
Theoretical Foundations of High-Speed Robot Team Deployment

Stefano Carpin, Timothy H. Chung, Brian M. Sadler

Abstract— In this paper we study the multi-robot de-
ployment problem under hard temporal constraints. After
proposing a model for this task, we consider the simplest
deployment algorithm and we analyze the relationship
between three fundamental parameters, the temporal dead-
line, the probability of success, and the number of robots.
Because an exact analysis of even the simplest algorithm
is computationally intractable, we derive an approximate
bound leading to performance curves useful to answer
design questions (how many robots are needed to get
a certain performance guarantee?) or analysis questions
(what is the probability of success given a certain deadline
and number of robots?) Simulations show that the bounds
are sharp and provide a useful tool to predict team
deployment performance and tradeoffs.

I. INTRODUCTION

A primary tenet of autonomous single or multi-robot
navigation has been safety, for example control architec-
tures often seek strong collision avoidance guarantees
between robots, and between robots and the environ-
ment. This introduces strict constraints whose satisfac-
tion can dictate speed, and in some scenarios results in
stopping and backtracking. However, in some cases it
is desirable to balance risk and reward. For example,
with a team of robots we might accept a probability
of collision or failure for a subset of agents, when
the overall goal(s) may be achieved in a much shorter
time. This approach is more strongly relevant with
smaller platforms whose individual value is low, and
where the physical consequences of collisions may be
relatively inconsequential. Motivating scenarios include
rapid deployment in a building during an emergency, or
distributed information gathering, under a hard temporal
deadline.

When time is of the essence and agents move rapidly,
then failure is more likely to occur. Robots may break
down, get lost, have collisions, and generally fail to
arrive at an intended location in a specified time. In this
scenario the performance envelope is strongly influenced
by the number of agents deployed, the complexity of
the environment, the availability and quality of prior
information, the temporal deadline or goal, and an

Stefano Carpin is with the School of Engineering, University of
California, Merced, CA, USA. E-mail: scarpin@ucmerced.edu.

Timothy H. Chung is with the Naval Postgraduate School, Monterey,
CA, USA. E-mail: thchung@nps.edu.

Brian M. Sadler is with the Army Research Laboratory, Adelphi,
MD, USA. E-mail: brian.m.sadler6.civ@mail.mil.

associated target probability of success for the overall
mission.

To analyze this problem, we focus on the following
scenario. A given environment has a number of relevant
locations, and we wish to deploy a team whose end goal
is to put an agent into each of the relevant locations.
Now, how many agents should be deployed to ensure
that, with high probability, at least one agent reaches
each relevant location within an assigned temporal dead-
line T ?

In this paper we lay the foundation to analytically
model this type of problem (Section II), and derive
performance curves capturing tradeoffs in operational
tempo, number of agents, and environmental complexity.
We model the environment as a graph with associated
functions S that describe the probability of navigating
an edge as a function of time, and that are mono-
tonically increasing with time towards probability one.
We consider a simple deployment strategy (Section III,
Section IV) that is scalable and robust (in a sense
to be described later). With this, we can analyze the
probabilistic tradeoffs. We find performance bounds,
and show through simulation that the bounds are tight
(Section V). The paper ends with a discussion of related
work (Section VI) and conclusions (Section VII).

II. PROBLEM FORMULATION

The problem can be formalized as follows. K robots
are deployed in an environment with N interesting
locations. The goal for the robot team is to spread in
the environment as fast as possible so that eventually,
with high probability, at least one robot reaches each of
the N locations. Evidently, K ≥ N . Numerous details
need to be finalized to formally study this problem.
The following list introduces some of them, together
with some notation.
Traversability. Robots cannot arbitrarily move between
any two locations. Connectivity between locations is
modeled with a graph G = (V,E) with N vertices
representing the relevant locations. Let M be the
number of edges, and let the graph be undirected. An
edge between vi and vj means that it is possible to
directly move between these two vertices. Because
of this association, in the following the terms vertex
and location will be used interchangeably. Note that
starting from an occupancy grid map representing a
given environment, we can automatically extract the

corresponding graph, as described in our former work
[4].
Velocity/Safety tradeoff. When moving from vertex vi
to vertex vj , a robot should decide its own velocity.
The slower it moves, the more likely it is to reach its
target vertex vj . On the contrary, when the robot moves
very fast, it is more likely to incur some event (e.g.,
bumping into a wall) preventing it from successfully
reaching its destination. This relationship is modeled
by a function S : R+ → [0, 1]. S gives the probability
of successfully reaching a target vertex as a function of
the time spent to navigate there. We assume S(0) = 0
and that its first derivative is nonnegative. Moreover
limt→+∞ S(t) = 1. In general one should assume
that different edges in the graph are characterized
by different S functions. For example, two vertices
representing adjacent rooms connected by a narrow
door should be treated differently from two rooms
connected by a wide corridor. When this more accurate
representation is used, we will use Si (1 ≤ i ≤ M)
to indicate the function associated with a given edge
ei ∈ V . Specific examples for S will be given later.
Homogeneity/Heterogeneity. Robots deployed in the
environment may be different or identical. Identical
here means not only that they have the same abilities
(say they all share the same platform), but also that
they all run the same controller. Alternatively, they
may share the same hardware, but run different control
algorithms, or run on different hardware and run
different controllers.
Communication. Robots may or may not exchange
information before the mission commences or while it
unfolds.
Knowledge. Robots may or may not know the graph G.
When full awareness is not assumed, a wide spectrum
of partial knowledge can be used. For example: it may
be known there are N vertices but information about
edges is not given. Other models can be defined as
well.
Localization. Robots may or may not know their
location in the environment.
Deployment. Initially, all robots may be deployed in a
single vertex or they may start at different locations.

The following two parameters define mission con-
straints:
• Tmax: temporal deadline to complete the deploy-

ment task. This can be a hard deadline, i.e., the
team fails if it does not complete its task before
Tmax, or a soft deadline, i.e., a penalty is payed
for the time spent to complete the deployment after
Tmax.

• Pt: desired (target) probability of success. Recall
that success is defined by the condition that one or

more robots have reached each end goal location
in the environment. Given that the probability of
successfully moving between two vertices is 1 only
in the limit, then because of the given temporal
deadline the probability of successfully completing
the task will be lower than 1. Pt may therefore
specify a lower bound on this value.

In the following we study a specific version of
the problem obtained by fixing the various parameters
described above. For a given environment represented
by a graph G, our goal is to explore the interplay
between K, Tmax and Pt. Relevant questions are the
following. For a given deadline Tmax, how many robots
are needed to obtain a probability of success exceeding
Pt? Alternatively, one may ask what is the probability of
success given that K robots are deployed. The answer to
these questions are of course dependent not only on the
environment G, but also on the deployment algorithm.
We explore these aspects in the following sections.

III. BASIC CASE

We start by considering a situation that can be con-
sidered the simplest. The study of this simple problem
instance paves the way to more complex variants. Let
S be the same for all edges and let the team consist
of fully homogeneous robots all executing the same
control algorithm. Robots do not communicate with each
other, they have full knowledge of the environment, and
know their position on the graph. Robots are initially all
deployed in the same vertex d ∈ V . Let the temporal
deadline Tmax be a hard deadline, i.e., the deployment
effort fails if it is not completed within time Tmax.
For every vertex v ∈ V , let h(v) be the distance
from d measured in hops (i.e., number of edges). The
assumption that all edges share the same function S
is very strong and will be relaxed in the next section.
However, this basic case is useful to gain meaningful
insights. Moreover, if one models the environment with
a very dense graph, i.e., a graph where the distance
between two adjacent nodes is roughly constant, and
the ambient environment is uniform in the sense that
the difficulty in moving between two vertices is more or
less constant, then this model can be applicable.
Based on the above assumptions, the problem can be
solved assuming each robot executes the simple algo-
rithm sketched in Algorithm 1.

1 choose random vertex v ∈ V (uniform selection);
2 compute shortest path sd v from d to v;
3 for each edge along sd v choose travel time t;
4 travel to v according to the computed velocities;
Algorithm 1: The simplest deployment algorithm

Regarding the shortest path (line 2), shortest means
least number of hops, so this can be computed with
Dijkstra’s algorithm. Because we assumed S is the same
for all edges, this will eventually minimize the total
travel cost. Before carrying out a performance analysis
for the whole team, let us first see how the third step
can be solved.

A. Picking a velocity profile

Assume sd v has w edges. How should the robot
choose a velocity for each edge so that the probability
of success is maximized while satisfying the given
deadline? Let t1, . . . , tw be the time spent on each of the
w edges. Our goal is to solve the following optimization
problem:

max
t1,...tw

S(t1)S(t2) . . . S(tw)

s.t. t1 + t2 + · · ·+ tw ≤ Tmax

ti ≥ 0 1 ≤ i ≤ w

Note that the objective function is the probability
of successfully navigating through all edges and is the
product of the individual probabilities (assuming inde-
pendence between edges). Under the assumption that S
is a non-decreasing function of t, it is straightforward
to show that the optimal solution is obtained with t1 =
t2 = · · · = tw = Tmax/w and the value of the optimal
solution (probability of success) is S(Tmax/w)w. The
problem is more complicated if one assumes different
edges are characterized by different functions Si, and
we address this later.

B. Team performance

We now explore the space describing the relationships
between K, Tmax and Pt. The deployment task will
not be successfully completed if at least one vertex v
is not selected by any robot. Therefore the first issue to
consider is how large K needs to be guarantee that, with
sufficiently high probability, every vertex is selected by
at least one robot. This is a classic occupancy problem,
see e.g., [6] or [2].
Given K robots and N locations, let X be the random
variable describing the number of locations not chosen
by any robot. Assuming the selection process is uniform
(each vertex is chosen with probability 1

N), then it is
known that

Pr[X = 0] =

N∑
i=0

(−1)i
(
N

i

)(
1− i

N

)K

.

This formula helps to establish a lower bound on
the failure probability because if X > 0 (one or more
vertices were not selected by any robot) the task can
not be correctly completed. Evidently, Pr[X > 0] =

1 − Pr[X = 0]. So Pr[X > 0] gives a lower bound on
the probability failure.

For example, for a given P ∗t and N , it is possible
to determine which values of K will not guarantee a
success probability of at least P ∗t for the mere problem
of spreading robots out efficiently. Figure 1 shows the
lower bound error trend for N = 10 as K varies from
10 to 50.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

K

E
rr

o
r

lo
w

e
r

b
o
u
n
d

N=10

Fig. 1. Pr[X > 0] as a function of K for N = 10. The error is a
lower bound inasmuch as it models failure due to robots not randomly
spreading out to all vertices. However, the overall mission can also fail
when robots do not manage to reach their selected target.

However, a sharper analysis is possible and needed
because deployment may also fail even when a robot
is assigned to every vertex. Define the following events:
• A: “every vertex is selected by at least one robot”;
• B: “for every vertex v ∈ V , at least one of the

robots that decided to go to v successfully manages
to navigate to v”.

The success of the mission is then the conjunction of
events A and B. The probability that both events occur
can be written as

Pr[A,B] = Pr[B|A] Pr[A]. (1)

We have already computed Pr[A], because Pr[A] =
Pr[X = 0]. Therefore we need to find Pr[B|A]. An
exact computation of this quantity could be, in principle,
addressed in the following way. For given values of K
and N , let SK,N be the set of all assignments of K
robots to N rooms constrained to have at least one robot
per room (i.e., we are conditioning on A). Then we can
write

Pr[B|A] =
∑

s∈SK,N

Pr[B|s,A] Pr[s|A].

It immediately becomes evident this approach is not
practical because SK,N includes an exponential number
of elements. Therefore, rather than trying to exactly
compute this probability, we seek a bound. Let Bi
(1 ≤ i ≤ N) be the event “at least one of the robots
assigned to vi successfully manages to reach it”. Then
B =

⋂N
i=1 Bi. This quantity is in general difficult to

compute because the various Bi are not independent and

so it does not nicely factorize. Instead consider B̄, the
complement of B. This is a failure probability and the
following relationship therefore holds:

Pr[B̄|A] = 1− Pr[B|A] =

= Pr

[
N⋃
i=1

B̄i|A

]
≤

N∑
i=1

Pr[B̄i|A]. (2)

Hence we now need to determine Pr[B̄i|A]. Recall
that h(vi) is the number of hops from the deployment
vertex d to vertex vi. Then, based on the assumption
that velocities are scheduled according to the method
presented in the previous section, the probability that no
robot successfully reaches vertex vi can be computed as
follows. Let n be the random variable indicating how
many robots are trying to reach vi. Then

Pr[B̄i|A] =

=

K−(N−1)∑
k=1

(
1− S

(
T

h(vi)

)h(vi)
)k

Pr[n = k]. (3)

This formula can be explained as follows. First, for
a generic event A, assuming Bi is a partition of the
total space, the total probability theorem states Pr[A] =∑

i Pr[A|Bi] Pr[Bi]. We partition the total space with
respect to the number of robots n electing to reach vi.
Since we are conditioning on the event A (at least one
robot per each vertex), n assumes values from k = 1
to k = K − (N − 1) (note that n cannot be larger
than K − (N − 1) because at least N − 1 robots need
to go to the remaining vertices.) For a given choice of
n = k, the event B̄i occurs when all robots fail to reach
their destination. Given that S provides the probability
of success, the term(

1− S
(

T

h(vi)

)h(vi)
)k

is the probability that all k robots assigned to vi fail
(assuming they act independently.) Now, Pr[n = k]
can be computed considering that n follows a binomial
distribution with parameters K, 1/N conditioned on
assuming values between 1 and K−(N−1). Therefore,
for 1 ≤ k ≤ K − (N − 1) its precise expression is

Pr[n = k] = η

(
K

k

)(
1

N

)k (
1− 1

N

)K−k

(4)

where η is a normalizing factor to ensure probabilities
add up to 1. Finally, given that Eq. 2 provides a lower
bound for Pr[B|A], combining Eq. 2 with Eq. 1 we get
a lower bound for the success probability
How sharp is this bound? This question is in general
hard to answer and depends on how coupled are the

different events B̄i. Stated differently, it depends on how
loose is the bound Pr[A ∪B] ≤ Pr[A] + Pr[B]. So the
bound will be informative when Pr[B̄i ∩ B̄j ∩ . . .] is
small. In a later section we experimentally evaluate how
informative is the bound given by Eq. 2.

IV. DEALING WITH DIFFERENT VELOCITY PROFILES

One of the major assumptions we made in Section III
is that all edges share the same function S expressing the
tradeoff between velocity and probability of success. In
this section we remove this assumption so that each edge
is associated with a possibly different tradeoff function
Si. Under this more general model, given that a robot
intends to move from d to vi, it is not necessarily more
convenient to start computing the shortest path from d
to vi using the number of hops (step 2 in Algorithm
1). In fact, one can easily build a simple graph instance
where this idea does not work. Secondly, once a specific
path sd v has been determined, the approach outlined
in Section III-A does not work anymore. Algorithm 2 is
a revised version addressing these shortcomings, and we
then discuss how its specific steps can be implemented.

1 choose random vertex v ∈ V (uniform selection);
2 Pmin ← 0;
3 for each irreducible path sd v do
4 compute optimal velocity profile p for sd v;
5 let Psucc be success probability of p;
6 if Psucc > Pmin then
7 sbest ← s;
8 pbest ← p;
9 Pmin ← Psucc;

10 end
11 end
12 travel to v along path sbest according to pbest;

Algorithm 2: Deployment algorithm with possibly
different velocity/probability profiles for each edge.

The for loop starting at line 3 addresses the issue
that the shortest path in terms of number of hops is not
necessarily the best in terms of probability of success.
Therefore an exhaustive search over the set of irreducible
paths from d to v is performed. An irreducible path is
here defined as a path without loops.1 Irreducible paths
can be computed in time O(N2).

A. Picking a velocity profile with different Si’s

This subsection parallels Section III-A but considers
the case where different Si’s are associated with the
edges. This is the problem to be solved to implement

1Obviously, for the task we consider the presence of loops in a path
is sub-optimal.

line 4 in Algorithm 2. Assuming sd v has w edges, the
optimization problem we need to solve is the following2

max
t1,...tw

S1(t1)S2(t2) . . . Sw(tw)

s.t. t1 + t2 + · · ·+ tw ≤ Tmax

ti ≥ 0 1 ≤ i ≤ w.

It is convenient to rewrite this problem using the fol-
lowing equivalent formulation:

max
t1,...tw

logS1(t1) + logS2(t2) + · · ·+ logSw(tw)

s.t. t1 + t2 + · · ·+ tw ≤ Tmax

ti ≥ 0 1 ≤ i ≤ w.

Problems like this can be solved in the continuum, but
their solution is difficult. Alternatively, by introducing a
discretization step it is possible to reduce it to a known
combinatorial problem. Let ∆t be a discretization step
for the temporal dimension and let L = bTmax/∆tc
be the new temporal deadline in the discretized space.
The problem is therefore to decide how to allocate the
L time steps on the w edges. In other words, ti ∈ N+

in the discretized space. The problem can be reduced
to the multiple-choice knapsack problem [5] as follows.
Let e1 be the first edge along path sd v . During the op-
timization one can decide to allocate t1 ∈ {1, 2, . . . , L}
time steps to e1. For every possible choice of t1, a
corresponding contribution to the objective function is
readily available, i.e., if t1 = k then its contribution to
the objective function will be logS1(k∆t). Therefore for
edge e1 one can build a set of couples (k, logS1(k∆t))
with 1 ≤ k ≤ L, k ∈ N. Similarly, for the next edge
e2 one can build a set of couples (k, logS2(k∆t)), and
so on. In order to find the maximum for the objective
function we need to pick one integer for every edge,
subject to the constraint that the sum must be not larger
than L. This is precisely an instance of the multiple-
choice knapsack problem, where every edge defines a
class. Using knapsack terminology, for every couple
(k, logSi(k∆t)) k is the weight whereas logSi(k∆t)
is the value. The multiple choice knapsack problem is
NP-Hard but can be solved in pseudo-polynomial time
with a dynamic programming approach.

B. Team performance

In Section V it will be shown that the bound derived in
Section III-B offers a good approximation of the actual

2To be precise, writing S1 is not correct, as this is not the function
associated with e1 but rather the function associated with the first
edge along the path sd v . The same is true for S2, e2, and so on.
However, to avoid introducing further notation we accept this slight
abuse in notation.

deployment algorithm when all edges share the same S
function. It would therefore be useful to derive a similar
bound for the case where different edges are associated
with different Si’s. The reasoning presented in Section
III-B holds also for the case of different Si’s until Eq.
3, where the hypothesis that all edges have the same S
function is used to compute Pr[B̄i|A]. However, a bound
can be inferred as follows. Our goal is to bound from
above Pr[B̄i|A], so that we can further extend the right
hand side of Eq. 2. In other words, if for every i we can
find a value Ci such that Pr[B̄i|A] < Ci, then we can
replace Eq. 2 with

Pr[B̄|A] = 1− Pr[B|A] = Pr

[
N⋃
i=1

B̄i|A

]
≤

≤
N∑
i=1

Pr[B̄i|A] ≤
N∑
i=1

Ci. (5)

Consider a robot going to vertex vi and let us build a
worst case instance to bound the probability of success
from below (and then bound the probability of failure
from above to get Ci). In order to do so, we need to
make a further hypothesis. With reference to Algorithm
2, let us put a bound on the maximum length of the
irreducible paths we consider (lines 3 and 4). More
precisely, indicating again with h(vi) the number of hops
from the deployment vertex d to vertex vi, we constrain
the algorithm not to consider irreducible paths with more
than 2h(vi) edges3. Let us now assume all edges are
characterized by the worst among all the Si functions.
Call this function Sw. Then the probability of success for
a single robot is larger than Sw(T/2h(vi))

h(vi). This is
in fact the probability of the worst case instance, i.e., the
case where the robot has to traverse the largest number
of edges and each edge is characterized by the worst
performance. Given a lower bound on the probability of
success, we can get an upper bound on the probability
of failure, i.e., we can rewrite Eq. 3 as follows:

Pr[B̄i|A] ≤ Ci =

K−(N−1)∑
k=1

(
1− Sw

(
T

2h(vi)

)2h(vi)
)k

Pr[n = k]. (6)

Plugging Eq. 6 into Eq. 5 we therefore derive a new
upper bound for Pr[B̄i|A] and then a lower bound for
Pr[B|A]. From there the same reasoning applied in
Section III-B applies as is, and we conclude with a lower
bound for Pr[A,B].

Two significant issues remain. The first one is the
definition Sw, i.e., the worst among the Si functions.

3While this constraint is introduced primarily to obtain an explicit
bound, this also makes sense from a practical perspective. Taking
detours may be advantageous, but it appears that taking very long
detours (longer than 2h(vi)) is unlikely to help.

Given that in the worst case instance all edges share
the same tradeoff between velocity and probability of
success, we have reduced our problem to an instance of
the formerly studied case where all S functions are the
same. Then the optimal solution will indeed be the one
where the robot spends Tmax/2h(vi) time on each edge,
as implied by Eq. 6. Therefore Sw is defined as the func-
tion with the lowest value for Tmax/2h(vi). The second
issue concerns the tightness of the bound we derived,
given that we have introduced further approximations.
We consider this through simulations in Section V.

C. Remarks

1) Characteristics of the simplest algorithm: the two
algorithms we presented are most likely the simplest
one can imagine. Still, as we have shown, characterizing
their performance in analytic terms is not immediate
and one may conjecture that it will be much harder for
more complex deployment approaches. The algorithms,
however, are also the most scalable and robust. In
fact, they are fully distributed and assume no mutual
knowledge or exchange of information, either before
or during the mission. Assuming the availability of a
large number of identical robots all controlled by the
same algorithm, they can be added to the team being
deployed without any reconfiguration effort. And, of
course, the simplest algorithm can serve as a yardstick to
compare against more sophisticated approaches relying
on communication and explicit coordination.

2) Possible improvements: One could conjecture that
the presented approach could be improved by sampling
vertices with a non-uniform distribution. Indeed, one
could think that more robots should be sent towards
far vertices that are harder to reach, and less robots
should be directed to nearby ones. The idea is in
principle sound, but yields a true advantage only when
the team is operating under a very demanding temporal
deadline Tmax. In that case, the term Pr[B|A] in Eq.
1 dominates and the idea pays off. However, any non-
uniform distribution will decrease the term Pr[A] in Eq.
1. Hence, when Tmax is not too strict the approach
may actually be counterproductive. It would be useful
to find a criterion suggesting when one should switch
to a uniform vs. non-uniform sampling based on Tmax

and G, but a closed form solution is not evident.

V. SIMULATIONS

In this section we present simulations for different de-
ployment scenarios. Graphs are extracted from artificial
maps or occupancy grid maps built with state-of-the art
SLAM software [3] and publicly available data sets4.

4Code and datasets producing the results presented in this section are
available for download on http://robotics.ucmerced.edu.

A. Bound tightness when all edges share the same S
function

The first experiment aims to experimentally evaluate
the quality of the bound we derived in Section III-B. In
this case we assume S is the same for all edges, and in
Figure 2 we plot the specific function we use.

0 20 40 60
0

0.2

0.4

0.6

0.8

1

t

P
ro

b
a
b
ili

ty
 o

f
S

u
c
c
e
s
s

S function

T
1

T
2

Fig. 2. S, the relationship between time spent and probability of
success used in simulations where all edges share the same function.

Note that the probability of successfully completing
a transition between two adjacent vertices is 0 for t <
T1 = 10 and is greater than 0.9975 for t > T2 = 40.

Two different maps displayed in Figure 3 are used.
The left one, sketched by hand, has 18 vertices, and
robots have to be deployed in 17 vertices (all but the
deployment site) within a temporal deadline of 220 time
units. Robots are initially deployed in vertex 1. The
second map consists of 70 vertices, and robots have to
reach a subset of 17 vertices (those displayed with a
number). The common deployment vertex is 1, and the
temporal deadline is 3600 time units. The second map
was built using the publicly available sdr40 dataset [8].
These two maps are chosen as representative examples
of simple and complex environments. Similar results
were obtained for other datasets omitted from this paper
for lack of space.

We compute the trend of the success rate lower bound
for increasing values of K, starting with K = N .
Then, we simulate deployments of robots for the same
range of K values and we experimentally measure the
average success rate. While performing this Monte-Carlo
simulation we simulate 100 deployments for each value
of K. Figure 4 contrasts the two trends we obtained for
the two maps.

The figure shows that for the maps we consider the
approximate bounds we derived accurately predict the
actual performance. These curves can be interpreted as
performance curves, because they capture the tradeoff
between the the number of robots K, and the probability
of success Pt. The curves are necessarily parametric in
Tmax and depend also on the underlying graph. They
can be used to make decisions about the size of the
robot team needed to perform a certain task, or to

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18 1

(a) Simple map

32

33
2

4
6

26
24

22

21
19 16

13

52

43

11

42

1

(b) Sdr40 map

Fig. 3. The two maps used to experimentally evaluate the analytic bounds. The left one is a simple environment drawn by hand, whereas the
right one is built from a publicly available dataset. The deployment vertex is marked with a pink triangle, whereas goal vertices are indicated
by green crosses. Edges between vertices only indicate that a path exists, but they do not imply it is a straight line.

50 100 150
0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty

K

Simple map

Experimental Probability

Bound 1

Bound 2

(a) Simple map

20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty

K

SDR 40

Experimental Probability

Bound 1

Bound 2

(b) Sdr40 map

Fig. 4. Comparison between approximate bounds for success probability (blue lines) and experimental success rate when all edges share the
same S function. Because the computation of binomial coefficients for large values of K and k in Eq. 4 exceeds the computer’s precision, two
different approximations for

(K
k

)
are used and shown (see appendix). For every value of K Bound 1 approximates the probability of success

from below, whereas Bound 2 approximates the probability of success from above. For large values of K the blue curves converge.

predict the probability of success for a given number
of robots deployed in a specific map and subject to a
given temporal deadline.

B. Bound tightness when edges have different S func-
tions

The second experiment aims to evaluate whether the
same predictions are possible when different S functions
are associated with different edges. To this end, we use
the same sigmoid function shown in Figure 2, but its
parameters are tuned based on the distance between
vertices. In particular, T1 is proportional to the distance
between the vertices. If the straight path between two
vertices does not intersect any obstacle, then T2 =
2T1, otherwise T2 = 10T1. While this is clearly a
crude approximation, it produces rich enough problem
instances with highly diverse S functions associated with
the various edges. This setup leads to instances of the
multiple choice knapsack problem that can be exactly

solved in reasonable time. For very large instances one
could still apply the same method using an approximate
algorithm to compute the solution to the knapsack
problem. Figure 5 displays the same quantities shown
in Figure 4. The charts confirm that the approximate
bounds we derived are excellent predictors even when
different S functions are associated with the various
edges.

VI. RELATED WORK

Numerous multirobot deployment problems have been
studied in the past, but the problem of balancing risk
and velocity has been rarely addressed. Due to space
limitations, we here provide just a few pointers to
former literature analyzing different aspects of deploy-
ment problems. Significant work has been devoted to
the problem of deployment while maximizing objective
functions like coverage or, more generally, sensor data
quality. The seminal work by Bullo, et al. [1] and the

50 100 150
0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty

K

Simple map

Bound 1

Bound 2

Experimental Probability

(a) Simple map

20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty

K

SDR 40

Bound 1

Bound 2

Experimental Probability

(b) Sdr40 map

Fig. 5. Comparison between approximate bounds for success probability and experimental success rate when edges have different S functions.

numerous subsequent papers embracing the distributed
Voronoi approach proposed therein fall under this cate-
gory. When robots are deployed to install a communica-
tion network, emphasis has been devoted to maintaining
connectivity or offering high communication bandwidth
[7], [9]. This is usually the same standpoint assumed
in the sensor network community. In urban search and
rescue, multirobot deployment is sometimes aided by a
human supervisor occasionally taking over when robots
encounter difficulty [10].

To the best of our knowledge, the specific problem
we have addressed in this manuscript is novel.

VII. CONCLUSIONS

In this paper we have introduced and analyzed the
tradeoff between velocity and probability of success
for the task of multi-robot deployment. This standpoint
has been scarcely considered in the past, and we have
identified various parameters that generate numerous
different instances of this problem. For the simplest case
(map known a priori, and robots able to self localize),
we have analyzed a simple, robust, communication free,
scalable algorithm. Because of the inherent complexity
of an exact analysis, we derived approximate bounds
leading to performance curves that can be used for
analysis and design purposes. Our theoretical findings
have been corroborated by simulations demonstrating
that the approximate bounds are tight, showing the utility
of the associated performance curves.

In the future we intend to extend this framework in
various ways. For example, we will consider the case
where the map is only partially known a-priori, or the
situation where robots cannot reliably self-localize while
moving towards their goal. In these cases we anticipate
the use of communication between robots will be crucial.
Moreover, we are investigating how to derive the S
functions from robots moving in various reference test
environments.

We emphasize that the analytical framework is general
in the sense of modeling state transitions with proba-
bility of success vs. time curves. So, for example, the
analysis could be applied to manipulation with risk of
collision.

APPENDIX

For large values of K, the value of
(
K
k

)
exceeds the

computer’s precision. Therefore in Fig. 4 and Fig. 5 we
use the following inequalities(

K

k

)k

≤
(
K

k

)
≤ Kk

k!

to plot the two blue curves.

ACKNOWELDGMENTS

The authors thank Dr. Nicola Basilico for the solution
of the multiclass knapsack problem.

REFERENCES

[1] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo. Coverage control
for mobile sensing netorks. IEEE Transactions on Robotics and
Automation, 20(2):243–255, 2004.

[2] W. Feller. An Introduction to Probability Tehory and Its Appli-
cations, volume 1. John Wiley, 1968.

[3] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques
for grid mapping iwht Rao-Blackwellized particle filters. IEEE
Transactions on Robotics, 23(1):36–46, 2007.

[4] A. Kolling and S. Carpin. Extracting surveillance graphs from
robot maps. In Proceedings of IROS, pages 2323–2328, 2008.

[5] S. Martello and P. Toth. Knapsack problems. John Wiley and
Sons, 1990.

[6] R. Motwani and P. Raghavan. Randomized Algorithms. Cam-
bridge University Press, 1995.

[7] Y. Pei and M.W. Mutka. Steiner traveler: relay deployment
for remote sensing in heterogeneous multi-robot exploration. In
Proceedings of ICRA, pages 1551–1556, 2012.

[8] Radish – the robotics data set repository.
http://radish.sourceforge.net, 2009.

[9] M. Rooker and A. Birk. Multi-robot exploration under the con-
straints of wireless networking. Control Engineering Practice,
15(4):435–445, 2007.

[10] J. Wang, M. .Lewis, and P. Scerri. Cooperating robots for
search and rescue. In Proceeedings of Autonomous Agents and
MultiAgent Systems, 2004.

