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Abstract— Unmanned Aerial Vehicles (UAVs) can be an ef-
fective technology for security applications involving patrolling
and search missions. Defining online patrolling strategies for
UAVs presents challenges related both to classical patrolling,
as periodic monitoring of the environment, and to search,
as accurate localization and identification of the mission-
related activities. In this paper, we deal with this problem
considering probabilistic intrusions and a variable resolution
sensing model that naturally applies to the domain of UAVs. We
present three online single–robot patrolling strategies exploiting
a variable resolution paradigm to represent the environment
that has recently shown promising results for search problems.
The approach uses a hierarchical representation based on
probabilistic quadtrees that allows UAVs to tradeoff sensing
accuracy with sensing area. The model is extended by adding
stochastic arrivals of intruders in space and time. Obtained
results validate this approach for online patrolling against
approaches based on uniform grids.

I. INTRODUCTION

In this paper, we show how our recently introduced
probabilistic quadtrees (PQ) for search can be conveniently
used to solve the more general and harder patrolling problem.
As such, this contribution places itself at the intersection be-
tween problems known in literature as patrolling and search.
Patrolling is the task of monitoring an environment to protect
it from malicious activities denoted as intrusions or attacks.
The use of Unmanned Aerial Vehicles (UAVs) for patrolling
missions is already ongoing, but thus far these vehicles are
usually remotely controlled by a human operator. However,
there is a great interest in deploying fully autonomous
UAVs, or to provide UAV operators with decision support
systems that could provide online hints about good patrolling
strategies. The design of effective patrolling strategies is
a challenging task. A patrolling strategy can be generally
defined as the mechanism used to decide how the UAV
should move during the mission. Often times this problem
is modeled as periodic information gathering via exploration
and solved in an offline fashion. Proposed approaches range
from frequency–constrained exploration to more complex
scenarios where game–theoretical adversarial settings are
studied (see Section II for some pointers to related work).

Search is the problem of localizing one or more stationary
items in a given environment (the case of moving targets
is usually denoted as the pursuit problem, and will not be
considered herein). Also in this field, different techniques
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to design strategies for UAVs have been proposed. Dif-
ferently from patrolling, these approaches typically tackle
the problem online, considering realistic sensing models in
probabilistic frameworks, often using a Bayesian approach.
Recent works [4], [5] showed that variable–resolution en-
vironment representations well adapt to UAV–based search,
improving both search effectiveness and computational time.
In essence, these methods explicitly consider the tradeoff
between sensing a large area with a reduced accuracy, versus
sensing a smaller area with a higher accuracy. This kind
of tradeoff is particularly relevant for vertical take-off and
landing (VTOL) UAVs that can hover above areas of interest
while varying their elevation.

In this work, we study strategies for online patrolling, a
problem sharing features with both patrolling and search.
In the scenario we consider, a single patroller operates in an
environment characterized by areas with different importance
and attack patterns. When an intruder enters the environment,
the patroller incurs in a penalty that linearly grows over time,
and is proportional to the importance of the area where the
intruder broke into. In order to stop paying the penalty, the
intruder has to find out where the intrusion occurred and then
remove the intruder. The overall objective is to minimize
the penalty accrued over long periods of time. A precise
definition of these terms will be given in Section III. The
contribution of this paper are three. First we formulate the
online patrolling problem and we note its differences with
the recently formulated persistent patrol problem. Next, we
show how PQs lend themselves to the definition of online
patrolling strategies incorporating both information available
a-priori with evidence gathered during the patrolling effort.
Finally, we experimentally contrast these strategies among
themselves, and we show how they dramatically overcome
strategies based on uniform representations.

II. RELATED WORK

Research into algorithms to design effective patrolling
and search strategies is abundant and considers numerous
variants. We here discuss only selected contributions and
outline differences motivating this study.

Proposed techniques for patrolling strategies can be
roughly defined in two classes. Algorithms in the first class
focus on providing exploration patterns aiming to optimize
some objective function. Widely adopted objective functions
include efficient coverage, frequency or idleness optimiza-
tion, as well as approaches oriented to information decay
minimization. One example of work in this class is [7],
where strategies based on different definitions of idleness are
studied. Approaches in the second class consider patrolling



problems as adversarial scenarios. Patroller and intruder are
modeled as rational agents competing in a game. The pa-
trolling strategy is determined then by computing the game’s
equilibrium under some solution concept. Recent works in
this class are [1], [10]. These papers share the assumption
of a given intrusion model (implicit or explicit) that is fully
known in advance. Therefore, once a strategy is computed,
its realization does not depend on additional information
collected during the mission. As such, these can be seen
as open-loop methods, i.e., they do not take advantage of
information collected during the patrolling effort. For this
reason, they do not align with the spirit of this work which
aims to provide closed-loop patrolling strategies. Moreover,
realistic sensing models and actions typically fall outside
their scope.

Under very idealistic assumptions, our problem shares
some aspects with dynamic vehicle routing problems in
robotic networks. Bullo et al. [3] give an insightful study of
this problem, providing an extensive analysis about the prop-
erties of different strategies. However, the strong assumption
that targets entering the patrolled area are immediately
spotted and the fact that no sensing process is assumed make
this problem fundamentally different than the one addressed
here. Perhaps, the closest work has been recently proposed by
Frazzoli et al. [8], where the persistent patrol problem (PPP)
is studied. The authors consider a situation where intruders
are not immediately detected when they enter the patrolled
area, but only when after they fall inside the sensing range of
one of the searchers. However, sensors errors are neglected,
i.e., an intruder is revealed as soon as it falls inside the
sensing range (and only if that happens, i.e., there are no
false positives).

Our loss function is minimized by minimizing waiting
time, i.e., the time interval between the moment an intruder
enters the patrolled area and the moment it is detected and
removed. This problem is related to the dynamic traveling
repair problem (DTPR) introduced by Bertsimas and Van
Ryzin [2]. In DTRP one aims to minimize the waiting
time between a stochastic arrival of an element in the
environment and the moment it is visited (or serviced). Even
the deterministic, simpler version when all demands are
known upfront is known to be NP-complete [11]. Note that
the problem we are solving is not simpler, because arrivals
are not immediately revealed, but have to be discovered by
the searcher. Moreover, simply visiting a location where an
intruder (demand) is located does not necessarily eliminate
it, because of the inherent noise in the sensing process.

The problem of localizing targets in an environment col-
lecting noisy perceptions has been extensively studied in the
robotic literature. Recent works [4], [5] investigated, with
promising results, the use of variable–resolution environment
representations. In this paper we extend this model for the
problem of online patrolling.

III. ONLINE PATROLLING

We start by describing the online patrolling problem on
a uniform grid, and we defer its extension to a hierarchical

setting to a later section. This problem differs from the PPP
defined in [8] inasmuch as it accounts for sensing errors,
either in the form of false positives or missed detections. In
the following, we will use the terms agent, patroller, searcher
as synonyms. Similarly, the words attacker and intruder will
be used interchangeably. The patrolling setting considered
in this work is defined over a square area A composed by
L2 equally sized square cells. Time is discrete and develops
in steps. The area A is subject to malicious activities, or
attacks, that can start at any time in any cell and last until
they are detected by the patroller. The function l : A → R+

assigns a loss to every cell. For a cell c ∈ A, l(c) represents
the penalty incurred by the patroller in a single time step due
to the presence of an intruder in c. Let a : A× T → {0, 1}
be the function describing whether cell c is attacked at time
t or not, i.e. a(c, t) = 1 if and only if there is an intruder in
c at time t. Under these hypotheses, the overall loss incurred
by the patroller over the period [0, T ] is given by

ρ =

T∑
t=0

∑
c∈A

a(c, t)l(c). (1)

The goal of the patroller is to minimize ρ, i.e., to minimize
the cumulative loss due to attackers entering the patrolled
area. To complete the formalization of this problem, we need
to formulate a model for the attackers, i.e., how they enter
A, and also an action space for the patroller, so that it can
detect and remove attackers.

We assume attacks are probabilistically distributed in time
and in space. More precisely, an attack is defined by a pair
(t, c), where t is the arrival time and c ∈ A is the attacked
cell. Arrivals are independent and their interarrival time is
determined by a Poisson process with known rate λ (note
that this is a general, largely adopted model; see e.g. [3]).
Once an attack arrives in the environment, the attacked cell
is determined by randomly selecting a cell from A with a
mass distribution proportional to the loss function l. In other
words, the attacker is more likely to pick a cell associated
with a higher loss.

In order to minimize the loss ρ defined in Eq. 1, the
patroller needs to localize and remove attackers. Therefore
it performs two operations, namely sensing to determine
whether an attacker is in a given cell, and clear to remove
an intruder from a given cell. The patroller is equipped with
a binary sensor returning Z = 1 if at least an attacker
is perceived inside the sensed cell and Z = 0 otherwise.
The sensor is assumed to be faulty, i.e., to return both false
positives and missed detections. Error rates are stationary
and known. In the following we will indicate with α the
false positive rate and with β the missed detection rate.

Embracing a Bayesian view, we assume that before the
patrolling effort starts the patroller is provided1 with a prior
about the probability that attackers are located inside each
cell at time t = 0. Then, querying the sensor during the
mission, a posterior about this probability can be propagated

1If this knowledge is not available, then one would just start with a
uniform uninformative prior.



over time by using standard Bayes updates (see e.g., [4]).
More specifically, let φ(t)(c) with c ∈ A be the probability
of having an attack in cell c at time t.

The distribution of attacks in time requires the patroller to
account for arrivals that may take place during the mission
and that may occur also in already visited areas. This
dynamic phenomenon can be accounted for by a detrimental
effect that increases φ over time. Formally, for every cell c
let be pc be the probability of having an attack in c within
one time unit. Assume the last sensing in c occurred at time
t and let φ(t)(c) be the posterior updated after integrating
such reading. Then, assuming no sensing is made in c for
the next ∆t time steps, we have:

φ(t+∆t)(c) = 1− (1− φ(t)(c))(1− pc)∆t. (2)

From the assumptions formerly made about spatial and
temporal distributions of the attacks, it is clear that pc is
a function of l(c) and λ.

To remove an intruder from the environment, the patroller
performs a clear action, e.g. it dispatches a human to make
contact with the intruder. The searcher’s decision to initiate
a clearing action in cell c at time t is modeled with a binary
variable Dt

c where Dt
c = 1 means clear c at time t and Dt

c =
0 otherwise. The value of this variable is determined taking
into account the last sensing measurement Z performed at
time t in cell c (recalling that Z = 1 if an intruder is sensed).
Given that a(c, t) = 1 if an attack is present in cell c at time
k and a(c, t) = 0 otherwise, and called Cij the cost of taking
decision Dk

c = i when a(c, t) = j, then Dt
c = 1 if (see [9]):

P [Z|a(c, t) = 0]

P [Z|a(c, t) = 1]
≤ (C11 − C01)φ(t)(c)

(C00 − C10)(1− φ(t)(c))
. (3)

If an attack is present in cell c at time t and the patroller
performs a clearing action (i.e., Dt

c = 1), such attack is
removed and a(c, t′) is set to 0 for t′ > t, although this
value might be set to 1 again if a new arrival occurs at c.
The introduction of costs Cij prevents the definition of trivial
strategies where the searcher decides to clear each cell it
visits because such operation comes at no cost.

IV. ONLINE PATROLLING ON A UNIFORM GRID

Representing the environment with a uniform grid is the
most basic and classic approach to address online patrolling.
In this section, we introduce a simple myopic patrolling
strategy that will serve as comparative reference for strategies
operating on the more efficient hierarchical representations.
Moreover, this strategy also unveils some interesting aspects
of the online patrolling problem.

We define a cell evaluation function L(c), quantifying
the goodness of cell c, given the current time t and the
current location q of the patroller. In this context goodness is
measured as the ratio between saved and incurred expected
loss if the next sensing action will take place in c. More
formally, we denote with Lt(c,∆t) the expected penalty

accumulated by the searcher if not sensing cell c in the time
interval (t, t+ ∆t]:

Lt(c,∆t) = l(c)

∆t∑
z=1

φ(t+z)(c).

Note that φ(t+z)(c) is obtained by applying the detrimental
factor as reported in Eq. 2. Indicating with T (q, c) the
time2 needed to move between two cells q and c, then the
evaluation function is defined as:

L(c) =
P [D

k+T (q,c)
c = 1]l(c)∑

w∈A Lt(w, T (q, c))
.

The numerator computes the expected saved loss, i.e., the
loss of cell c weighted by the probability of clearing the at-
tack (notice that this probability accounts also the probability
that an attack is present). This quantity is then divided by
the expected amount of penalty accrued while traveling to
c. Throughout the mission, then, the next sensing location
g ∈ A is selected as g = arg maxc∈A L(c).

V. PROBABILISTIC QUADTREES FOR SEARCH

Carpin and Chung recently introduced so-called proba-
bilistic quadtrees (PQ) for search in [4], [5]. We here shortly
summarize this data structure and we refer the reader to
the aforementioned papers for a detailed description, and
to Fig. 1 for a graphical depiction of the idea. PQs are
introduced to model scenarios where one can tradeoff sensing
accuracy with sensing area, i.e., one has to decide between
scanning a large area with lower accuracy, or a smaller area
with larger accuracy. This observation was already made in
[13] and naturally applies to VTOL vehicles that can hover
over interesting areas while ascending or descending and
then varying their sensing accuracy. Quadtrees are standard
geometric data structures used in computational geometry
[6]. Given an uniform grid, it is possible to associate with it
a quadtree such that its leaves at the deepest level coincide
with the cells of the uniform grid. A probabilistic quadtree
is a quadtree where every node n is not only associated with
a square area, but is also paired with a Bernoulli random
variable Xn indicating whether there is one or more intruders
inside the associated area. Consistently with the notation
formerly introduced, in a PQ we set φ(n) = Pr[Xn = 1]. For
the problem studied in this paper there can be an arbitrary
number of intruders inside A, and therefore we rely on the
Type2 PQ we presented in [4]. In a Type2 PQ probabilities in
the tree are recursively related as follows. Let n be an internal
node in the tree and let n1, . . . n4 be its four children. Then,
the following constraint holds

(1− φ(n)) = Π4
i=1(1− φ(ni))

because there is no intruder in the parent node n if and only
if there is no intruder in any of its children. The constraint
is enforced throughout the tree. PQs are useful when they
are associated with sensors with variable resolution [12].

2Without loss of generality, we assume the patroller moves with unary
velocity, therefore T coincides with the distance between the two cells.



Fig. 1. The figure depicts the intuition behind PQs. UAVs flying at higher
elevations sense larger areas but are more likely to suffer from erroneous
sensor readings. On the contrary, UAVs at lower elevations are more precise
but gather information about a smaller fraction of the area to be patrolled.

We embrace a sensor model where the patroller is equipped
with a binary sensor returning 1 if at least an intruder is
perceived inside the sensed area and 0 otherwise. The sensor
is assumed to be faulty, i.e., to return both false positives and
missed detections. Error rates are supposed to be elevation
dependent and we assume that they vary with elevation as
α(d) ≥ α(d+ 1), where d indicates the depth in the tree and
the root is assumed to be at level 1. In other words, as the
UAV decreases its elevation (i.e., it increases d), both its
sensing area and error rates decrease. Identical assumptions
are made for β.

As more and more sensor readings are collected by the pa-
troller, a posterior about the various φ(n)s can be efficiently
maintained. The reader is referred to the aforementioned
papers for details about how the elementary Bayes update
formula can be extended to deal with the tree. We conclude
this short recap noticing that one of the strengths of PQs
is obviously found in their variable resolution, i.e., one
initializes the data structure with a coarse resolution, and
refines it only where, through repeated sensing, an increased
probability of an ongoing attack occurs. As it will be
evidenced in Sec. VII, the size of the tree grows slowly,
thus enforcing a convenient limit on the size of the search
space, and then accelerating the planning process.

VI. STRATEGIES FOR PATROLLING ON QUADTREES

In this section we present 3 patrolling strategies based on
PQs. All these strategies are myopic, i.e., they just plan on
the next sensing location without committing to a number
of decisions in the future. Receding horizon strategies may
give better results, but turn out to be computationally more
involved, and are therefore not considered here.

Given that for the patrolling problem there will be in
general more than one attacker simultaneously present in the
area, one may be tempted to reuse the same entropy-guided
search strategy we presented in [4]. It can however be quickly
assessed that such idea works well for search but not for
the online patrolling. In fact, to minimize the loss function
we hypothesized, the agent shall devote most of its sensing
efforts to areas where through repeated sensing a high φ

emerged. However, this does not happen when considering
entropy only. This is easily understood observing that entropy
is a symmetric function in [0, 1] and a cell with probability
ε and a cell with probability 1 − ε have the same entropy.
However, for the problem at hand one shall obviously focus
on the latter and ignore the former.

Before describing the three strategies, we shortly describe
a simple extension of the hierarchical structure that is useful
for the problem at hand. Consider a leaf node n at the
maximum depth. By definition the leaf is associated with
a binary indicator variable Xn indicating whether there is
an intruder in the leaf or not. Because the expectation of an
indicator variable is equal to the probability of the variable
itself, it follows that when initially a full PQ is created, the
expected number of intruders in every node (leaf or internal)
can be computed. In fact, the expected number of intruders in
the leaves is given by the probabilities, whereas the number
of intruders in the areas associated with the internal nodes
is obtained by recursively adding the values of its direct
descendants. Once this information is computed during the
initialization, it can be maintained at run time while the
posterior is updated. Therefore from now onwards we assume
that for every node we have an estimate of the expected
number of attackers located inside the associated area. This
value will be indicated as µ(n).

A. Density based patrolling

Assume the searcher is located at node n∗. Then for
every node n the following quantity d(n) = µ(n)/A(n) is
computed. The ratio measures Density, i.e., it estimates the
expected number of intruders per surface unit. To account
also for travel costs, normalized densities and normalized
travel times are linearly combined:

J1(n) =

[
γ

d(n)

maxn′∈T d(n′)
− (1−γ)

T (n∗, n)

maxn′∈T T (n∗, n′)

]
where T (n, n∗) is the travel time and T is the set of nodes
in the PQ. The agent then will move and sense to the node
maximizing J1, i.e., n = arg maxn J1(n).

Note that the same approach can be used in the uniform
case, provided that one substitutes d(n) with φ(n), given that
the two coincides in the uniform case.

B. Weighted density based patrolling

The second strategy we consider is similar to the previous
one, but biases the effort towards nodes associated with a
higher loss. In other words, if two nodes have the same
density d, the patroller shall consider first the one with a
higher loss in order to minimize the penalty it pays. The
product d(n) · l(n) biases the search too much. Instead,
we partition the search area in k classes and associate and
importance factor related to the loss to every class. Then,
after d(n) is computed as for the previous strategy, these
values are rescaled according to the importance factor (hence
the name Weighted Density). The function J2 is then defined
as J1 above, with the difference that each density d(n) is



multiplied by w(n). In the following, we opt for k = 2
classes. The first class has w(n) = 1, whereas the second
has w(n) = 0.8. In order to assign nodes to classes, we sort
all nodes by decreasing values of l, and we assign the first
25% to the first class, and the remaining to the second class.

C. Hybrid patrolling

Finally, we propose a hybrid strategy mixing the clas-
sic lawn mower3 sweep pattern with the weighted density
strategy we just presented. In other words, the searcher
alternates phases where it moves and senses the environment
using the sweep strategy, with phases where it uses the
computed posterior and the loss function to drive its sensing
efforts. The rationale behind this strategy is to implement a
strategy where the searcher first performs a quick gross-grain
reconnaissance of the environment to identify regions that are
likely to have been attacked, and then spends time to remove
the intruders before going back to a new sweep round.
Evidently, by considering different criteria for switching
between these two behaviors, a continuum of strategies exist.
A systematic investigation of these criteria is beyond the
scope of this paper and left for future investigation. In this
paper, we consider a single strategy where the searcher
equally splits its time between sweeping and searching using
weighted density. While sweeping, the searcher restricts
itself to a regular grid whose resolution is coarser than the
maximum resolution achievable with the PQ. In this way
a complete sweep of the environment can be completed
relatively quick. Another reason to consider the Hybrid
Search is to assess the value of a strategy that partially
exploits the hierarchical structure and partially commits to
a uniform representation.

D. Absence of undetected intrusion

In this subsection, we show how the Density strategy guar-
antees the absence of undetected intrusions. This property
implies that each intrusion is always found in a finite time
or, alternatively, that no intrusion can stay in the environ-
ment undefinitely without being discovered. Notice that this
property does not guarantee to clear the environment, i.e.,
having no active intrusion after some time.

We present the results for the uniform grid because it is
simpler, and the generalization to the hierarchical structure
just follows by considering a careful extension. However,
in order to do so one has to slightly alter the function J1

formerly defined in order to properly break ties that can
emerge in pathological (and unlikely) cases. For this purpose,
assuming that two cells sharing an edge have distance 1, it
is useful to introduce the set T1(m) = {n ∈ A | T (m,n) =
1}. Note that |T1(m)| ≤ 4 when considering Euclidean
distances between cells. The modified strategy is given by
the following definition.

3The lawn mower pattern is a classic search strategy where the searcher
divides the search domain in a regular grid and then starts from the top
left corner, moves all the way down, then moves one column to the right,
moves all the way up, and so on. When the grid is over the searcher moves
back to the beginning and restarts.

Consider the situation where the patroller is currently in
cell m and it determines that according to J1 the next cell to
be visited is n ∈ T1(m). Then, it discards n and rather visits
the cell in T1(m) that it has not visited since the longest
time (this could indeed be n, but it can also be different). A
policy implementing this paradigm is said to be round robin.

Theorem 1: Consider the round robin version of the den-
sity based search used on regular grids. If pc 6= 0 for
every cell in A and α, β 6= 0.5, then each intruder will be
eventually found.
Proof Sketch: Assuming that sensors are informative4, i.e.,
α, β 6= 0.5, if an intruder is present in cell c and the number
of times c is visited is unbounded, then it will eventually be
found and removed based on the decision criterion given in
Eq. 3. Hence, the proof is equivalent to showing that every
cell is visited an unbounded number of times. Without loss
of generality, assume there is exactly one cell c that is not
visited an unbounded number of times, and let m be a cell
such that T (m, c) = 1. Therefore, m is visited an unbounded
number of times and let us consider the decision taken by
the agent after it visits m. If ∀a /∈ T1(m) J1(c) > J1(a),
then the agent will pick c rather then any a. This condition
is equivalent to the following:

γ
φ(c)

φmax
− (1− γ)

T (c,m)

Tmax
> γ

φ(a)

φmax
− (1− γ)

T (a,m)

Tmax
.

Through algebraic manipulation it is possible to show that
the inequality is true when

φ(c) > 1− 1− γ
γL
√

2
(
√

2− 1)

where we used the hypothesis T (c,m) = 1, we assumed the
worst case φ(a) = 1, and we indicated with L

√
2 the length

of the diagonal of A. Because of they hypothesis pc > 0
and of Eq. 2, limt→∞ φ(c) = 1 and therefore the previous
condition is eventually verified so when in m the agent will
prefer c versus a /∈ T1(m). Finally, note that the round robin
hypothesis guarantees that c will be eventually selected even
if there exits cells in T1(m) giving a higher value for J1. 2

VII. EXPERIMENTAL RESULTS

A battery of 100 benchmarks has been designed to assess
the performance of the hierarchical patrolling strategies we
presented in Section VI5. Each benchmark consists of a
sequence of attacks in a square grid with 256×256 =65536
cells. The arrivals of attacks in the area to be patrolled
is distributed in time and space. Attacks are generated
according to a Poisson process with exponential interarrival
times characterized by λ = 1/95. Attacks are distributed in
space according to the bidimensional probability distribution
displayed in Fig. 2. Note that this probability distribution
has the same shape of the loss function, i.e., attacks are more

4A sensor with error rate larger than 0.5 is still informative, i.e. one may
consider the complement of the value it returns. The only case to avoid is
α, β = 0.5 because in such case the reading is unrelated to the content of
the cell.

5Matlab R© code and datasets used in this section are available on
http://robotics.ucmerced.edu.



Fig. 2. Probability density for the attacks locations in the patrolled area.

likely to occur in regions associated with a higher loss. Every
benchmark consists of up to 75 attacks, but this information
is not known to the patroller. Finally, every search strategy
is evaluated over a time horizon with 60000 time steps. Note
that a single sensing operation takes 1 time step, and moving
between two points p1 and p2 takes time d||p2 − p1||2e.

Preliminarily, we have solved every benchmark with an
optimal patroller. The optimal patroller is an idealized
patroller that is immediately notified about the location of
an attack as soon as it arrives in the environment and is
not affected by any error. At each arrival time, the optimal
patroller updates the list of active attacks to clear and
computes the optimal plan6 aiming to remove all intruders
in the area while minimizing the overall loss. Evidently, the
optimal patroller operates under very favorable conditions,
i.e., it is not required to discover intruders by using noisy
sensors. However, such abstraction is useful to assess the
performance of the more realistic agents we consider. We will
perform comparisons using the competitive factor, namely
the ratio between total penalties accumulated by the optimal
patroller and a patroller using some strategy, respectively.

A. Uniform Grid

In this subsection we discuss experiments with the uniform
environment representation. By showing these results we aim
at giving insights about the challenges of online patrolling
with a uniform grid and providing a comparative baseline
for the hierarchical case.

The strategy defined in Sec. IV (denoted as Greedy) is
compared with other three strategies called Sweep, Random
and Density, respectively. Sweep and Random are strategies
that plan just considering the environment topology, i.e., they
do not maintain any posterior. The first one simply executes
a lawn mower pattern while the second one randomly se-
lects the next sensing location randomly picking from the
adjacent ones with a uniform distribution. To compensate

6This problem is in general hard to solve. However, the idealized
patroller we consider is endowed with the ability to solve it instantaneously.
Practically, this is obtained by stopping the clock computing the loss while
the patroller solves the problem. Note also that, because of the spacing in
time of the arrivals, the optimal patroller repeatedly solves modestly sized
instances of the DTRP, therefore this problem is solvable.

for their poor planning principles, these two strategies are
endowed with error–free sensors. The Density strategy is
the one presented in Sec. VI-A adapted for the uniform
grid case. To keep a correspondence with the hierarchical
scenario, we consider the uniform grid as a constraint over
altitude and resolution (given that the maximum resolution
resides in a 256 × 256 grid). More precisely, a patroller
executing a mission over a grid of edge L is equivalent
to a patroller using a hierarchical representation constrained
to depth 1 + log4(L2) (recall that the root is assumed be
at depth 1). For space reasons, we limit to present results
obtained on a 32× 32 grid.

Fig. 3 depicts the trend of the average penalty accumulated
during the mission. Random and Sweep seem to show a
good trend in the first part of the mission. This is mainly
due to the fact both start in an area with high loss and
are equipped with accurate sensors. Afterwards they tend to
diverge and conclude, as expected, obtaining the two lowest
performances.

An interesting comparison emerges between Greedy and
Density. Surprisingly, the last one obtains the best perfor-
mance at the end of the mission. However, by looking at
how the penalty evolves in time, it can be noted that in the
first part of the mission Greedy prevails. The reason behind
this is that, as time passes, the attacks at some point stop,
thus deviating from the assumption of Poisson arrivals. Then
Greedy strategy achieves the best performance while arrivals
adhere to the hypotheses, and deteriorates later on.
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Fig. 3. Average penalty during missions on the uniform grid.

Tab. I reports competitive factors w.r.t the optimal pa-
troller. As it can be seen performance are very low. When
moving on a uniform grid of edge L, the distance between
two adjacent cells is 2(log4(2562)−log4(L2)). This increases the
penalty accrued when moving between cells.

B. Hierarchical Grid

Next we illustrate the performance of the three hierarchical
patrolling strategies and we contrast their performance. Fig. 4
shows the average number of nodes in the PQ while the
mission evolves. This dataset shows the average for the
Weighted Density strategy but similar trends are observed
for the others. The important aspect to observe is that even



Uniform Grid
Density 850
Greedy 959
Sweep 1007

Random 1429

Hierarchical Grid
Density 43

Weighted Density 36
Hybrid 96

TABLE I
AVERAGE RATIOS BETWEEN THE LOSS ACCRUED BY THE VARIOUS

STRATEGIES AND THE OPTIMAL PATROLLER.

though the patrolling effort continues for an extended period
of time, the size of the tree remains bounded. To put the
numbers into perspective, one should consider the fully
expanded PQ would have 65536 leaves.
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Fig. 4. Average number of nodes in the PQ as the mission unfolds.

Fig. 5 shows the loss accrued by the three patrolling strate-
gies while solving the 100 benchmarks. It can be observed
that Weighted Loss is the best, followed by Density. The
Hybrid method instead performs significantly worse. This is
justified by the fact that, while the patroller sweeps, it does
not eliminate intruders, and the penalty accumulated in that
stage offsets the advantage it may gain by quickly identifying
areas where intruders entered. Finally, in Tab. I we show
the competitive factors for the hierarchical strategies. It can
be seen that when compared with the uniform strategies
hierarchical methods achieve large advantages. A companion
video shows an example patrolling mission, with the left
panel illustrating the propagated posterior and the right panel
offering a top view indicating the position of the patroller and
the locations of intruders.

VIII. CONCLUSIONS

In this paper we have considered the problem of on-
line patrolling using our recently introduced probabilistic
quadtree representation. The online patrolling problem is
mostly similar to the recently introduced persistent patrol
problem, but it considers the additional complications arising
from faulty sensors. For the hierarchical case we have con-
sidered three different myopic strategies. While these may
seem heuristic, one should recall that we are dealing with
a problem that is easily reduced to the DTRP problem and
therefore does not lend itself to efficient optimal solutions.
Our simulation results show that the hierarchical representa-
tion largely outperforms uniform ones, thus corroborating
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Fig. 5. Accrued loss by the hierarchical patrolling strategies when solving
the 100 benchmarks (Red: Density; Blue: Weighted Density; Black: Hybrid).

a result we already outlined for the simpler problem of
search. Moreover, the use of a hybrid strategy mixing ideas
coming from uniform representations with the hierarchical
one showed to be inferior to the purely hierarchical approach,
thus confirming the goodness of the latter. Currently, we are
working to implement the presented algorithms to control
an AirRobot equipped with a nadir camera engaged in a
patrolling mission in a rural area.
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