
Multirobot Patrolling Against
Adaptive Opponents with Limited Information

Carlos Diaz Alvarenga Nicola Basilico Stefano Carpin

Abstract— We study a patrolling problem where multiple
agents are tasked with protecting an environment where one or
more adversaries are trying to compromise targets of varying
value. The objective of the patrollers is to move between
targets to quickly spot when an attack is taking place and
then diffuse it. Differently from most related literature, we
do not assume that attackers have full knowledge of the
strategies followed by the patrollers, but rather build a model
at run time through repeated observations of how often they
visit certain targets. We study three different solutions to this
problem. The first two partition the environment using either
a fast heuristic or an exact method that is significantly more
time consuming. The third method, instead does not partition
the environment, but rather lets every patroller roam over
the entire environment. After having identified strengths and
weaknesses of each method, we contrast their performances
against attackers using different algorithms to decide whether
to attack or not.

I. INTRODUCTION

Multirobot patrolling received considerable attention from
the robotics community in the last decade. The literature
encompasses models for different real-world domains and
also provides algorithms to obtain patrolling strategies which
guide a robot’s visits to areas of an environment to be
protected [14]. Many of these solutions are deployed as fully
or partially autonomous multirobot surveillance systems [17].

One recently recognized dimension along which multi-
robot patrolling strategies can be compared concerns the use
of standard optimization formulations versus the adoption
of game theoretical frameworks that explicitly consider a
rational and adversarial agent, often called attacker. The first
kind of techniques typically seek policies that optimize a
measure of effectiveness for the patrolling task. Commonly,
idleness-based or frequency-based metrics are embraced over
discrete settings represented with graphs. This line of works
was started in [5] and is still currently active [16].

Techniques based on game-theoretical models usually
come from the sub-field of ’security games’ [19] where pa-
trolling is performed considering a worst-case fully informed
attacker. Building on top of these basic works, many recent
contributions have relaxed the worst-case assumptions on the
attacker in favor of more realistic settings. Examples can be
found in the use of bounded rationality for the attacker [11]
and, more relevantly, in the introduction of limited observa-
tion capabilities where it is assumed that the attacker can
condition its decisions on a belief constructed by observing

N. Basilico is with the Department of Computer Science , University
of Milan, Milan, Italy. C. Diaz Alvarenga and S. Carpin are with the
Department of Computer Science and Engineering, University of California,
Merced, CA, USA.

the realization of the patrolling strategy [1], [4]. In [2],
we introduced a single-robot patrolling setting where the
attacker can only gather information from a single location
of the environment. This assumption adheres to many real-
life situations where the costs of adversarial intelligence are
prohibitive. In this work, we study the properties of the
model proposed in [2] by extending it to the multirobot case.

When compared against their single-robot counterparts,
multirobot settings introduce additional challenges. Scalabil-
ity is a central one, since the computation of joint optimal
policies is generally computationally expensive. Customary
approaches try to shrink the strategy spaces by limiting the
allowed coordination among robots at run time [3]. Con-
flicts among patrollers could arise [6] while environmental
dynamics can pose the need for non-trivial adaptive task-
reallocation methods [9]. Sometimes, online coordination
among robots might not be even possible due, for example,
to the lack of a suitable communication infrastructure [18].

Environment partitioning is one way to mitigate such
problems by diverting part of the coordination issues to
the offline dimensions. This basic divide et impera idea of
allocating robots to sub-regions of the environment has been
proven relevant in the multirobot patrolling domain (see, for
example, [13], [10], [15]). We try to leverage such an idea
to extend our novel patrolling model from [2] for multiple
robots. We devise and evaluate two scenarios depending on
whether partitions are used or not. We propose a heuristic
and exact method to compute partitions and we carry out
a theoretical analysis of how the patrolling performance is
affected when more patrollers are concurrently deployed.
Moreover, to address strengths and limitations of the par-
titioning methods we propose, we contrast these solutions
with a solution where multiple robots independently patrol
the whole graph without any sort of coordination or load
balancing.

II. PATROLLING SETTING DEFINITION

We embrace the usual graph-based setting adopting the
model we recently studied in [2] for the single-robot case
and introduce the presence of multiple patrollers.

We assume to have an environment where K target
locations, targets for short, must be protected by means of
repeated visits. Targets are denoted as {l1, . . . , lK}. Their
topological layout is described by a weighted undirected
graph G = (V,E, d) where V = {l1, . . . , lK} and (li, lj) ∈
E indicates that a patroller can move from li to lj (or vice
versa) in a time equal to dij . We assume that this graph is
connected and we will always work on its transitive closure,



that is if (li, lj) /∈ E we add it setting dij to the length
of the shortest path between li and lj in the original graph.
Each target li is characterized by a value vi measuring its
importance and an attack time ai expressing the temporal
cost needed to compromise it.

We consider M ≤ K attackers, each with the objective
of compromising a given target. In order to successfully
compromise a target li, an attacker must spend a time greater
or equal to ai on such a target without being detected by any
patroller. Attacks are non-preemptive, meaning that they will
terminate either with a success or a capture. The interaction
between the team of patrollers and each single attacker can
be thought as driven by a constant-sum revenue distribution
where the patrollers get the total amount of protected value
and the attacker gets the value of the target it compromises.
Formally, patrollers and any attacker will get (

∑K
i=1 vi, 0)

in case of a failed attack, and (
∑K

i=1 vi − vj , vj) in case
of a successful attack on target lj , respectively. We will not
use such payoff structure in a game-theoretical model, but
embrace the underlying interpretation where vi can be seen
as the value stored in li, while ai encodes a measure of
resiliency of the target.

To protect the targets, N < K patrollers are deployed. We
assume that when a patroller visits a target under attack it
neutralizes the attacker: if one attacker attacks li at time t and
the next visit to li by any of the patrollers occurs before time
t + ai, the attacker fails its attempt. If instead no patroller
visits li before t+ ai, li is compromised.

The motion of the patrollers in the graph is governed
by strategies that are not known to the attackers. However,
through repeated observations, each attacker can construct a
belief based on the following assumptions:

A) each attacker has local observation capabilities spa-
tially confined to a single given target (as in [2]);

B) patrollers are indistinguishable;
C) attackers are unaware of each other.

Assumption A) allows each attacker to know the times at
which a patroller arrives and leaves the target it is observing.
This target is chosen before gathering any observation of
the patrollers and hence it is not influenced by them. In
other words, the strategic decision that the attacker has to
perform is whether to attack a given target under observation
or not. We assume that the M targets under observation
are unknown to the patrollers. This assumption reflects our
choice of locally limited observation capabilities: our attack-
ers cannot gather observations from multiple targets and use
such a knowledge to strategically choose which target to
attack. Assumption B) means that an attacker observing a
target can just see that one of the N patrollers is visiting but
it cannot distinguish which one. Assumption C) implies that
attackers cannot share the observations they gather, nor they
can coordinate their decisions to maximize their chances.

As in [2], we assume that the patrolling strategy followed
by the i-th patroller can be modeled by a time-invariant
Markov chain described by a K × K transition matrix Pi

whose entries are all strictly positive. As we will see in

the following, we will consider both the case where all
the patrollers follow the same strategy and the case where
each patroller follows a different one. The (i, j) entry in Pi

represents the probability that the i-th patroller will visit lj
after having visited li. When a patroller moves from li to
lj , it will take a time of at least dij . In [2] we introduced a
new class of strategies characterized by motion delays. The
main idea builds upon the assumption that when a patroller
moves from i to j it will introduce a random traveling delay
so that the overall transition time will be dij + ζ where
ζ is a random variable drawn from a uniform distribution
over [0,∆]. As we showed in [2], such random delays could
make it more difficult for an attacker to precisely forecast the
next visit to a target. As a result, these strategies outperform
other non-delayed approaches against attackers that condition
their attack on patroller observations they have collected on
the observed target. The general structure of such delayed
strategies for a patroller r is summarized in Algorithm 1.

1 Input: Transition Matrix Pi;
2 Select start vertex li ∼ πi ;
3 while true do
4 Select next vertex lj with probability Pi

ij ;
5 Generate random time t ∼ U [di,j , di,j + ∆];
6 Move to lj spending time t;
7 li ← lj ;
Algorithm 1: Time-delayed patrolling strategy
(from [2])

The transition matrix Pi is assumed to be given and
computed from an optimization taking the patrolling setting
as input and returning the optimal stationary distribution πi

from which Pi can be reconstructed via the Metropolis-
Hastings algorithm (see [2]). Notice that, since Pis have
positive entries, each of them has a stationary distribution
πi (a K-dimensional vector such that

∑K
j=1 π

i
j = 1 and

πi = πiPi.)
Against this background, we study adversarial patrolling

when this is carried out by a team of N patrollers executing
the above defined patrolling strategy over one or more sub-
graphs that span the whole environment. Patrollers execute
their strategies independently, meaning that we do not con-
sider any online coordination taking place. Instead, we allow
offline coordination, seen as a subdivision of the efforts over
different sub-regions of the environment, and how it can
impact on the resulting level of protection. To do this, we
will consider and compare two configurations:
• Partitioned Patrollers: the patrolling effort is dis-

tributed according to a partition of the environment
(computed offline). Each patroller is assigned to one
sub-region (sub-graph); the sub-regions do not overlap
and their union covers the whole environment. Here
offline coordination is performed.

• Non-Partitioned Patrollers: no patitioning is per-
formed, each patroller potentially covers the whole en-
vironment. Here offline coordination is not performed.
If patrollers do not move in sync, this approach will in



general shorten the time between successive visits to a
vertex, thus making it harder for attackers to succeed.

Each configuration has its advantages and disadvantages.
The partitioned case allows the patrollers to allocate more
resources where needed. For example, the environment could
be partitioned into small sub-regions when the total value of
the covered targets is high. In general, the sub-regions allow
frequent revisits, thus making it harder for an attacker to
succeed. On the other hand, this approach is less robust to
faults. If one of the patrollers were to stop working, the sub-
region that was assigned to it would remain uncovered. The
non-partitioned approach instead, is more resilient to failures
because even if one patroller fails, all other patrollers can
periodically revisit any location.

III. PARTITIONED PATROLLERS

We start by considering the configuration where the envi-
ronment is partitioned into N sub-graphs and each patroller
is assigned to one of them. The rationale here is to balance
as much as possible the workload among the patrollers.

A partition of G = (V,E) can be represented with a
set {V1, V2, . . . , VN} where Vi ⊆ V , for any i 6= j it
holds that Vi ∩ Vj = {∅}, and such that ∪ni=1Vi = V .
Given a partition element Vi, we denoted as G[Vi] the
subgraph induced by Vi on G. Such an induced subgraph
has Vi as the set of vertices, the set of edges is given by
Ei = {(li, lj) ∈ E s.t. li ∈ Vi ∧ lj ∈ Vi}, and it represents
the sub-region of the environment that will be assigned to
the i-th patroller. To compute partitions, we need to quantify
the patrolling workload. For any partition element Vi, we
choose the cumulative temporal cost of the edges in Ei:

I(G[Vi]) =
∑

(li,lj)∈Ei

dij

Ideally, it is desirable to seek partition elements with
low values of I(). A small cumulative temporal cost is an
indicator that the total time needed to cover G[Vi] can be
limited. These features can ease the patrolling task on the
environment’s sub-region associated to G[Vi]: protecting an
area where targets tend to be close to each other can ensure
higher frequencies of visits and, hence, better protection.
Clearly, this is an heuristic principle which does not guar-
antee any optimality on the patrolling performance and that
does not constitute the only possible choice (for example, the
maximum temporal cost could be an alternative.) We decided
to opt for such a metric for its simplicity of definition and,
more importantly, for the fact that it will allow us to devise
two different methods for computing partitions.

Given I(), our partitioning problem can be stated as
the following: compute a partition {V1, V2, . . . , VN} of G
such that max{I(G1), I(G2), . . . , I(GN )} is minimized.
This problem shares core features with the well-known
Graph Partition (decision) Problem (GPP) defined as follows:
given a weighted, undirected graph G = (V,E) is there a
V ′ ⊂ V such that I(G[V ′]) = I(G[V \ V ′])? As shown
in [7] (problem SP12), the GPP is NP-complete from the

partition problem. An immediate consequence of this result
is that our partitioned patrollers problem is NP-hard to solve
optimally (the reduction is not shown for lack of space).
In the following we introduce and evaluate two methods to
solve this problem.

A. Multilevel Graph Partitioning

The first partitioning approach we propose is a heuristic
based on the multi-level graph partitioning (MLGP) dis-
cussed in [8] and [12]. This method is divided into three
steps: graph coarsening, partitioning, and uncoarsening. The
final partition is both balanced in terms of the number of
vertices in each sub-graph and also minimal with respect
to the graph cut or inter-sub-graph cumulative edge weight.
The balanced k-way minimum-cut partition performed by
the MLGP algorithm does not directly solve our partition-
ing problem. Indeed, our formulation seeks partitions that
minimize the cumulative weight of graph edges that, under
the MLGP formulation, are left uncut. Because of this, we
introduce two transformations of the edge weights.

The underlying idea in both methods is to re-write the edge
weights in such a way that the cut minimization performed
by MLGP will produce a partition similar to a division based
on the cumulative weight of uncut edges (those that, in our
problem, are summed up to obtain I() in each partition
element.) By inverting the edges weights of the graph, when
minimizing the cut of the graph, the MLGP algorithm will
remove edges with large weights, leaving those with small
costs uncut (inside a partition element).

The first method for graph inversion is the following
transformation of the graph edges:

dij =

⌊(
max

(li,lj)∈E
{dij} − dij + 1

)2⌋
∀li, lj ∈ V

This transformation will leave the heaviest edges in the
graph with the lowest weights, meaning that targets that in
the original graph are very far apart will have, after the
transformation, low edge weights. The k-way minimum-cut
partition of the transformed graph will tend to keep vertices
that were far apart out of the same sub-graph in the resulting
partition. In other words, the edges in the minimum cut of
the transformed graph will tend to have large weights in the
original graph, which means that sub-graphs in the resulting
partition will be characterized by low cumulative edge costs.

The second method for transforming the edge weights
is based on a normalization of both the edge weights and
each target’s value-to-attack-time ratio defined, for a target
li, as ρi = vi/ai. The normalization of these quantities is
performed in this way:

dnorm
ij =

dij
max

(li,lj)∈E
{dij}

, ρnorm
i =

ρi
max
li∈V
{ρi}

∀li, lj ∈ V

Then we consider, for each edge, its normalized weight mul-
tiplied by the average normalized value-to-attack-time ratios



of the two associated vertices. Thanks to the normalization,
this operation will return a value between 0 and 1:

dij = dnorm
ij

pnorm
i + ρnorm

j

2

Finally the values are scaled by an arbitrary factor s and the
ceiling is taken to avoid null weights:

dij =
⌈
(s− s · dij + 1)2

⌉
The idea behind this second transformation is to integrate

in the new computed weights also a bias related to the value-
to-attack-time ratios of the targets connected by an edge. The
value ρi provides a measure of the critical level of a target.
The higher the target’s value the more critical it is because if
it gets compromised the value loss will be large. Similarly,
the lower the attack time the easier will be for the attacker
to compromise that target. As a consequence, this second
transformation not only will induce MLGP to push targets
that are far apart into different sub-graphs, but also to try to
separate targets that have a high critical level.

B. MILP-based partitioning

The second approach we introduce is an exact method
based on the resolution of a Mixed Integer Linear Program
(MILP). The following decision variables denote, for any
sub-graph G[Vi] induced by a partition element Vi, whether
any target and edge of the original graph belong to that sub-
graph, respectively. Formally, these variables are:

xhi =

{
1 if li ∈ Vh

0 otherwise
, yhi,j =

{
1 if (li, lj) ∈ Eh

0 otherwise

Then the binary linear program reads as follows:

minu s.t. (1)∑
h∈{1,...,N}

xhi = 1 ∀li ∈ V (2)

∑
i∈V

xhi ≥ γ ∀h ∈ {1, . . . , N} (3)

yhi,j ≤ xhi ∀li, lj ∈ V (4)

yhi,j ≤ xhj ∀li, lj ∈ V (5)

yhi,j ≥ xhi + xhj − 1 ∀li, lj ∈ V, h ∈ {1, . . . , N} (6)

u ≥
∑

li,lj∈V

di,jy
h
i,j ∀h ∈ {1, . . . , N}, i > j (7)

xhi ∈ {0, 1} ∀li ∈ V, h ∈ {1, . . . , N} (8)

Constraints (2) force each target to belong to exactly one
sub-graph in the partition. Constraints (3) require each sub-
graph to include at least γ targets (in general γ ≥ 2, and in
our experiments we set γ = 2). This requirement translates
to a minimum workload assigned to each patroller, trying
to avoid situations in which one patrollers stays fixed on
a give target as such a situation would be equivalent to
removing that target and one patroller from the original
problem. Constraints (4), (5), and (6) bound the x and y

decision variables. These three set of constraints express, in
a linearized form, the fact that and edge (li, lj) belongs to a
sub-graph if and only if both li and lj belong to that graph
too. Constraints (7) define the auxiliary decision variable
u and any upper bound over all the cumulative temporal
costs of the various sub-graphs in the partition. The objective
function minimization provided in (1) requires to seek the
minimum upper bound. Constraints (8) impose a binary
integrality to the xs (these are the only integrality constraints
needed since the joint effect of Constraints (4), (5), and (6)
and the minimization (1) guarantee that, at the optimum, the
ys always get a binary value).

IV. NON-PARTITIONED PATROLLERS

In this second configuration, we consider no offline coor-
dination and also N patrolling units independently executing
the same Markov strategy P (computed, like before, as
described in [2]) over the whole graph. In this case no
partition of the environment is computed.

One key aspect we aim at studying here is how the
expected return times to a generic target lj vary when the
N ≥ 2 patrollers are deployed. Indeed, such return times
are at the core of the performances obtained by P against
an attacker that tries to learn them by observing a single
target and, when a confident estimate is reached, uses such
knowledge to determine whether to attack or not. The return
time to a target lj when N patrollers use the same strategy
can be formally defined as follows. For 1 ≤ i ≤ N , let xit
be the state occupied by the i-th patroller at time t (this can
correspond to being at some target or traveling along some
edge). The return time to a target lj of any of the N patrollers
is then defined as the following random variable:

rNj = inf{k s.t. ∃i, w, t xit+k = xwt = lj}

In particular, we would like to determine how E[rNj ] relates
to E[rj ] (the expected return time with a single patroller).

Consider a Markov chain with K states and collapse it
into a two-state chain where one state corresponds to state j
in the original chain and state ξ represents the aggregation
of all the other states different from j.

j ξ

1− q

q

1− p

p

Fig. 1. The collapsed two-states Markov chain.

Figure 1 depicts such a collapsed Markov Chain whose
transition matrix is:

Pcoll =

[
q 1− q

1− p p

]
Here, q denotes the transition probability from state j to itself
and p will denote the transition probability from any state



different from j (denoted by ξ) and remaining there. The
expected return time to state j is given by:

E[rj ] =
(1− q) + (1− p)

(1− p)
Next, we can derive the relation between the values p, q and
the non-collapsed transition matrix P. The value q is Pjj

as it corresponds to the probability of remaining in state j.
To obtain p we solve for the value 1 − p. Using the total
probability law 1− p can be derived as:

1− p =
∑
i6=j

PijP
′

i, where P
′

i =
πi∑
i 6=j πi

which corresponds to the probability of being in state
ξ given that we are not in state j. Thus, the expected
return time for any state in the new two-state Markov chain
can be explicitly computed from the values in the original
K × K transition matrix. Given this, we can now provide
a characterization of the expected return times at the targets
in the multi-patroller setting using the transition matrix P
adopted by each of the N patrollers on the graph. We again
formulate the multi-patroller problem as a two-state Markov
chain. We will call covered the state where at least one
patroller is at the target lj , while uncovered is the state when
no patrollers are currently visiting lj . The transition matrix
associated to this Markov chain is:

Pcoll =

[
q∗ 1− q∗

1− p∗ p∗

]
and

E[rNj ] =
(1− q∗) + (1− p∗)

(1− p∗)
The value q∗ in the transition matrix is associated with
the probability that given there is at least one patroller
on target lj , at least one of them remains in that target
in the consecutive transition. Next, p∗ corresponds to the
probability that given that none of the patrollers are at target
lj , all of them remain outside of lj in the following transition.
We can reason that p∗ is equal to pN , because p is the
probability that one patroller in state ξ remains in the same
state after one transition. Moreover, it can be shown that
(proof omitted for brevity):

(1− q∗) =

N∑
k=1

(
N

k

)
ηπk

j (1− πj)N−k(1− q)kpN−k

η =
1

1− (1− πj)N
.

V. EVALUATION

We provide an empirical evaluation of the patrolling
strategies obtained with our proposed techniques: heuristic
partitions without critical levels (non-weighted, PNW) and
with critical levels (weighted, PW), partitions computed with
our exact method (MIP, run with a deadline of 30 minutes),
and non-partitioned patrollers (NP). Varying the number of

vertices in the graph from 30 to 60 (with increments of
10), for each size we generate 10 random instances and
we run patrolling missions over the obtained graphs where
each patroller visits 10,000 vertices. Due to limited space,
we present only the case where the number of patrollers is
either 5 or 10, even though we have explored a larger range.

We assumed one attacker observing each target and con-
sidered two different types of attackers. The first type, called
Maximum-Likelihood (ML) attacker, fits an exponential dis-
tribution over the inter-arrival times observed at its target.
Then, it generates a prediction for the next inter-arrival
time by computing the expectation of that distribution. The
second type of attacker, called Nearest-Neighbor attacker
(NN), treats the sequence of inter-arrival times as a temporal
series and uses a nearest neighbor over the last 10 observed
elements from the series to forecast the next one. In both
cases, at each iteration where the predicted inter-arrival time
is larger than the target’s attack time, the attacker decides
to attack. As it is evident, the patrollers could perform more
frequent visits but should also try to induce an overestimation
of the next attack time.

The plots will show the protection ratio defined as the
number of the attacks intercepted by a patroller divided by
the attempted ones and multiplied by the value of the target.
We show also the number of attack attempts induced by a
patrolling strategy and, for each li, the value vi · Pr[ru >
ai] which provides an indicator of the protected value not
dependent on how the attacker estimates arrival times (called
intrinsic loss in the following). Each chart features on the y
axis the average quantity over all the vertices of the graph
while on the x axis we have the single instances from the
smallest to the biggest K (number of targets).

0 5 10 15 20 25 30 35 40

Graph Test Cases

1.5

2.0

2.5

3.0

3.5

P
ro

te
ct

io
n

R
at

io

PW PNW NP MIP

Fig. 2. Protection ratio for five patrollers against a ML attacker.

Figures 2 and 3 show the average protection ratios with 5
patrollers against the two types of attackers. The generally
decreasing trends reflect the increasing difficulty of protect-
ing a graph where there are more targets but the number
of patrollers stays the same. The NP approach seems to be
slightly dominated by the others suggesting that partitioning
could be profitable. The two heuristics kept pace with the
MIP method, even outperforming it at times when this last
met the deadline without finding the optimal partition and
returning, instead, the current best solution found.



0 5 10 15 20 25 30 35 40

Graph Test Cases

2.0

2.5

3.0

3.5

P
ro

te
ct

io
n

R
at

io

PW PNW NP MIP

Fig. 3. Protection ratio for five patrollers against a NN attacker.

A more insightful analysis of these trends can be extracted
if one considers not only the protection ratio, but also the
number of attempted attacks – something we analyze for
the case of 10 patrollers discussed next. With 10 patrollers
things become more challenging and slightly more evident
gaps start to emerge as shown in Figure 4 where we show
the intrinsic loss for 10 patrollers. The figure clearly shows
that the MIP method provides better coverage to vertices
with high value. Figures 5 and 6 show the protection ratio
against the two type of attackers. To fully appreciate the
meaning of Figure 5, where it seems that the MIP method is
underperforming, it is useful to consider Figure 7 where we
show the number of attempted attacks. The figure shows that
the MIP strategy induces the attacker to reduce its number
of attempts. In general, partitioned-based methods induce
fewer attack attempts, especially in those instances where
computing a balanced partition is easier. This is reasonable
since a well-balanced partition (recall the definition of I())
favours an even distribution of values and small inter-arrival
times. This acts as a deterrent on the attacker that in many
occasions opts for not attempting an attack. Thus, if based
on the protection ratio partitioned strategies seem almost
comparable to the non-partitioned one in terms of capturing
the attacker, they clearly work better in keeping the attacker
out. Taking all into considerations, the MIP strategy is the
best one. While it is more demanding, our experiments show
that using the approximate solution produced upon stopping
the method after 30 minutes still provides good results. PW
and PNW can be considered as fairly effective heuristics
since their performance was not remarkably worse than
MIP’s. Their lower computational burden can be leveraged
when scaling to very large patrolling settings.

VI. CONCLUSIONS

In this paper, we studied three approaches for multirobot
patrolling against an attacker that, through repeated observa-
tions, tries to predict when it is the best time to attack. Our
method based on a MIP formulation turns out to be the best
one, even when it is stopped before the optimal solution
is found. For the two types of attacker we considered,
this strategy discourages the attacker from attempting to
compromise the assets being protected. In future works,
we shall expand the analysis presented in this paper to

0 5 10 15 20 25 30 35 40

Graph Test Cases

1

2

3

4

5

6

7

8

V
i
·P
r[
R
i
>
a
i]

PW PNW NP MIP

Fig. 4. Intrinsic loss for the case of 10 patrollers.

0 5 10 15 20 25 30 35 40

Graph Test Cases

0

1

2

3

4

P
ro

te
ct

io
n

R
at

io

PW PNW NP MIP

Fig. 5. Protection ratio for ten patrollers against a ML attacker.

0 5 10 15 20 25 30 35 40

Graph Test Cases

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

P
ro

te
ct

io
n

R
at

io

PW PNW NP MIP

Fig. 6. Protection ratio for ten patrollers against a NN attacker.

0 5 10 15 20 25 30 35 40

Graph Test Cases

0

20000

40000

60000

80000

100000

A
tt

ac
k
s

PW PNW NP MIP

Fig. 7. Number of attacks for 10 patrollers against a ML attacker.

consider refined models of the attacker behavior including,



for example, coordination between multiple attackers.



REFERENCES

[1] B. An, M. Brown, Y. Vorobeychik, and M. Tambe. Security games
with surveillance cost and optimal timing of attack execution. In Proc.
AAMAS, pages 223–230, 2013.

[2] N. Basilico and S. Carpin. Balancing unpredictability and coverage in
adversarial patrolling settings. In Proceedings of the 2018 Workshop
on Algorithmic Foundations or Robotics, 2019 (to appear).

[3] N. Basilico, A. Celli, G. De Nittis, and N. Gatti. Coordinating
multiple defensive resources in patrolling games with alarm systems.
In Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, pages 678–686, 2017.

[4] A. Blum, N. Haghtalab, and A.D. Procaccia. Lazy defenders are almost
optimal against diligent attackers. In Proc. AAAI, pages 573–579,
2014.

[5] Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling
problem. In Proc. IAT, pages 302–308, 2004.

[6] L. Freda, Mario Gianni, F. Pirri, A. Gawel, R. Dubé, R. Siegwart, and
C. Cadena. 3D multi-robot patrolling with a two-level coordination
strategy. Autonomous Robots, 43(7):1747–1779, 2019.

[7] M.R Garey and D.S. Johnson. Computers and Intractability. A guide
to the theory of NP-Completeness. W.H. Freeman and Company, 1979.

[8] G. Karypis and V. Kumar. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific
Computing, 20(1):359–392, 1998.

[9] N. Li, M. Li, Y. Wang, D. Huang, and W. Yi. Fault-tolerant and
self-adaptive market-based coordination using hoplites framework for
multi-robot patrolling tasks. In 2018 IEEE International Conference
on Real-time Computing and Robotics (RCAR), pages 514–519, 2018.

[10] C. Pippin, H. Christensen, and L. Weiss. Performance based task
assignment in multi-robot patrolling. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, pages 70–76, 2013.

[11] J. Pita, M. Jain, M. Tambe, F. Ordóñez, and S. Kraus. Robust solutions
to stackelberg games: Addressing bounded rationality and limited
observations in human cognition. ARTIF INTELL, 174(15):1142–1171,
2010.

[12] D. Portugal and R. Rocha. MSP Algorithm : Multi-Robot Patrolling
based on Territory Allocation using Balanced Graph Partitioning. ACM
Symposium on Applied Computing, pages 1271–1276, 2010.

[13] D. Portugal and R. Rocha. Msp algorithm: Multi-robot patrolling
based on territory allocation using balanced graph partitioning. In
Proceedings of the 2010 ACM Symposium on Applied Computing,
pages 1271–1276, 2010.

[14] D. Portugal and R. Rocha. A survey on multi-robot patrolling
algorithms. In Proc. DoCEIS, pages 139–146, 2011.

[15] D. Portugal and R. P. Rocha. Performance estimation and dimen-
sioning of team size for multirobot patrol. IEEE Intelligent Systems,
32(6):30–38, 2017.

[16] Y. Rizk, M. Awad, and E. W. Tunstel. Cooperative heterogeneous
multi-robot systems: A survey. ACM Comput. Surv., 52(2):29:1–29:31,
2019.

[17] C. Robin and S. Lacroix. Multi-robot target detection and tracking:
taxonomy and survey. AUTON ROBOT, 40(4):729–760, 2016.

[18] M. Romeo, J. Banfi, N. Basilico, and F. Amigoni. Multirobot persistent
patrolling in communication-restricted environments. In Distributed
Autonomous Robotic Systems: The 13th International Symposium,
pages 59–71, 2018.

[19] M. Tambe. Security and game theory: algorithms, deployed systems,
lessons learned. Cambridge University Press, 2011.


