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Abstract— While unimanual regrasping has been studied ex-
tensively, either by regrasping in-hand or by placing the object
on a surface, bimanual regrasping has seen little attention. The
recent popularity of simple end-effectors and dual-manipulator
platforms makes bimanual regrasping an important behavior
for service robots to possess. We solve the challenge of bimanual
regrasping by casting it as an optimization problem, where
the objective is to minimize execution time. The optimization
problem is supplemented by image processing and a unimanual
grasping algorithm based on machine learning that jointly
identify two good grasping points on the object and the proper
orientations for each end-effector. The optimization algorithm
exploits this data by finding the proper regrasp location and
orientation to minimize execution time. Influenced by human
bimanual manipulation, the algorithm only requires a single
stereo image as input. The efficacy of the method we propose
is demonstrated on a dual manipulator torso equipped with
Barrett WAM arms and Barrett Hands.

I. INTRODUCTION

Recent progresses in service robotics have allowed hu-
manoid robots to perform various household tasks requiring
two manipulators working in cooperation (e.g., handling a
wok [20]). Historically, the simpler pick-and-place actions
have been mostly solved using unimanual grasping, where
a single manipulator is used to perform the task. Scenarios
requiring an object to be placed in a location out of the
robot’s reach have typically been managed by exploiting
mobile manipulation, where the robot’s mobile platform
(e.g., legs, wheels) is used to move the robot into an
adequate position. Humans are, however, very adept at using
both of their arms to efficiently interact with objects. The
goals of these human bimanual object interactions vary from
changing an object’s configuration to repositioning it to a
more efficiently accessed location. We note that humans
exploit these bimanual repositioning actions for efficiency
(e.g., it would be inefficient to transfer a stack of plates one
by one by walking when the final location is within reach of
an arm). Evidently, possessing this bimanual regrasping skill
is essential for humanoids to successfully enter the realm
of home robotics, not only as an efficient pick-and-place
solution but also as a way to introduce more human-like
robotic coworkers.

Compared to other topics, regrasping has seen little at-
tention from the robotics community and can generally be
divided into three approaches. The first, in-hand regrasping,
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has experienced more interest than the others and consists
of relying on one end-effector to regrasp the object. In-
hand regrasping does not solve the problem of getting the
object into a location reachable by only one arm, but rather
addresses the problem of changing the object’s configuration
(e.g., rotating a pen in your hand). This approach is not only
dependent on the robot’s end-effector, but also requires a
dexterous hand with many degrees of freedom and, as such,
cannot be used with simple or under-actuated end-effectors.
The second, which we call on-surface regrasping, consists of
running a unimanual grasping algorithm two or more times,
depositing the object on a surface (e.g., table) between each
grasp. Even though on-surface regrasping works in practice,
it requires an inefficient number of manipulator movements
and multiple computationally-intensive calls to a unimanual
grasper, resulting in a long and ineffective process that
defeats the efficient purpose behind human regrasping. The
third method, which we coin in-air regrasping, is the one used
most frequently by humans where the object is regrasped in
the air using both arms. In-air regrasping is exploited when
an object in one of the manipulator’s reachability subspace
needs to be moved to a location in the other manipulator’s
reachability subspace (e.g., putting a cup from a table to
a cupboard). Even though in-air regrasping has seen little
attention, it is a crucially beneficial behavior for service
robots since it not only saves time performing certain pick-
and-place tasks but also mimics human behavior. Addition-
ally, robotic in-air regrasping does not require complex end-
effectors, nor does it impose restrictions on the manipulators
being used.

We specifically solve the problem of in-air regrasping with
an emphasis on minimizing execution time and propose an
algorithm that exploits image processing, machine learning,
and optimization. The manuscript’s contributions are:

• the enhancement of a state-of-the-art image processing
algorithm by reducing its computation time by 96%;

• the introduction of a novel optimization framework,
validated against other algorithms;

• an end-to-end algorithm, with modular components, that
is manipulator- and end-effector-independent;

• the reduction of the algorithm’s computation time, re-
sulting in real-time performance;

• the evidence that the algorithm works well in practice
by running it on a real robotic platform.

The rest of the paper is organized as follows. Section II
highlights previous work on regrasping, both from a robotics
and human perspective. We continue by giving a high-level
overview of the full algorithm in Section III. The details of



the algorithm are given in Section IV, followed, in Section
V, by off- and on-line experiments. We conclude the paper
with final remarks and future work in Section VI.

II. RELATED WORK

One of the earliest works attempting to solve on-surface
regrasping is presented by Yournassoud et al. [19]. The
regrasping operation is divided into two components. The
Grasp Space defines the space where the object is being
carried by the manipulator. The Placement Space defines
objects’ locations on the table. The regrasping problem is
then cast as the problem of finding the right transitions
between Grasp and Placement Spaces given a start and
goal object configuration. Although the algorithm lays the
theoretical foundation for most regrasping algorithms, it
does not generalize well (only three-dimensional polyhedron
objects are considered) and does not provide experimental
results. Building upon Yournassoud et al. early work, Koga et
al. address the motion planning problem of in-air regrasping
in [12]. Both works are related in that they utilize two similar
regrasping phases (called transfer and transit phases in [12]),
but Koga et al. exploit a second manipulator and remove the
on-surface grasping condition. The algorithm operates in the
object’s configuration space to find a path from the initial to
final object configuration. For each configuration in the path,
all possible ways of grasping the object can be determined,
and pruned according to a set of metrics and constraints.
Unfortunately, the problem is solved from a computer anima-
tion perspective, which provides simplifications that would
be invalid in a real-world robotics scenario (e.g. the entire
environment’s geometry, the initial object’s configuration,
and a set of valid grasps are known apriori). Our work is,
in some ways, a reversal of this process since we utilize
the manipulator’s configuration space (as opposed to the
object’s configuration space), from which we can determine
the object configuration when grasped by the manipulator.

Kawamura et al. approach the problem of regrasping
using dual manipulators without relying on real-time external
sensing [11]. Their solution is not general, since they solve
it specifically for two 2-link planar arms and assume rect-
angular objects. A previously-published grasp algorithm [1]
is rendered computationally efficient by empirically deter-
mining, using numerical simulations, a quasi-linear relation-
ship between the object’s orientation and the manipulator’s
initial contact positions. This relationship is then exploited
to calculate regrasping phases that will change the object’s
orientation. The work is entirely theoretical in nature, and
many assumptions make it hard to adapt to a real robotic
scenario. Finding the linear relationship has merit, however,
and the process can be thought of as machine learning, which
we also exploit in our paper to determine grasps. In a more
practical paper, Berenson et al. investigate the problem of
finding valid grasps in cluttered environments, supplemented
by in-air regrasping scenarios [4]. They rely on a database of
pre-computed grasps for a set of known objects, along with
motion capture, to calculate the best grasp’s quality based on
forces, friction, and contact points. Evidently this approach

does not generalize since the robot will only be able to grasp
objects that are part of the database and requires an expensive
motion capture system - problems we circumvent by using
image processing and feature-based grasping. Differently
from the typical robot regrasping papers, Edsinger et al. con-
sider human-robot regrasping [7]. This complex interaction
is solved using a set of pre-defined behaviors (e.g., detect
a person, hand object to a person, etc...) that are exploited
when necessary. The authors extend this behavior database in
a subsequent paper [8], allowing for bimanual manipulation
of two objects. A potential problem with the generation of
robotic behaviors is that they are constrained to the tasks
and robots for which they are originally designed and might
not generalize to different tasks, robots, or end-effectors.
Additionally, the behaviors assume that the human-in-the-
loop will understand cues given by the robot. These cues
effectively place the burden of learning the environment and
understanding the tasks on a human rather than the robot. The
authors’ works are interesting, however, since using human
intuitions is a valid strategy in scenarios involving human-
robot interactions. We also believe in taking advantage of
humans to advance robotics research and specifically use
them to acquire good training examples for our machine
learning component.

With the inherent connection between service robots and
humans, a series of human studies have influenced our
algorithm. Churchill et al. investigate the kinematic behaviors
of unimanual and bimanual human grasps [6]. No significant
kinematic difference was found between human uniman-
ual and bimanual manipulation. Specifically, one- and two-
effector tasks pose the same constraints, share the same con-
trol structures, and are achieved in similar fashion by human
test subjects. An earlier work by Castiello [5], with fewer
experiments and data, also pointed out this phenomenon.
These findings have influenced our decision to build our
bimanual regrasper from a unimanual grasping algorithm.
Simoneau et al. and Spencer et al. study the importance of
vision in human bimanual tasks in [17] and [18], respectively.
Both works show that there is little effect from complete
vision loss during bimanual tasks. These findings suggest that
humans possess spatial awareness independent of sensory
feedback. We exploit these findings by only relying on vision
to start the regrasping procedure (i.e. no sensory feedback
is used during the physical regrasping phase), allowing for
significant savings in computation time. In [9], Gribova
studies bimanual coordination from a neural perspective,
finding that bimanual movements are internally handled by
the brain as a single process. In other words, bimanual
movements are not a serialization of unimanual ones. Robotic
on-surface regrasping violates this finding.

III. ALGORITHM OVERVIEW

Our problem setting is as follows. Given an object in the
right manipulator’s reachability subspace and out of the left
manipulator’s reach, transfer the object into an area only
accessible by the left manipulator using in-air regrasping.
Considering the nature of human regrasping, we are primarily



concerned with efficiency, both from a computation and
execution perspective, the potential for generalization, and
the replication of human-like motions. Throughout the paper,
we describe our algorithm and provide examples for the case
when the object is reachable by the right manipulator and
needs to be transferred to the left manipulator. We purposely
present our work this way in an attempt to simplify and
shorten the discussion, but we note that the algorithm works
regardless of how the object needs to be transferred (i.e.
independent of the starting location and transfer direction).

Optimization

Fig. 1. High-level overview of proposed in-air regrasping algorithm.

As shown in Figure 1, the algorithm is composed of
three components: Image Processing, Grasp Synthesis, and
Optimization. The Image Processing, the purpose of which
is to find two good grasping points in image space, exploits a
stereo camera along with a state-of-the-art machine learning
algorithm that we further improve to solve the regrasping
challenge. The two points correspond to the points that each
manipulator will use during the regrasping phase (i.e. when
both manipulators hold the object simultaneously). We use a
single stereo image as input, IR, from which we can calcu-
late the corresponding point cloud, CG, thanks to stereo vi-
sion. Using the image, a machine learning algorithm assigns
two good grasping points to the right and left manipulators,
and converts them to initial Cartesian coordinates, PGRini and
PGLini, respectively. The Grasp Synthesis component takes
IR, CG, PGRini, and PGLini as input and outputs appropriate
orientations for the right and left end-effectors, RGRini and
RGLini, to grasp the object at the points PGRini and PGLini.
This process is based on an efficient supervised learning
unimanual grasping algorithm that is extended for bimanual
grasps. Last but not least, the Optimization component
searches the reachability subspaces of the arms to find the
most efficient transfer configuration and outputs the right and
left manipulators’ configuration, qRopt and qLopt, to achieve
the regrasping phase.

In some sense, we first find, using the Image Processing
and Grasp Synthesis components, a couple of appropriate
regrasping holds as if the object were in both manipulators’
reachability subspaces. Then, in the Optimization compo-
nent, we seek a transfer point minimizing the execution time
required to put the object in both manipulators’ reachability
subspaces. We note that the algorithm is modular by design
since each component can be swapped with different algo-
rithms, potentially relying on different sensors that provide
the same outputs. For example, the Image Processing and
Grasp Synthesis algorithms could be replaced by a model-
based grasping algorithm driven by a laser range finder.

The components presented are designed, however, to be
extremely efficient and result in real-time performance.

IV. ALGORITHM DETAILS

A. Image Processing

For the Image Processing component, we utilize and
improve a state-of-the-art feature-based algorithm originally
proposed by Saxena et al. [15]. The algorithm assigns every
pixel a probability of being a good grasping point by calcu-
lating a feature vector for each pixel and using supervised
learning. The feature vector is acquired by applying a set of
convolution filters at and around each pixel to be classified.
The probabilistic binary classifier uses logistic regression:

P (zi) = P (zi|xi; θ) =
1

1 + e−x
T
i θ

where zi is a good grasping point, xi the feature vector
for pixel pi, and θ the logistic regression coefficients. The
logistic regression coefficients θ are learned through maxi-
mum likelihood estimation from a set of labeled positive and
negative training examples.

Even though this image processing algorithm works well
in practice, it is extremely time consuming and cannot
run in real time when using typical image resolution (e.g.
320×240 or 640×480). We have found, however, that the
bottleneck of the algorithm comes from the computation
of the convolution filters. We additionally discovered, using
a feature selection process based on principal component
analysis, that edge filters were the primary contributors to the
pixels’ classification [2]. Given this information, we improve
the algorithm’s speed by reducing the number of pixels to
classify, the process of which is highlighted in Figure 2.
We start with our 640×480 camera image (Figure 2(a)) and
compute its corresponding point cloud using stereo vision.
The object in the point cloud is isolated (Figure 2(b)) using
orthogonal distance regression [16] to remove surface planes
(e.g. table) and quartile range outlier detection [13] to remove
noise. The isolated point cloud, CG, is used to crop the image
around the object (Figure 2(c)), yielding IR. We further
reduce the search space by applying a Canny edge detector
to the cropped image and only classifying the pixels that are
in a 3×3 window around each pixel detected as an edge,
resulting in a search region R. We finally select our two
good grasping points by using the formula

arg max
i,j

(
|P (zi) + P (zj)|

2
‖pi − pj‖

)
∀i, j ∈ R

such that P (zi),P (zj) > 0.90 and PGi (z),PGj (z) ≥ 5cm,
where PGi is the Cartesian coordinate for pixel pi. This
criterion chooses two grasping points that have a classifi-
cation rate higher than 90% and for which points have a
5cm clearance from the table. The distance term, ‖pi − pj‖,
is introduced to make sure as much spacing as possible
exists between the two end-effectors, to stay away from
colliding solutions. The pixel selection process is shown in
Figure 2(d). Finally, out of the two good grasping points
converted to Cartesian coordinates, PG1 and PG2 we assign
the point further away from the left manipulator to the
right manipulator and vice-versa, yielding the points PGRini



and PGLini. This relatively simple selection process works
extremely well in practice while being very efficient.

(a) (b)

(c) (d)

Fig. 2. Step by step example of the Image Processing component. From a
camera image (Fig. 2(a)), we isolate the object from the point cloud (Fig.
2(b)) and the image (Fig. 2(c)). Fig. 2(d) shows results from the Canny edge
detection (grey pixels), the good grasping points found (black pixels), and
the two points selected (circles).

The procedure results in a dramatic reduction of the pixel
search space. Indeed, an original search space of 307,200
pixels is reduced, on average, to 38,339 pixels by cropping
the object and to 12,429 pixels by searching the 3×3 window
around each pixel labeled as an edge. Since the principal
bottleneck of Saxena’s algorithm lies in the feature vector
computation, which needs to be performed for each pixel,
the aforementioned search space reduction procedure lowers
the average computation time from 3.25 seconds to 130 mil-
liseconds (i.e. 96% reduction). We note that these results are
conditioned on our application and that running the algorithm
for images with multiple objects will evidently take longer.
In those cases, our approach can nevertheless be applied,
still providing a time reduction, although less significant.
The time reduction allows the algorithm to process full-
resolution images, which we have experimentally found to
provide better results than with downscaled images.

B. Grasp Synthesis

Having found a grasping point for each manipulator, PGRini
and PGLini, along with cropped versions of the object’s image
and point clouds, IR and CG, the Grasp Synthesis computes
appropriate end-effector orientations, RGRini and RGLini, to
correctly grasp the object. This component is based on our
formerly-developed unimanual grasping algorithm [3] that
we modify to accommodate bimanual grasping. As can be
seen in Figure 3, the algorithm, which builds upon the Image
Processing results, is comprised of three parts, each depen-
dent on training data acquired by human subjects on a diverse
set of objects. First, the Classification stage classifies the

object to be grasped into one of N classes (acquired during
training) using a one-against-one support vector machine
classifier [10] with a parameter vector derived from the point
cloud CG. In the second stage, we determine the object’s
orientation relying on orthogonal distance regression [16]
(using CG) and image moments (using IR) and comparing
them to our training data. Knowing the object type and its
orientation, we finally perform a Nearest Neighbor Search in
the training data to compute the best orientations RGRini and
RGLini, given the grasping points PGRini and PGLini.

Classification Orientation
Estimation

Nearest
Neighbor Search

Training Data

Point Cloud Image
Right Point

Left Point

Image Processing

Fig. 3. Flowchart of the Grasp Synthesis component (bold), with inputs
from the Image Processing (grey).

Interested readers are referred to the original publication
[3] for more technical details. We simply note that the
algorithm can generalize to objects that were not part of
the training data. In that case, the unknown object will
be classified as the closest one from our training database
and a grasping orientation will be found based on that
classification, a process which works 76.66% of the time
(as opposed to 81.66% when using the same objects from
the training data). We conclude this section by mentioning
that the extension from unimanual to bimanual grasping is
very efficient since the two most time consuming processes,
the Classification and Orientation Estimation (101ms), only
need to run once, whereas the most efficient process, the
Nearest Neighbor Search (6ms), needs to run twice.

C. Optimization

By providing grasping information for both manipulators,
in the form of PGRini, P

G
Lini, R

G
Rini, and RGLini, the Image

Processing and Grasp Synthesis components have essentially
found a regrasping phase for the object, as if it was lo-
cated in both manipulators’ reachability subspaces. Since,
however, the object is out of the left manipulator’s reach,
we need to find the best object configuration, located in
both manipulators’ reachability subspaces, for the regrasping
phase to occur. The object configuration will be attained by
being grasped and moved by the right manipulator. We note
that, since we are dealing with rigid objects, the object’s
configuration, when grasped, can be determined by the right
manipulator’s configuration. Consequently, we search the
configuration space of the right manipulator. The Optimiza-
tion process can be thought of as trying the regrasping
phase found in the Image Processing and Grasp Synthesis



components under different right manipulator configurations
(and, consequently, object configurations) until an optimized
result is found. We define an optimized result as one that
minimizes the execution time of the regrasping task.

We exploit the Nelder-Mead optimization algorithm [14],
whose pseudo-code is shown in Algorithm 1, because of its
beneficial properties. Indeed, the algorithm does not require
an objective function with a corresponding derivative (i.e.
only a cost function is needed) and is computationally effi-
cient. The algorithm works on a multi-dimensional triangle,
a simplex, with each vertex corresponding to a potential
solution to the optimization problem. For an n-dimensional
optimization problem, the vertexes are labeled x1, x2, . . . ,
xn+1, where xi ∈ Rn. A function f is used to calculate
the vertexes’ cost (line 2), which are manipulated thanks to
a series of four geometrical operations: reflection (line 4),
expansion (line 6), contraction (line 11), and deflation (line
13). The reflection operation, which yields a new vertex xr,
mirrors the worst vertex, xn+1, across the centroid of the n
best vertexes, x̂ (line 3). The expansion operation finds a new
vertex, xe, that is farther than the reflection vertex, xr, but in
the same direction. Alternatively, the contraction operation
finds a point, xc, between x̂ and xn+1, still along the
same direction. The deflation operation is performed when
everything else fails and shrinks all the simplex vertexes by
a factor of 2 towards the best solution, x1. The reflection,
expansion, and contraction operations are influenced by a
set of coefficients (γr, γe, and γc, respectively) that dictate
the operations’ influence on the simplex. We empirically
determined that γr = 1, γe = 2, and γc = 0.5 provide
the best results, a finding corroborated by the authors of the
original algorithm [14]. At each iteration, the algorithm tries
to replace the worst vertex (line 7,8,10,12,15), in terms of
cost, with one of the results from the geometrical operations.
The geometrical operation used is based on simple compar-
isons of cost values (line 5,7,9,10,12). The algorithm iterates
until the average distance from the geometrical center of the
simplex to all its vertexes falls below threshold ε = 0.01 (line
17). When the stopping condition is met, the best solution,
x1, is returned (line 18).

The Optimization algorithm runs in the 6-dimensional
optimization space of the right manipulator configuration
defined by xi. Specifically, xi encompasses the end-effector’s
Roll (ϕ), Pitch (ϑ), Yaw (ψ), and X , Y , and Z coordinates,
which accounts for the minimum representation in SE(3).
We note that the conversion from xi to a position vector,
PGRopt, and a rotation matrix, RGRopt, is straightforward; as
is the conversion to an arm configuration qRopt. With a 6-
dimensional optimization space, we need a set of 7 vertexes
x1, x2, . . . , x7 to bootstrap the algorithm. The first vertex is
set as a guess estimate, xg , with the six remaining vertexes
encompassing offset values of the guess estimate, which we
set to 5 degrees for ϕ, ϑ, ψ, and 5 centimeters for X , Y , Z. In
other words, x1 = xg = [ϕg, ϑg, ψg, Xg, Yg, Zg], x2 = [ϕg+
5, ϑg, ψg, Xg, Yg, Zg], x3 = [ϕg, ϑg+5, ψg, Xg, Yg, Zg], . . . ,
x7 = [ϕg, ϑg, ψg, Xg, Yg, Zg+5]. Evidently, a good result is
dependent on a good starting seed, which is itself dependent

Algorithm 1 Optimization(x1, x2, . . . , xn+1)
1: repeat
2: Order Vertices: f(x1) ≤ f(x2) ≤ . . .≤ f(xn+1)
3: x̂← 1

n

∑n
i=1 xi

4: xr ← (1 + γr)x̂− γrxn+1

5: if f(xr) < f(x1) then
6: xe ← (1− γe)x̂+ γexr
7: if f(xe) < f(x1) then xn+1 ← xe
8: else xn+1 ← xr
9: else if f(xr) > f(xn) then

10: if f(xr) ≤ f(xn+1) then xn+1 ← xr

11: xc ← (1− γc)x̂+ γcxn+1

12: if f(xc) ≤ f(xn+1) then xn+1 ← xc
13: else xi ← 1

2 (xi − x1) ∀i
14: else
15: xn+1 ← xr
16: end if
17: until 1

(n+1)

∑n+1
i=1 ‖xi − x̄‖ < ε

18: return x1

on our initial guess estimate. We create an automated guess
estimate selection process using a Nearest Neighbor Search
on trained data that is acquired offline. Given a set of manu-
ally selected example regrasping phases for various objects,
the training data is obtained by running a sparse grid search
on each example to determine the best configuration, as
dictated by the cost function f . In order to find a good guess
estimate, we can then make a quick Euclidean-based Nearest
Neighbor Search query in the space of regrasping phases.
This approach, which can be thought of as a simplistic
learning algorithm works very well in practice and can be
extended to any optimization algorithm for which it is easy
to get training data.

Our cost function, f , minimizes the manipulators’ execu-
tion time by minimizing the amount of joint movements that
the manipulators undertake. In order to compute the cost,
we first need to compute the arms’ configurations, qRopt and
qLopt. A visualization of the process is shown in Figure 4.
We have already found, in the Image Processing and Grasp
Synthesis components, a regrasping phase for the initial
object’s configuration, defined by PGRini, P

G
Lini, R

G
Rini, and

RGLini. For each vertex xi of the optimization’s simplex, we
straightforwardly determine PGRopt and RGRopt, from which
we can determine, using Inverse Kinematics, qRopt. Given
this information, we calculate the left arm configuration
(qLopt) from its transformation (PGLopt and RGLopt):

PRiniLini = (RGRini)
T (PGLini − PGRini) (1)

V G = (RGRopt)(P
Rini
Lini ) (2)

PGLopt = PGRopt + V G (3)

RGLopt = (RGRopt)[(R
G
Rini)

T (RGLini)] (4)

The cost, c, of the function, f , is determined by finding,
for each manipulator, the joint that experiences the maximum
movement, which dictates the speed of the manipulator (see
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Equation 5). We define qLstr as the left arm’s configuration
before a regrasping phase is initiated.

f(x)=c= max(|qRini−qRopt|)+ max(|qLstr−qLopt|) (5)

V. EXPERIMENTS

In our first set of experiments, we compare the optimiza-
tion portion of our algorithm against potential substitutes.
These experiments are performed offline, since the quality
of a solution is inversely proportional to the cost function
f(x) given in Equation 5 (i.e. the lower f(x), the higher the
solution’s quality). Specifically, as is done for the Optimiza-
tion component, each algorithm performs a search over a 6-
dimensional grid in the manipulators’ reachability subspace
with parameters ϕ, ϑ, ψ, X , Y , and Z. The grid resolution
is set to 10 degrees for the angles and 5 centimeters for the
Cartesian coordinates. The algorithms are as follows.

Brute Force: an exhaustive search where each cell is ex-
plored successively. This algorithm is complete with respect
to the grid resolution.

Random Grid Search: an anytime algorithm that ran-
domly picks cells from the aforementioned grid. We stop the
algorithm at multiple iterations and present in this section
results for the iteration that yields the highest quality to
computation time ratio. Due to the random nature of this
process, we average the results over 10 runs.

Reachability Subspace: we use the robot’s reachability
subspace, where the points in the grid are ranked in decreas-
ing order based on the number of manipulator configurations
that can reach them. The idea behind this algorithm is that
a position on the grid with many ways to get there by the
manipulator will have more chances of stumbling upon a
good solution. This is another anytime algorithm, the results
of which are presented for the iteration yielding the highest
quality to computation time ratio.

Hierarchical Search: a three-layer grid search, with each
layer representing a smaller grid size. For each layer, the
best solution is found and the area around that solution is
explored, using a finer grid resolution. The first layer’s grid
size is set to 60 degrees for the angles and 25 centimeters
for the Cartesian coordinates. The grid size is divided by 2
for each subsequent level.

The algorithms are run on 10 varying configurations of 4
different objects (a water bottle, a spray bottle, a coffee can,
and a drill), the results of which are shown in Figure 5 in
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Fig. 5. Comparison of Solution Quality (a) and Computation Time (b)
across different algorithms.

terms of the solution’s quality and algorithm’s computation
time. The Brute Force algorithm is strictly used as a baseline
for comparison and is not a viable solution because it takes
72.5 hours on average. Similarly, the Hierarchical Search
terminates in an average of 66 seconds, which is much too
long for our application. Given these observations, we omit
these two algorithms in Figure 5(b). In Figure 5(a), the
solutions’ qualities are normalized and displayed in terms
of percentages (i.e. the best solution, with the lowest cost,
is set as 100% and the remaining solutions are normalized
accordingly). It is clear that the optimization algorithm is
not only extremely efficient, providing solutions more than 6
times faster than the second-fastest algorithm, but also com-
petitive with the Brute Force approach. In fact, the Optimiza-
tion algorithm provides better solutions, on average, than
Brute Force (only by about 1%). This seemingly-surprising
observation is however easily explained by the fact that the
Brute Force algorithm searches a discrete grid, whereas the
Optimization operates in continuous space. Specifically, the
Optimization algorithm finds a better solution than Brute
Force 84.61% of the time. For the remaining 25.39%, the
optimization algorithm is within 4.08% of the grid search
solution on average. The optimization algorithm finds better
solutions than the other algorithms 100% of the time.

The same 10 varying configurations of the 4 objects were
executed on our robotic platform, consisting of a static torso
with two 7 degrees of freedom Barrett WAM arms and 4 de-
grees of freedom Barrett hands. We approach the object using
the direction dictated by the orthogonal vector to the best-fit
plane [16] near the grasping point and the orientation dictated
by the algorithm. Additionally, we utilize a sparse roadmap,
along with a collision detector, to guide the arm through
collision-free paths. We note that this motion planning works
for the experiments we present, but a better planner, based
on rapidly-exploring random trees or probabilistic roadmaps,
should be utilized for more complex scenarios comprised of
more objects or furniture. In our first experimental setup,
we manually dictate the grasping positions and orientations
of the manipulators, consequently removing potential errors
from the Image Processing and Grasp Synthesis components
and investigating the Optimization component on its own.
Being successful 87.5% of the time, with the cause for every
failure being positional errors from the manipulator, it is clear
that the Optimization component yields valid results. We then



analyze the end-to-end algorithm by incorporating the Image
Processing and Grasp Synthesis components back into the
algorithm, a few snapshots of which are shown in Figure 6.
In addition to the snapshots, the accompanying video shows
successful examples of regrasping. Overall, the end-to-end
algorithm performed very well, successfully completing 75%
of the experiments. The majority of the errors were attributed
to the Grasp Synthesis component failing to provide good
orientations for one of the manipulators. It is worthwhile
mentioning that the results are on par with the unimanual
grasping algorithm [3].

Fig. 6. Screenshots of our robot performing a regrasping phase for a spray
bottle (left), drill (center), and water bottle (right).

We conclude this section by providing, in Table I, a
categorized decomposition of the computation time spent
by the end-to-end algorithm. As can clearly be seen, the
algorithm is very fast, being capable of running in real-time
on a standard 2.6GHz computer.

Component Part Time(ms)

Image Processing
Acquisition 40
Denoising 42

Pixel Selection 130

Grasp Synthesis
Classification 80

Orientation Estimation 21
Nearest Neighbor 16

Optimization - 366
Total 695

TABLE I
ALGORITHM COMPUTATION TIME, DIVIDED BY PARTS.

VI. CONCLUSION

We have presented a bimanual grasping algorithm specif-
ically designed to efficiently solve the problem of in-air
regrasping. The algorithm possesses important properties
such as its computational speed, small sensory requirements,
generalization, modularity, manipulator-independence, and
relevance to under-actuated end-effectors. As shown in the
experimental section, we were unable to find a close rival
algorithm both in terms of computational speed or solution
quality. An extensive set of experiments have shown the
algorithm’s applicability to a real world platform composed
of standard manipulators and under-actuated hands.

A few interesting directions can be taken to extend this
work. While relatively straightforward, allowing the algo-
rithm to regrasp the object multiple times would be a
useful addition, requiring slight modifications to each of
the presented components. Although we have not found the
heuristic nature of the Image Processing’s good grasping

point selection to be a problem during our experiments, it
might be improved by some kind of learning or optimization,
with the potential detriment of increased computational time.
Similarly, the process to acquire the initial guess for the
optimization algorithm could be improved with a supervised
learning algorithm. Lastly, in order for the algorithm to
operate in more complex environments, a better motion
planning algorithm should be exploited to find appropriate
paths for the manipulators.
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