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Abstract— Appearance based maps are emerging as an im-
portant class of spatial representations for mobile robots. In
this paper we tackle the problem of merging together two or
more appearance based maps independently built by robots
operating in the same environment. Noticing the lack of well
accepted metrics to measure the performance of map merging
algorithms, we propose to use algebraic connectivity as a metric
to assess the advantage gained by merging multiple maps. Next,
based on this criterion, we propose an anytime algorithm aiming
to quickly identify the more advantageous parts to merge. The
system we proposed has been fully implemented and tested
in indoor scenarios and shows that our algorithm achieves a
convenient tradeoff between accuracy and speed.

I. INTRODUCTION

The use of multiple cooperating robots is now mainstream,
with applications found in many diverse areas. Multiple
robots bring benefits like increased robustness through re-
dundancy, decreased time requirements to solve problems,
and spatial distributedness. Along with these advantages
come also algorithmic challenges because of the necessity
to extend single robot solutions to the multi-robot domain.
Among these problems, we have in the past worked on
the map merging problem, i.e. the problem of combining
together various partial maps produced by numerous robots
operating in the same environment [2], [4]. Other solutions
were proposed in [11], [21], a sign of increasing interest in
this area. Note that map merging is an incremental and online
process, i.e. in general, maps are not necessarily merged
together when the mission is over, but rather while they are
still being built. For example, robots exchange and merge
their maps when they are within communication range [14],
but during the remaining part of their mission they operate
independently and possibly continue to improve their spatial
models individually. Past research dealing with map merging
has mostly focused on metric or topological maps.

In this work we extend this line of research by con-
sidering the problem of merging appearance based maps.
These spatial models are gaining importance because images
offer a natural way to exchange information between robots
and humans. Informally speaking, an appearance based map
consists of a graph where every vertex is associated with an
image, and edges are added between similar images. Figure
1 shows a simple example.

The problem of merging maps together goes hand in hand
with the problem of evaluating the quality of a map. This
challenge is far from being solved even for more traditional
approaches (e.g. metric or topological), as witnessed by
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Fig. 1. A sample appearance map with edges inserted between sufficiently
similar images is shown.

recent special issues and projects devoted to robot bench-
marking [17]. In this paper we address these problems jointly,
i.e. we propose a metric and introduce a merging algorithm
that is then evaluated based on the metric. Our contributions
are the following.

• We analyze the use of algebraic connectivity as a metric
to determine the gain obtained by merging multiple
maps together. Our findings corroborate that algebraic
connectivity is a good metric for this purpose.

• We propose an anytime algorithm to merge two (or
more) appearance based maps. The algorithm aims to
quickly identify edges leading to large gains in terms of
the metric outlined above. The reader should note that
the problem of identifying edges leading to the largest
gain is known to be NP-hard [18], and therefore one
has to necessarily look for a suboptimal solution.

• The algorithm and the metric are experimentally vali-
dated by merging appearance based maps autonomously
built by a mobile robot navigating indoor. Our results
show that the merging technique offers a convenient
tradeoff when compared with the brute-force algorithm
eventually achieving the best possible merging within
our framework. More precisely we observe a 10-90
ratio, i.e. by spending only 10% of the time it is possible
to get about 90% of the benefit.

The remainder of the paper is organized as follows. In
Section II we address related work. Next, in Section III the
general structure of the framework used for appearance based
maps is presented. Algebraic connectivity to measure the
quality of merged maps is presented in Section IV, and the
proposed map merging method is introduced in Section V.
Finally, in Section VI, we present an experimental evaluation



of the algorithm and conclude the paper with final remarks
and future work in Section VII.

II. RELATED WORK

The problem of robot mapping and localization using
visual sensors has generated enormous interest thanks to
progress in sensor technologies and computer vision re-
search. Solutions based on triclops camera systems [25],
omnidirectional cameras [3], [5], and monocular cameras
[9] have been proposed. Among them, systems based on
monocular cameras provide a cheap solution by utilizing
a ready to use tool to exchange information between users
and robots. However, many of these systems embed metric
information extracted either by means of odometry data or
multiview geometry in case of multiple cameras. Fraundorfer
et. al. [9], targeting systems where there is no odometry
available or odometry is very difficult to estimate as in human
motion, presented an image based localization and mapping
solution. They build an appearance based map1 using images
from a monocular camera. Under this paradigm, mapping
is reduced to identifying edges between similar images,
whereas localization is defined as the problem of finding
the image most similar to a query image. This setup takes
advantage from state-of-art solutions to extensively studied
information retrieval problems.

A common step in most content-based image retrieval
algorithms is to discover pairs of matching images using
local feature matches, and organize these results into a
graph structure. Then, given a query image the graph is
searched for the most similar one. The seminal paper by
Sivic and Zisserman [26] demonstrates an efficient image
search algorithm by using a Bag of Words (BoW) framework
where images are categorized by the set of words that they
contain and their frequencies. Similar to [20], the authors
generate a dictionary of visual words offline by clustering
descriptors from a training set. Due to its speed and accuracy,
the BoW framework is extensively used for image based
mapping problems. In [15] indoor localization based on the
BoW idea is implemented, where each feature is treated as
a single word in the dictionary. Kang et. al. [12] introduce
an additional filtering level in which a small set of images
returned by the standard voting process is re-evaluated and
new similarity weights are learned from this small set,
rather than from the whole database. An alternative approach
is demonstrated in [1] which dynamically constructs the
dictionary. While this dynamic approach allows images with
features not represented in the training to be recognized, it
can only accommodate a few thousand images for real-time
performance. Hence, for systems with real-time performance
requirement, offline training methods are adopted and their
efficiency is shown [22] for very large (1M+) image collec-
tions.

Among these solutions for appearance based mapping and
localization, only a few of them proposed ideas about how

1From now on we will refer to image based maps in which no metric
information is used as appearance based maps

the system can be extended to accommodate multi robots
and how maps built by different robots can be merged. Ho
and Newman [10] propose a system in which an algorithm
to identify matching subsequent images between two maps
is implemented. They process the similarity matrix built by
pairwise comparisons of all images and apply a modified
version of Smith-Waterman algorithm [27] to find local
alignments. The results of merging small maps have been
shown. One disadvantage of the method is that merging
procedure does not start until after the similarity matrix
is built by pairwise comparisons of all images and local
alignments are found. Hence, the algorithm’s performance
suffers as the number of images increases.

III. APPEARANCE BASED MAPS

An appearance based map is an undirected weighted
graph, G = (V,E), in which each vertex2, v ∈ V , represents
an image. An edge, eij ∈ E, connects two distinct vertices
vi, vj , whenever the associated images are sufficiently sim-
ilar, according to a given similarity metric. A frequent way
to define similarity between two images is to extract salient
features from each image and count the number of common
ones. The number of matching features is used as a measure
of similarity and is then set as the weight wij of the edge
eij between vi and vj .

Our BoW implementation uses a modified version of
the image search engine by Sivic and Zisserman [26] due
to its efficient matching process and scalability. A set of
robust local image features (SIFT) characterizing the scene
perceived is extracted from each image and quantized into
visual words. Quantization is obtained by k-means clustering
performed on the descriptors from a number of training
images. The collection of these visual words is the dictionary
for the BoW.

With the aim of testing our algorithms in indoor en-
vironments, we trained our system with over 20 million
SIFT features extracted from random indoor images collected
from online image repositories (e.g. [23], [16], [24]) and we
experimentally verified that 50K words (clusters) perform the
best for our purposes. Features from random images are used
as the basis of our dictionary and the training dataset contains
no images from the environment in which mapping and
localization tests occur. Despite this, robots preloaded with
this static dictionary perform mapping and localization tasks
successfully. In addition to the list of words, the dictionary
also holds an inverted index that stores the appearance of
each word among all images. An appearance object contains
the feature’s x and y pixel coordinates in the image plane
along with the pointers to the vertices the feature belongs to.

A. Localization

We will first describe the localization algorithm, which
will be needed later on when solving the merging problem,
assuming the map has already been built. Localization in
appearance based maps is the problem of finding the most

2Throughout the paper, vertex and image will be used interchangeably.
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Fig. 2. Overview of dictionary learning, map building and localization
procedures are presented.

similar image to a query image, Iq . Let Fq be the set of
m features associated with Iq . First, each feature fqi ∈ Fq

is matched to the closest word with respect to L2-norm in
the dictionary. Since in our implementation SIFT features
have 128 dimensions, finding the closest cluster center is
a computationally expensive process. Kd-trees provide no
speedup over exhaustive search for spaces with 10 or more
dimensions for exact solutions. Thus, striving for real-time
performance, we used the approximate nearest neighbor
solution presented by Muja and Lowe [19].

With the assignment of all features to their closest words,
we build a sparse appearance vector, vq , which holds the
appearances of each word in the query image. This vector
is then used by a voting schema in order to find images
with similar word frequencies. Voting works as follows. Each
word appearance casts a vote for all images containing the
same word. Then, similarity between the query image, Iq ,
and a target image, Ik, is given by

Sq
k =

∑
0<i<m
0<j<n

α(fqi , f
k
j )

where Fk =
⋃

0<j<n

fkj denotes the extracted features from

image Ik. α is the voting function defined as

α(fi, fj) =

{
1 vq(fi) = vk(fj)
0 otherwise

where v denotes the appearance vector, and given a feature it
returns the index of the associated word. Note that it has been
shown that this approach outperforms other methods [6]. At
the end of the voting process, the image Im receiving the
most votes is selected as the strongest candidate, where m
is defined as

m = argmax
i

Sq
i

In order to eliminate possible outliers, a robust estima-
tion of the multi-view geometry that links these images is
computed utilizing a RANSAC algorithm as described in
[6]. Feature matches supporting the computed fundamental
matrix are also tested for spatial consistency as described in
[26]. Based on the idea that matching regions in compared
images should have a similar spatial agreement, the algorithm
eliminates matches not complying with the spatial layout of
the neighboring matches in query and target images. If the
number of remaining matches exceeds a threshold Tmin the
image is considered a match. We set this threshold to the
minimum number of feature matches required to robustly
navigate between two images using the navigation algorithm
we presented in [6]. Figure 2 shows an overview of the
method described thus far.

B. Mapping

Mapping, defined as the process of possibly adding a new
image to an appearance based map, starts with localizing
the new image within the existing map. The localization
algorithm returns a set of similar images and their similarities
in terms of number of common features. If the new image
and the strongest candidate share a number of features that
is larger than some threshold Tmax, they are considered
too similar and, with the idea that its insertion will not
improve the quality of the map, the new image is ignored.
Otherwise, a new vertex representing this image is inserted
in the map and new edges between this vertex and other
vertices symbolizing identified similar images are created. By
rejecting the insertion of similar images into the map size of
the map is prevented from increasing unboundedly in cases
where the robot revisits the same area many many times.
Figure 3 shows some snapshots of the process of mapping
our robotics laboratory. The system we described can build
appearance based maps in real-time. A non-optimized C++
implementation of mapping runs in real-time on our P3AT
robot equipped with a 2GHz CPU. It takes around 0.6
seconds to process a single image of size 320×240, including
image capturing, feature extraction, global localization, and
map update. The framework also enables robust navigation
without the need of any metric information. For the details
on this navigation algorithm we refer the reader to [6].

IV. QUALITY METRIC

In spite of their recent introduction, several appearance
based mapping algorithms have been proposed, as presented
in Section II. However, a formal quality metric for appear-
ance based maps has not been adopted yet. To date, for
most problems it is impossible to compare two different
solutions according to a standard criterion, and it is therefore
challenging to evaluate the real impact of different ideas
proposed in this field. With this motivation, we proposed
a set of task-based performance evaluation criteria in [7] to
measure the quality of appearance based maps independently
of the algorithm used to build them.

Measuring the performance of map merging algorithms,
however, is different from the evaluation of a single appear-



Fig. 3. The figure shows some snapshots of the GUI taken while the robot
builds the appearance based map using the BoW method we described. Note
that the occupancy grid map overlaid with images is shown for display
purposes only, but neither the grid map nor image coordinates are used by
the robot.

ance based map. The main attribute required for a merging
algorithm to focus on is entanglement. Entanglement in this
context can be defined as the amount of effort needed to
split the merged map back into two maps. With this respect,
the quality of the merging should be in positive correlation
with the entanglement of the map. Edge connectivity is one
of the commonly used metrics to measure the connectivity
of graphs and is defined as the minimum number of edges
which need to be removed to disconnect the graph. However,
in a map merging scenario where vertices are preserved and
interconnecting edges are added, this metric is inapprorpriate.
For instance, for a connected graph with one vertex of degree
1, edge connectivity is computed as 1. Even tough inserting
edges will improve the graph’s overall connectivity, its edge
connectivity will stay the same unless one of the inserted
edges is connected to that specific vertex.

Based on this and similar observations, we maintain that
to assess the quality of map merging in the appearance-
based map domain the algebraic connectivity of the graph
is a better measure. Introduced in the seminal work by
Fiedler [8], algebraic connectivity is a spectral property of the
graph widely used to measure robustness and connectivity.
It carries more information about the structure of the graph
and therefore, can be a more useful measure than edge
connectivity. For instance, edge connectivity of all trees is
equal to one, whereas the algebraic connectivity of a star is
higher than that of a path.

Let G = (V,E) be an undirected graph with n vertices.
The Laplacian matrix L(G) is defined as L = D−A where
A is the adjacency matrix and D is the n × n diagonal
matrix of vertex degrees. The second smallest eigenvalue of
L, λ2(L), is called algebraic connectivity. Various proper-
ties of algebraic connectivity have been outlined [8]. For
example λ2(L) > 0 if and only if G is connected. It
is also known that algebraic connectivity defines a lower
bound on both the vertex (kV ) and edge (kE) connectivity.
Additionally, algebraic connectivity is bounded from below

by the minimum vertex degree and the diameter of the graph,
and therefore edges that bolster connections between weakly
connected vertices and connect distant vertices yield larger
improvements in algebraic connectivity. More importantly,
λ2(L) is a monotonically increasing function of the edge
set, i.e. if G1 = (V,E1) and G2 = (V,E2) are such that
E1 ⊆ E2, then λ2(L1) ≤ λ2(L2). Therefore, the more
edges the merging algorithm inserts, the more connected the
graph and the greater algebraic connectivity will be. Finally,
algebraic connectivity is related to the sparsity of cuts in
the graph. That is, a graph with large algebraic connectivity
cannot have very sparse cuts. All these properties nicely
relate to the characteristics that a quality measure for map
merging algorithms should have. It therefore appears that
algebraic connectivity is a promising criterion to evaluate
the performance of merging algorithms and we embrace it
for the remaining part of this paper.

V. MERGING APPEARANCE BASED MAPS

Let m1 = (V1, E1) and m2 = (V2, E2) be two appearance
based maps possibly created by two robots exploring the
same environment, and without loss of generality let |V1| ≥
|V2|. Similarly, for simplicity we focus here on merging
two maps together since merging of multiple maps can be
achieved by merging them in pairs. Given m1 and m2, we
would like to compute the merged map m12 = (V12, E12)
where V12 = V1 ∪ V2 and E12 = E1 ∪ E2 ∪ Einter.
At this point we are mainly interested in connecting these
maps by inserting new interconnection edges, Einter, rather
than compressing maps by merging common vertices. The
motivation behind this idea is that connectivity plays a key
role for robots in order to utilize maps created by other
robots. With no connectivity between its own map and the
new one, a robot will not be able to take advantage from
any vertex in the map produced by other robot(s). Therefore,
in map merging the emphasis is in generating new edges
between V1 and V2. Even though throughout the paper we are
addressing the problem from a single robot’s perspective, the
proposed map merging method can be easily distributed so
that the workload can be shared between two robots merging
their maps.

The simplest solution is the brute-force approach where
the largest map m1 is kept fixed and vertices from m2 are
sequentially localized in it. Identified edges are then inserted
after their geometric consistency is verified as explained in
Section III-A. This algorithm can be considered optimal in
the sense that it eventually identifies all edges that can be
added between m1 and m2. However, its performance is
completely unsatisfactory from the point of view of required
time. Nevertheless, it provides a useful yardstick to evaluate
the performance of the solution we propose.

Motivated by the observation that many of the vertices
make marginal contributions to algebraic connectivity, while
just a few yield large gains [13], we aim to reduce the
time spent on validating and inserting non-critical edges.
Therefore, we propose QuickConnect, an anytime appearance
based map merging algorithm that adopts a more selective



edge insertion approach by trying to process first vertices
giving large gains in algebraic connectivity. As mentioned
in the beginning, the problem of identifying edges giving
the largest increment is NP-hard, and therefore the method
we propose is necessarily suboptimal.

The algorithm, whose pseudo-code shown on Algorithm
1, consists of two phases: exploration (Line 1-10) and
refinement (Line 11-14). In the exploration phase the goal
is to quickly search the map for the most similar images
and add at most one edge per vertex. The idea is to create
only the essential connections between most similar vertices,
and postpone the validation of the remaining edges. Once all
similar vertices have at most one edge inserted, the algorithm
moves to the second stage and processes the postponed list
of edges. This way, QuickConnect implements an anytime
algorithm where most of the connectivity will be captured
in the early stages of the merging process, and remaining
connections are discovered only if the algorithm is left to
run for extended periods of time.

Algorithm 1 QuickConnect(Map m1, Map m2)
1: W ← InitializeQueue(m2)
2: S,L← null
3: repeat
4: w ← W .pop front()
5: V ← getVotes(m1,m2,w)
6: E ← update(S,V )
7: if !E.empty() then
8: L← processEdges(E,W ,L)
9: end if

10: until W .empty()
11: L← sort(L)
12: foreach e in L do
13: insertEdge(e)
14: end for

The exploration phase (Algorithm 1 Line 3-10) is based
on the incremental construction of the similarity matrix S,
where Sij gives the number of votes received by image pair
Ii ∈ m1 and Ij ∈ m2. It starts with creating a priority queue
of words, W , that contains words appeared at least once
among the images from m2 (Algorithm 1 Line 1). Initially,
all words have the equal priority.

For each word in the list it computes the votes similarly
to the voting schema used in the localization procedure
described in Section III-A. Images in m2 which contain this
word cast a vote for all images in m1 that also have this
word in their appearance vectors (Algorithm 1 Line 5). The
similarity matrix is updated with the addition of new votes
(Algorithm 1 Line 6) and a list of candidate edges, E, is
identified from the updated cells that reach the minimum
similarity threshold Tmin.

Insertion of edges occurs as they are incrementally re-
vealed. As soon as a matrix entry Sij identifies a new
couple of vertices vi, vj with vj ∈ m2 not processed yet,
the algorithm inserts a new edge after geometric verification
and its source vertex is suspended from inserting any more

Algorithm 2 processEdges(List E, Queue W , List L)
1: foreach e in E do
2: if !isProcessed(e.source) then
3: insertEdge(e)
4: setProcessed(e.source, true)
5: Q← getWords(e.source)
6: W .reorder(Q)
7: else
8: L.push back(e)
9: end if

10: end for

edges until the end of exploration phase (Algorithm 2 Line 3-
4). All other identified edges sourcing from these suspended
images are kept in a list, L, to be inserted in refinement
stage (Algorithm 2 Line 8). This process is summarized in
Algorithm 2.

Additionally, in order to improve the performance of ex-
ploration, we alter the direction of search using the identified
similar images. The motivation is that a word seen by an
image is highly likely visible by its adjacent images so by
casting votes from this word we can identify new edges
sourcing from these neighbor vertices. In order to implement
this idea, once a similar image is found, we increase the
priorities of the words it contains (Algorithm 2 Line 6) so
that if they are not processed yet, they move to the top of
the word priority queue and become the next in the list to
be processed.

When all the words are processed and the similarity matrix
is completely filled, the algorithm initiates the refinement
stage (Algorithm 1 Line 11 - 14). Exploiting the fact that the
minimum vertex degree provides a lower bound on algebraic
connectivity, we aim to improve the minimum vertex degree
(and then algebraic connectivity) early in the map merging
process. Therefore, identified edge candidates are sorted with
respect to the minimum degree of the two vertices it con-
nects. Finally, edges are inserted sequentially starting from
the ones connecting vertices with least number of adjacent
vertices. Figure 4 shows the details of the map merging
process implemented by the algorithm just described.

VI. RESULTS

In this section we present a comparative evaluation of
the proposed map merging algorithm. Brute-force merging
sets the baseline for our comparisons because it eventually
reaches the highest possible algebraic connectivity of the
merged map. However, the trend to reach the maximum
strongly depends on the sequence it follows in selecting
couple of vertices to try to add edges between them. In fact,
algebraic connectivity may quickly increase if the algorithm
finds good vertices and edges early in the process, but it
may also be the case that good attempts are made only later
on in the process. Therefore, if the goal is to assess the
performance of brute-force using an anytime approach, the
algorithm should be tested on a large set of highly diverse
maps to merge. On the other hand, having only a limited



Fig. 4. Two independently built appearance based maps of our laboratory
are shown as blue and green vertices. Similar images from both maps are
identified and maps are connected through the edges, shown in red, between
these images.

number of datasets available, we compare our algorithm
against a randomized brute-force method that randomly
selects couples of images from m1 and m2 using a uniform
distribution, and we consider its average performance over
repeated runs. As an additional term of comparison, we
introduce DegreeMin, a variant of the randomized brute-
force method that samples vertices from m2 with a mass
distribution inversely proportional to their degree. The ratio-
nale behind DegreeMin is trying to bias the search towards
vertices with low degrees in order to possibly obtain large
gains in algebraic connectivity.

In order to test these algorithms, various appearance based
maps with a number of vertices ranging from a few hundreds
to several thousands are built by our P3AT mobile robot
equipped with a monocular camera using the map building
algorithm described in Section III-B. Various combinations
of these maps are merged using these algorithms and a
representative sample of these results are shown in Figure
5. Here we present for different map pairs the quality of
merging after 10% of the time required by the brute-force ap-
proach to complete merging. The results for the randomized
algorithms (randomized brute-force and DegreeMin) are the
average of 20 runs. As can be seen, QuickSearch outperforms
the other two methods, reaching above 90% of the maximum
possible algebraic connectivity within 10% of total time. It
is also notable that DegreeMin with its heuristic that favors
minimum degree vertices performs better than randomized
brute-force.

The merging process of the map pair corresponding to
the first column in Figure 5 is shown in Figure 6. Note that
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tion of merged maps are presented for three algorithms: QuickConnect (red,
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all algorithms eventually reach the same maximum algebraic
connectivity by adding all possible edges. However, the
exploration phase inserting only 247 edges in 1.5 seconds
improves the quality up to 96% while it takes around 24
and 40 seconds and 2112 and 3989 edges to reach the same
level of quality for DegreeMin and brute-force respectively.
On the other hand, the refinement stage adds almost 15 times
more edges than the exploration phase to only improve the
connectivity by 4%. Hence, we can conclude that the expo-
ration stage successfully identifies the small portion of edges
that have substantial contribution to algebraic connectivity.
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Fig. 6. Normalized algebraic connectivity as a function of time for the
three algorithms presented. This chart refers to the process of merging a
map, m1, with 1356 vertices with m2 with 610 vertices.

It is also important to note that in its exploration stage
QuickConnect identifies the edges connecting the most sim-
ilar images between two maps. This trend can be seen
in Figure 7, where a closeup view of the aforementioned



merging process is shown. This characteristic of the proposed
algorithm is indeed the main desired property of a com-
pression algorithm that unifies similar vertices in both maps.
Hence, this framework can easily be extended to merge maps
by not only adding new edges but also unifying vertices.
Nevertheless, the problem of merging images described as
sets of features in appearance maps and the effects of such
unification on the quality and robustness of the map in terms
of algebraic connectivity warrants much further investigation.
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Fig. 7. Weights, i.e. similarity of connecting images, of the identified edges
are plotted for three algorithms for the duration of the exploration phase of
QuickConnect.

VII. CONCLUSION AND FUTURE WORK

In this paper we have investigated the problem of merging
appearance based maps, an underexplored topic that is very
relevant in the area of multi-robot systems. Noting that there
is a lack of well established criteria to evaluate the quality of
a merging algorithm operating on appearance based maps, we
have put forward algebraic connectivity and explained why it
is a promising criterion to assess the value of a map merging
algorithm. Starting from this criterion, we have developed
QuickConnect, an anytime algorithm that discovers important
vertices and edges early on during the process. The method
we have proposed has been integrated into an end-to-end
system that creates appearance based maps in real time using
a bag of words approach. The goodness of the method we
proposed has been experimentally assessed by processing
various maps we produced with the aforementioned method,
and we verified that even if stopped early during the process
QuickConnect yields better results.

In the future, we plan to refine this line of research by
considering merging algorithms that not only add novel edges
between the maps being merged, but that also compress them
by removing images that are represented in both maps.
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