will be used to find the best wrist orientation - an
object that was deemed better by the algorithm.

E. Calculating Object Orientation

We can now determine the object that best matches the
one the robot needs to grasp. We have essentially narrowed
down the scope of the problem from a set of objects (i.e.
216 images) to a single object (i.e. 36 images). In the
second stage of the algorithm, we determine the correct
orientation of the object to grasp using the information in
our training data. We came up with a solution involving
plane fitting to deduce the most likely object rotation. More
specifically, we exploit the point clouds to find the best-fit
plane, through orthogonal distance regression [10]. Given the

two planes with their normal vectors, N; for an object in
our training data and Ny for the object the robot is trying
to grasp, we calgulate the angle between the two planes,
W\U\ZH) This process is very efficient since
the majority of the plane fitting can be done offline for the
training data. We use the plane fitting process to find the
nearest neighbor, in terms of rotation, in our training data.
The drawback with this method is that it cannot differentiate
objects that are rotated by 180 degrees, since the best fit
planes would be the same. We address this issue with image
moments calculated for both the left and right sides of our
object image. More specifically, we calculate the first and
second degree image moments, for each side, and use the
Root Mean Square Error (RMSE) between an object in our
training set and the object to grasp. Summarizing from a
high-level perspective, we determine the object rotation as
follows. First, find the angles between the best-fit planes of
all our object training data and the one we are trying to grasp.
Second, find the 6 training objects with the lowest angles and
run the RMSE image moments calculations on all 6. Out of
the 6 objects, we choose the one with the lowest RMSE to
be the closest in terms of rotation to the one we are trying
to grasp.

We again run an experiment to determine the validity
of this algorithmic stage before moving to the next one.
For each object class we remove one object from our
training data and try to find its closest neighbor as per the
aforementioned technique. We repeat this process removing
a different object for each class until all of the views have
been processed. We note that different object symmetries
will result in different outcomes. There are three possible
cases of symmetry to take into account. First, some objects
will be fully symmetric (e.g. water bottle), where object
rotations around the axis perpendicular to the table will not
alter the object view. For such objects, the experiment is
meaningless since any rotations would be dealt the same
way by the manipulator. For this reason, we do not include
the water bottle as part of the experiment. Second, some
objects will be partially symmetric (e.g. coffee can, mouth
wash bottle, mug), where only rotations that are 180 degrees
apart will result in the same object view. In that case, we
cannot differentiate between rotations that are 180 degrees
apart and can equally use either. Third, some objects will be
completely asymmetric (e.g. drill, mug, spray bottle), where
they never look the same under different rotations and we
need to find the closest match in our training set. Our results
indicate a 87.5% rate of finding the closest neighbor for
completely asymmetric objects and a 75% rate of finding
the closest neighbor for partially symmetric objects. We note
that finding the closest neighbor is identical to finding the
closest object rotation, since our training data is labeled.

0 = arccos

F. Calculating End-Effector Rotation

At this point we have found both the closest object
class and its rotation in our training data. We now need
to determine the correct end-effector orientation using the
input pixel location in image space. First, we convert the



pixel location into a Cartesian coordinate, thanks to the
stereo camera, and offset it by the point cloud’s mean M to
yield a point L. We then rotate the point, using the rotation
matrix R, by the angle calculated in the previous step. This
process generates a point, L' = R,(L — M) + M that is
aligned with the closest object in our training set with grasp
examples. After converting all of the trained configurations
to Cartesian coordinates, using forward kinematics, we use a
neighbor search in 3 dimensions to find the closest match to
our input pixel. This closest match yields the rotation matrix,
R, for the end-effector by using forward kinematics on the
closest configuration. Last but not least, we need to rotate our
end-effector to match the original object, straightforwardly
achieved by R. = R X R,,,, where R, is the rotation matrix
rotating in the inverse direction of R, and by the same
degree amount. The resulting end-effector rotation R, can
be used, with the input pixel location converted to Cartesian
coordinates, as input to an inverse kinematics solver to get
the manipulator to grasp the object.

III. EXPERIMENTAL RESULTS

The robotic platform used to evaluate the proposed algo-
rithm is shown in Figure 3. George is a humanoid robotic
torso composed of two anthropomorphic Barrett arms. Each
arm is equipped with a Barrett Hand, and the torso is
completed by a BumbleBee stereo camera. The software
computing kinematics and image processing has been de-
veloped in-house and is written in C++. The rest of the
algorithm is implemented in MatLab. We have performed
a large amount of experiments, which we briefly highlight
in this section through accuracy measures and representative
pictures. We encourage readers to visit our aforementioned
website for videos showing the experiments running on our
robot in real time. For all the experiments presented herein,
we simply close the fingers of the hand to grasp the object
and count any form-closed grasp as being correct. In our
first experiment, we place each of our 6 trained objects at
10 random rotations, manually input a pixel location, and
let the algorithm try to grasp the object. The overall success
rate is 81.66%, where the bottle, drill, and coffee can had the
highest (90%) and the mug and mouth wash bottle had the
lowest (70%). We repeat our first experiment (i.e. 6 objects,
each with 10 trials) with novel objects that are fairly similar
to those we trained on, some example of which are shown
in Figure 3. Under those conditions, the accuracy drops to
76.66%, with the highest accuracy of 100% achieved by the
drill and lowest accuracy of 60% for the shampoo bottle and
the DVD case. We conclude the experimental section of the
paper by mentioning that the algorithm runs in less than 0.5
second.

IV. CONCLUSIONS

We have presented a novel algorithm, influenced by human
grasp research and imitation learning, aimed at computing
wrist orientations for feature-based grasping algorithms. In
addition to speed, one of the most desirable properties of the
algorithm is that it is manipulator-independent. Training data

Fig. 3. Robot grasping novel objects with camera view in each corner.

acquired with one manipulator can be transferred to another.
Last but not least, the algorithm is capable of grasping
novel objects and unseen object parts, usually due to self-
occlusions, and works with a single image taken from a
stereo camera.

ACKNOWLEDGMENTS

This work is supported by the NSF grant BCS-0821766. An
earlier version of this work appeared at the IEEE/RSJ 2010
Humanoid conference.

REFERENCES

[1] B. Balaguer and S. Carpin. Efficient grasping of novel objects
through dimensionality reduction. In IEEE International Conference
on Robotics and Automation, pages 1279-1285, 2010.

[2] M. Goodale, A. Milner, L. Jakobson, and D. Carey. A neurological
dissociation between perceiving objects and grasping them. Nature,
349:154-156, 1991.

[3] A. Karatzoglou, D. Meyer, and K. Hornik. Support vector machines
in r. Journal of Statistical Software, 15(9):1-28, 2006.

[4] J. Laurikkala, M. Juhola, and E. Kentala. Informal identification of
outliers in medical data. In Fifth International Workshop on Intelligent
Data Analysis in Medicine and Pharmacology IDAMAP, 2000.

[5] M. McCarty, R. Clifton, D. Ashmead, P. Lee, and N. Goubet. How
infants use vision for grasping objects. Child Development, 72(4):973—
987, 2001.

[6] A. Meltzoff. Infant imitation after a 1-week delay: Long-term memory
for novel acts and multiple stimuli. Developmental Psychology,
24(4):470-476, 1988.

[71 M. Olmos, J. Carranza, and M. Ato. Force-related information and
exploratory behavior in infancy. Infant Behavior and Development,
23(3):407-419, 2000.

[8] E. Oztop, N. Bradley, and M. Arbib. Infant grasp learning: a
computational model. Experimental Brain Research, 158:480-503,
2004.

[9] A. Saxena, J. Driemeyer, and A. Ng. Robotic grasping of novel objects
using vision. International Journal of Robotics Research, 27(2):157—
173, 2008.

[10] C. Shakarji. Least-squares fitting algorithms of the nist algorithm
testing system. Journal of Research of the National Institute of
Standards and Technology, 103(6):633-641, 1998.

[11] C. von Hofsten. The structuring of neonatal arm movements. Child
Development, 64(4):1046-1057, 1993.



