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Abstract— Polyculture farming is a sustainable farming tech-
nique based on synergistic interactions between differing plant
types that make them more resistant to diseases and pests and
better able to retain water. Reduced uniformity can reduce use
of pesticides, fertilizer, and water, but is more labor intensive
and more challenging to automate. We describe a scaled physi-
cal testbed (1.5m×3.0m) that uses a high resolution camera and
soil sensors to monitor polyculture plants to facilitate tuning of
plant growth, companion effects, and irrigation parameters for
a first-order garden simulator. We use this simulator to develop
a novel seed placement algorithm that increases coverage
and diversity, and a learned pruning policy. In simulation
experiments, the seed placement algorithm yields 60% more
coverage and 10% more diversity than random seed placement
and the learned pruning policy runs 1000X faster than a
procedural lookahead policy to achieve high leaf coverage and
plant diversity on adversarial gardens that include plant species
with diverse growth rates. These models and policies provide the
groundwork for a fully-automated system under development.
Code, datasets and supplementary material can be found at
https://github.com/BerkeleyAutomation/AlphaGarden/.

I. INTRODUCTION

Polyculture farming, where multiple plant species are
intercropped simultaneously and in close proximity, is a
form of agricultural cultivation used for centuries that has
been shown to enhance pest control, reduce weeds, limit
soil erosion, and provide better use of light, water and
soil nutrients [1], [2], [3], [4]. It is known that specific
mixtures of cultivted plant species can result in higher overall
yield [5]. Examples of mutually beneficial polycultures
developed prior to industrial agriculture include maize-bean
mutualisms, where maize provides a structural scaffold for
the nitrogen-fixing leguminous vines [6], and intercropping
of deep rooted native shrubs into grain cultivation, which
improves water availability in arid regions [7]. More contem-
porary examples include shade-grown coffee, where species
diverse agroforestry practices that can included cacao and
banana intercropping provide not only canopy shade for
coffee, increasing yields, but also provides needed habitat for
birds, butterflies and other species [8]. Monoculture farming,
as typically practiced in large-scale, industrial applications,
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Fig. 1: Tuning Plant Simulation Parameters Using the Physical Testbed.
Using seeds from 10 edible plant species the seed locations were computed
with a seed placement optimization process that leverages companion plants
relationships to increase plant coverage and diversity. Left: Garden at day
17. Right: Garden at day 25. Plant circles as shown are predicted using the
algorithm described in Section III(c).

is often characterized by heavy agrichemical inputs, such as
chemical fertilizers and pesticides [9], [10], and increased
vulnerability to disease and pestilence. The lack of long-
term sustainability of industrial agriculture [11], and its
implications for human food security, has sparked renewed
interest in polyculture [12], [13], [14].

One drawback is that polyculture farming requires more
human labor than monoculture farming due to variations in
germination times and growth rates.

We are exploring the use of a robot with a learned control
policy to automate polyculture farming and assist - not
replace - farm workers. Due to the large time constants in
nature, learning such a policy through real world experiments
could require many years. In prior work we introduced
AlphaGardenSim [12], an efficient, open access, first order
simulator for polyculture farming. The simulator models
inter-plant dynamics through competition for resources, but
did not take into account relations between specific plant
species. In this paper, we explore inter-plant influence, seed
placements, irrigation and pruning. This paper makes 4
contributions:

1) AlphaGardenSim 2.0, an open-source polyculture plant
simulator tuned with real world measurements from a
physical testbed.

2) Significant extensions to the AlphaGardenSim 1.0 sim-
ulator to model companion plant effects.

3) A seed placement algorithm that uses companion plant



relations to generate seed placement plans that yield
high coverage and plant diversity.

4) A supervised-learning policy that optimizes plant cov-
erage and diversity over a short horizon.

II. RELATED WORK

In 1995, Goldberg et al. [15], [16] presented the Telegar-
den, an art installation that allowed anyone on the Internet
to interact with a garden by planting and watering plants.
Wiggert et al. [17] created a testbed that enables real-time
data collection for precision irrigation based on observed
plant growth and water stress. Fernando et al. [18] use a
greenhouse to evaluate mobile robot monitoring of plant
health and soil moisture. We build on these prior works by
creating a robot-assisted garden which also facilitates real-
time data collection for automated control.

Few simulators include the option to model growth of mul-
tiple species in a garden [19]. Simulators such as DSSAT [20]
and AquaCrop [21] simulate large-scale monoculture farms.
Whitman et al. [22] use Gaussian processes to predict weed
growth across a farm. Our prior work, AlphaGardenSim [12]
simulates a polyculture garden using first order models of
single plant growth, simulating inter-plant dynamics and
competition for water and light, but was prone to error
when the plants have significantly distinct germination times,
growth rates, and poor initial placements.

Gou et al. [23] propose a model to simulate the growth
of two species in a strip-relay intercropping system. They
propose a method to calibrate the plant specific parameters
given observed field data. However, this model only takes
into account light competition, assuming that irrigation is
sufficient. The model allows for analysis of different seed
placements on plant growth but restricts to the strip inter-
cropping environment. Tan et al. [24] build on Gou et al.
and include the effects of water acquisition suggesting that
plants use land and water more efficiently in intercropping.
However, their model does not allow for exploring spatial
patterns beyond the strip-relay setting and limits to two
species.

Both Gou et al. [23] and Tan et al.[24] do not make explicit
use of plant characteristics to define plant inter-relations.
Yu [25] use a simulated functional-structural plant model
to investigate which plant traits contribute to complementary
relationships and the effects of different plant placements,
assuming irrigation provides sufficient water for all plants.

These simulators consider the polycultural setting, but they
either do not model the light and water competition simul-
taneously and/or are limited by the placement geometry that
they consider. We present extensions to AlphaGardenSim
to incorporate plant relationships and consider inter-plant
cooperation.

III. PLANT PHENOTYPING

We fabricated a 1.5×3m garden bed in the UC Berkeley
greenhouse and mounted a commercial FarmBot gantry robot
system [26] to tune and test AlphaGardenSim on real plants.
We use a high-resolution overhead camera that has a full

Fig. 2: Learned Plant Segmentation Model. The figures above (from top
to bottom) show an overhead image from October 6, 2020, and the classifier
output from the network with augmented data. The overhead image is split
in half as shown by the blue line. The top half is for training while the
bottom half is for testing. Below, the table shows how much of the garden
is covered by each plant and its respective IoU score based on the bottom
half only. By adding augmented data, the model was able to more accurately
classify unseen leaves when compared to the baseline with no augmented
data. Low IoU for radicchio and red lettuce is consistent with a low percent
of coverage.

view of the garden, soil moisture sensors and an automated
pruning tool. A uniform and nutrient rich soil was used to
reduce stochastic effects in nutrient availability.

a) Camera: The digital camera, mounted 2m above the
garden bed, is a Sony SNC-VB770 and takes images every
24 hours. Its 35 mm sensor has a maximum 4240×2832 reso-
lution (1.4x higher than 4K) image mode, and a 3840×2160
(4k) video mode. We also selected a 20 mm focal length
Sony lens designed for SLR-type mirror-less cameras of
comparable quality. Its optical design minimizes aberrations
and distortion, providing a clear detailed image with no
fishseye effect.

b) Leaf Segmentation: See Fig. 2. We implemented
semantic segmentation to study plant canopy coverage. To
estimate the canopy distribution from overhead images, we
predict a plant type, or “unknown,” for each pixel in the
overhead image, using the UNet [27] architecture with
a ResNet34 [28] backbone pre-trained with weights from
ImageNet [29] data. We then use two 2,000×3,780 and
one 1,630×3,478 overhead images taken of the garden on
September 26, September 30, and October 6, 2020, with
hand-labeled ground truth masks of plant phenotypes, and



divide each image into a top half and bottom half as shown
in Fig. 2. We extract 48 512×512 patches from the top half
for training. We then modifwey these patches through actions
such as shearing, shifting, and scaling.

A key challenge is generalizing across all garden days and
plant life stages. To address this, we extract individual leaves
from October 1 to 22, 2020 to get samples of various sizes,
plant health, lighting, and texture. We augment the dataset by
overlaying individual leaves on top of each patch. By varying
the position and pose of each augmented leaf, we create 100
patches of training images from a single overhead image.
This additional augmented data improves network robustness
as shown in Fig. 2.

We train using 3,180 patches, 1,500 of them from aug-
mented data, and 1680 from the original data. Training uses
categorical cross-entropy loss over 100 epochs and utilizes
a 75-25 train-validation split. The output is a 512×512×11
array, with 11 softmax likelihoods, representing ten plant
phenotypes (or ”unknown”). We classify a pixel by choos-
ing the largest likelihood, and create a predicted mask for
an overhead image by combining the classified 512×512
patches. Fig. 2 shows the network’s prediction on the bottom
half of the image from October 6, 2020, which is unseen to
the network. When evaluated, the model has a mean IoU
of 0.80. The model performs well in identifying plant types
with high coverage, but has lower accuracy in plants that are
not common in the overhead image.

c) Converting Segmentation Masks to Circles: See
Fig. 1. To convert the pixel-wise segmentation masks into
the circular model used in AlphaGardenSim [12] we track
plant centers and radii. We define the plant center as the
average over all pixel locations in the plant’s segmentation
mask. We define the radius as the distance from the new
center to the farthest point on its contour and note that
although the seed locations are known, plant centers change
over time due to phototrophy [30] and irrigation [31]. Given
the centers and radii of all plants on day t − 1 as a prior,
we use three heuristics to guide the circles update on day
t: the previous center, a minimum-, and a maximum-radius
estimate. The radius estimates are computed by finding the
maximal and minimal observed radius per day for each
plant type using real world measurements as described in
Section V. We use a breadth-first-search (BFS) algorithm,
traversing radially outward to update each of the circles.
The BFS terminates when either the max radius estimate is
achieved or the percentage of new pixels discovered during
the previous two iterations is lower than a threshold (1%).
After termination, the new center is the center of mass of the
pixels within the circle and the new radius is the distance
from the termination point to the center, as shown in Fig. 1.

IV. IRRIGATION MODEL

We utilized six TEROS-10 [32] volumetric water content
(VWC) soil sensors connected to a ZL6 Data Logger [32] to
measure soil moisture. The first set of experiments refined
the irrigation application parameter, a(x, y, t), the amount
of irrigation applied at point (x, y). We identified the flow

rate from the FarmBot nozzle to be 0.083 L/s. The area of
influence from the nozzle is a circle of 0.04m radius.

We then used the soil moisture sensors to determine radial
flow. By watering at varying distances spanning from 0.04m
to 0.10m from the center of a soil moisture sensor, we deter-
mined a model as follows: beginning outside of the 0.04m
radius, the water gain is roughly half that when compared
to water gain within the radius. This trend continues each
additional 0.01m away from the center watering point up
until 0.09m. Let w(x, y) be the VWC centered at at point
(x, y) in the garden. Thus, ∆w(xd, yd) = (1/2)d ∗ gain
where d is distance measured in 0.01m outside of the 0.04m
radius, (xd, yd) is a point d+ 0.04m away from (x, y), and
gain is the moisture gain for soil directly under the nozzle.

We studied changes in soil moisture content from irri-
gation procedures to tune the local water loss parameter,
d. Using soil moisture over time curves produced from
irrigation experiments in which we watered at different
frequencies, we identified a water gain and water loss period
post watering event. In the water loss period, the change in
soil moisture over time t in hours fits nicely to a weighted,
negative logarithmic decay: ∆w = −0.01675 · ln t.

Furthermore, we used the soil moisture sensors to tune the
prior soil moisture content parameter, w(x, y, t−1). Here, the
quantity that is important for identifying real world irrigation
policies is the soil’s specific maximal VWC which describes
how much moisture the soil can store [33]. By saturating
several different samples of soil that we used in the physical
testbed, we discovered the max VWC of our soil to be around
0.3, and capped the w(x, y, t− 1) accordingly.

Through the execution of irrigation and soil moisture
experiments in the physical testbed, we made adaptations
to parameters based on Richards equation for soil moisture
dynamics used in [12]:
w(x, y, t) = max(w(x, y, t−1)−d+a(x, y, t)−U(x, y, t), 0)

V. GROWTH ANALYSIS

The standard agriculture parameters that dictate growth
are germination time, maturation time, and maximum radius.
Individual plants also depend on the light, water, the plant
starting radius and height, and the number of days the plant
remains in its growth phase versus its wilting phase. The
starting radius and height in the simulation and the number
of days in which a plant grows before wilting are sampled
from a normal distribution centered around the values defined
above.

Through the use of overhead photos of the physical
testbed, we can measure each plant’s radial growth. Similar
to how growth is modeled in our simulator, we annotated
every plant with a point at its center and a point at its
outermost radius in an image from every day since seeding.
We then made a rough conversion of pixel coordinates to
real world coordinates in cm. These coordinates were then
used to find plant radius in cm for that day.

By analyzing the growth of the one-hundred-twenty plants
in the garden over 46 days, and averaging the growth of a



Fig. 3: Plots of growth curves, radius (cm) over time (days), for both
simulated and real world plants. Borage was occluded by other plants
after day 40. Arugula was occluded starting on day 35. The blue curve
is real world radius. The red logistic curve is simulated radius from
AlphaGardenSim.

Plant Type g0 g1 m0 m1 r1 c1 c(35) e(35)

Borage 7 7 49 55 60 0.09 3107 6.61
Kale 3 7 62 55 65 0.10 7450 5.41
Swiss Chard 7 7 53 50 47 0.11 5536 9.93
Turnip 3 7 42 47 53 0.11 3961 10.04
Green Lettuce 7 9 43 52 27 0.08 232 7.46
Arugula 5 8 45 52 40 0.10 1133 5.50
Sorrel 7 15 53 70 8 0.08 59 9.58
Cilantro 7 10 53 65 20 0.09 23 10.76
Red Lettuce 5 12 45 50 28 0.09 10 11.61
Radicchio 5 9 83 55 53 0.09 53 9.28

TABLE I: Growth Analysis: Where g0 (days) is original germination time,
g1 (days) is tuned germination time, m0 (days) is original maturation time,
m1 (days) is tuned maturation time, r1 is radial growth potential, c1 is
radial growth rate, c(35) (cm2) is the simulated canopy coverage on day
35, and e(35) (cm) is the mean absolute error on day 35 between simulated
and average real world radius. Original values were taken from published
plant tables [34]. Growth time is found by subtracting g1 from m1. Sorrel
not only germinated later than other plants, but also had a growth potential
and growth rate that was minuscule compared to other plants in the physical
testbed.

plant with others of its same species we created a new growth
function in AlphaGardenSim:

r(t) =
r1

1 + r1 · e−c1t
where r1 is the plant’s radial growth potential, which controls
how large the plant will grow, and c1 is the plant’s radial
growth rate, which controls how fast the plant will grow.
Both values were fitted using measurements from the garden,
as shown in Fig. 3. The growth parameters of all ten plant
species were tuned in the simulator to match real measured
values, as shown in Fig I. The mean absolute error (MAE)
between the simulated plants and physical testbed plants is
displayed in Table I, along with growth parameters. It should
be noted that we observe substantial plant overlap by day
35, and after this day it was difficult to identify a plant’s
outermost radius. Thus, the MAE is taken on day 35 rather
than day 46.

VI. COMPANION PLANTING

Companion planting is an ancient technique of polyculture
where mutually beneficial plant types are placed in proximity
to each other. A positive or negative relationship between
companion plants can exist due to above and below ground
interactions [35], [36], [37]. Above ground includes physical
environment changes such as providing shade, protecting
against weather damage, and supplying structural support.
Below ground interactions include providing nitrogen which

fertilizes the soil, root-root activity and allelopathy, which
occurs when a plant releases toxic chemicals that inhibit
growth of other plants. While some crops such as grain
and fruit trees require uniform spacing for optimal growth
or harvesting, some such as leafy greens do not and can
take advantage of large seed beds such as the one in the
physical testbed. This motivates a method to find a garden
seed placement that exploits plant relationships, which can
lead to different yields and more or less efficient use of
resources [38], [39].

a) Modeling Companionship: Consider a garden with
N seeds: {s(1), · · · , s(N)}. Denote K as the set of plant
types in the garden, p(i) ∈ K as the plant type of seed i,
and l(i) = (xi, yi) as the location of seed i. Let rmax

k denote
the expected maximal radius of plants of type k. To model
plant interrelationships we use the plant relationship matrix
C ∈ R|K|×|K|. Ci,j stores a number that describes the level
of companionship between plants of type i and j, which
are not necessarily symmetric. In simulation, C is used to
calculate a local plant specific companionship factor c. For
a given plant i,

ci =
∑

j∈[1,··· ,N ],j 6=i

Cp(i),p(j)

‖l(i)− l(j)‖22
The strength of the companionship decays as the distance
between them grows.

In AlphaGardenSim 2.0, each plant’s daily radius grows
according to a factor G̃, determined by the local water and
light resources and competition. The effects of companion-
ship are modelled by a change to the growth value in the
simulator. The growth value is updated to be G = G̃ · c.

The C matrix was determined using the one-hundred and
twenty annotations provided by analyzing growth rates in the
physical testbed. Plants in the same relative location on each
side of the garden were compared to one another as well as
the average growth; if the same plant on both sides exhibited
either exaggerated growth or stunted growth, the neighbors
were noted and assigned positive or negative scalar val-
ues, respectively, to indicate companionship between plants.
These scalar values were then tuned to minimize the MAE
between simulated and real world individual plants.

b) Seed Placement: Given two plants, the larger their
relationship score the closer they would prefer to be. Then
for a garden of width W and height H with N seeds, the
following problem is solved to compute seed coordinates
(xi, yi) for every plant i:

max
∑

i,j∈[N ],i6=j

Cp(i),p(j)

‖l(i)− l(j)‖22
s.t. rmax

p(i) ≤ xi < W − rmax
p(i) ∀i ∈ [N ]

rmax
p(i) ≤ yi < H − rmax

p(i) ∀i ∈ [N ]

α(rmax
p(i) + rmax

p(j)) ≤ ‖l(i)− l(j)‖2 ∀i 6= j ∈ [N ]

The objective is to seed plants with a positive symbiotic
relationship close to each other and vice versa when the
relationship is negative. The first and second constraints
ensure that seed locations are within the garden boundaries.



(a) Greedy (b) Random (c) Optimized

Fig. 4: Left: Seed placement achieved by greedy neighbourhood swap
algorithm which ignores plant maximal radii, only taking into account
companionship scores. This produces an artificial looking garden with
limited interactions between plants of different species. Middle: Random
seed placement, producing a sparse garden with seeds too close together,
limiting the achievable coverage and diversity due to competition. Right:
Seed placement obtained by using the optimization described in Section V.
Small clusters of plants in irregular shapes are spread across the garden,
allowing for a variety of interactions between different plant species.

Finally the last constraint ensures that plant radii do not
overlap more than 100(1 − α) percent. α is a parameter
in [0, 1] that specifies the maximal level of overlap be-
tween plants. A larger α results in more plants overlap-
ping and thus interacting with each other. However if α
is too large, plants tend to create very tight clusters of
companion species, resulting in a difficulty for these plants
to grow and a limited coverage. In this case, the negative
effects of competition between neighbouring plants outweigh
the benefit brought by the proximity of companion plants.
To set α for a 150cm × 150cm garden with 10 species
and 6 seeds of each type, gardens were generated with
α ∈ [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0].
Each garden was simulated 5 times and α = 0.8 producing
the highest average coverage and diversity was selected. The
resulting seed placement is shown in Fig. 4.

VII. PRUNING AND IRRIGATION POLICIES

a) Analytic Automation Policy: In prior work [12], we
presented an analytic automation policy, Fixed Pruning, with
hand tuned parameters. For D(k), a set of k plant types
available in the garden, the policy observes the local canopy
coverage, plant health, and soil moisture levels defined by a
H
10×

W
5 sector of the garden. In addition, the policy observes

p(k, t), the global population in the garden as a distribution
over point types D. It applies one of four actions in each
sector: irrigate, prune, irrigate and prune, or null. When
pruning, the policy creates 5×5cm pruning window centered
around a target plant, simulating the inaccuracy of a pruner,
and reduces the radii of all plants visible in the window
by a fixed ratio U . To decide to prune, the policy checks
if the proportion of any plant type in the pruning window
is higher than a uniform threshold. To evaluate the policy’s
performance, we compute the average of canopy coverage,
plant diversity and water usage across days 20 to 70. We
focus on these 50 days since during these days both the fast
and the slow growing plants are in a growing stage.

However, as described in Section VIII(b), experiments
suggest that Fixed Pruning struggles to manage plants with
significant differences in germination times, maturation times
and max radii.

(a) Fixed Pruning (b) Variable Pruning

Fig. 5: Left: Simulation results for Fixed Pruning with fixed prune levels
of 15% and 2%. 15% prune level achieves good diversity but low coverage.
2% prune level is the opposite. Right: Variable Pruning on gardens over 100
days with the fast and slow plant types from Table II. Favoring coverage
initially, the policy uses variable pruning levels to achieve an average
coverage of 0.51. As Variable Pruning begins to value diversity more, it uses
higher prune rates beyond day 50 to achieve good coverage and diversity.

Plant Type Germination (days) Maturation (days) Max Radius (cm)
Fast growing 9.8 99.4 140.4
Slow growing 25.6 156.0 42.4

TABLE II: Average germination time, maturation time, and max radii of 5
fast and 5 slow growing plant types. We vary germination times, maturation
times and max radii of plants to identify combinations, such as the one in
the table, on which the analytic policy achieves significantly lower coverage,
as shown in Fig. 5(a).

b) 1-Step Lookahead Policy: To address this limitation,
we introduce Variable Pruning, a policy which dynamically
selects a pruning level U(t) ∈ U for each day t from
a discrete set of six pruning levels U , by taking a 1-
step lookahead, simulating the potential coverage cui

and
diversity values dui that would result from choosing pruning
level ui ∈ U on the current state of the garden. With the
simulated results, the policy uses tunable weights wc and
wd to favor either coverage or diversity at different times of
the growing period. To favor coverage during early growing
periods and diversity later on, we set wc = 1 − t̃

50 and
wd = t̃

50 where t̃ = t− 20, starting to affect after the prune
delay ends and lasting for 50 days until day 70. To favor
diversity early and coverage later, the weights are swapped.
The policy uses a weighted sum to determine which pruning
level is preferable for day t:

U(t) = max
ui∈U

(wc · cui
+ wd · dui

)

Once Variable Pruning chooses U(t), it uses Fixed Pruning
to determine actions for the sectors observed each day to
maximize both diversity and coverage.

c) Learned Policy: The computation time of Variable
Pruning however, increases with |U|. Each day, Variable
Pruning must run the simulator |U| more times than Fixed
Pruning. To reduce the computational cost of Variable Prun-
ing, we train a deep supervised learned policy, Learned
Pruning, mapping prune level U(t) demonstrations to full
garden observations as depicted in Fig. 6.

VIII. SIMULATION EXPERIMENTS

a) Seed Placement: We compare the coverage and
diversity achieved on two types of gardens shown in Fig. 4:
(i) random seed placement and (ii) optimized seed placement
using six seeds for each of the ten plant types in Table I.
Averaging over 10 simulations each, the optimized garden



Fig. 6: Learned Pruning Policy. A deep CNN with 18,244 parameters. The
network takes three inputs: an RGB image of the full garden, the distribution
of plant types, plant health and water levels, and the global population
distribution with soil. A prune level is predicted for the input observation.

achieves over 60% more coverage and 10% more diversity
than the randomly seeded gardens.

b) Fixed Pruning Performance: To illustrate the short-
comings of Fixed Pruning on plants with different germi-
nation times, maturation times and max radii, we simulated
2 fixed pruning policies, with 15% and 2% pruning levels
respectively, on a garden with 100 plants, 10 plants from
each of the 10 plant types in Table II where faster growing
plants grow 2X-20X faster than slower ones. Illustrated in
Fig. 5(a), since 5 species grow significantly faster than the
other 5, garden diversity rapidly drops during days 10 to 20.
To achieve uniform plant diversity, 15% heavily prunes the
faster plants to match the size of the slower growing plants
resulting low coverage. In contrast, 2%’s pruning fails to
keep up with the fast growing plants, resulting in lower plant
diversity compared to 15%.

c) Variable Pruning Performance: To compare Fixed
Pruning and Variable Pruning, we evaluate their perfor-
mances on two sets of 10 plant types. We initialize 150 ×
150cm sized gardens with 100 plants each sampled with
replacement from the plant types. For Variable Pruning, we
set wc = 1 − t̃

50 and wd = t̃
50 to favor coverage early and

diversity later. After experimenting with different pruning
levels, we provided Variable Pruning these pruning levels:
U ∈ (5%, 10%, 16%, 20%, 30%, 40%). The first set of plants
are from Table I and have similar growth parameters. From
experiments, we found that a fixed prune level of 15% for
Fixed Pruning leads to the highest coverage and diversity
values on the plant set. Results averaged across 20 test
gardens with random seed placements are summarized in
Table III. While Variable Pruning achieves higher coverage
due to its ability to favor coverage over diversity during early
growing periods, both policies achieve similar diversity and
water use. This is expected as a fixed prune level is able to
handle plant types with similar growth patterns.

Using the same parameters for both policies, we evaluate
their performances on the fast and slow growing species from
Table II. Results are presented in Table III and Fig. 5. Fixed
Pruning achieves low coverage on these gardens, killing the
plants at the beginning of the growing period. The high

Metric Fixed Variable Learned
Avg coverage 0.38 0.44 -
Avg diversity 0.92 0.91 -
Avg water use 0.06 0.06 -
Avg coverage 0.24 0.51 0.50
Avg diversity 0.77 0.73 0.73
Avg water use 0.08 0.08 0.08
Computation time (seconds) - 987.56 0.92

TABLE III: Policy evaluations of Fixed Pruning, Variable Pruning and
Learned Pruning averaged across 20 test gardens. Top 3 rows: use the 10
plant types from Table I. Bottom 4 rows: use the plant types from Table II.

diversity achieved afterwards represents a uniform but empty
garden. Variable Pruning, by favoring coverage early on,
initially uses a small prune level of 5%. As wd increases and
wc decreases over time, the policy shifts to favoring diversity
and uses higher prune levels between 10% and 40%. As a
result, Variable Pruning achieves high coverage and diversity.

d) Learned Pruning Performance: To achieve a com-
putationally efficient policy, we train Learned Pruning to map
full garden observations from gardens with the plant types
in Table II to prune levels. We simulate Variable Pruning on
10,000 gardens with randomized seed locations to collect
prune level demonstrations. The network is trained with
800K demonstrations for 30 epochs with the Adadelta [40]
optimizer and mean squared error loss. Table III summa-
rizes results averaged across 20 test gardens withheld from
the training dataset. Learned Pruning achieves comparable
performance to Variable Pruning but is over 1000X faster in
predicting U(t) for days 20 to 70.

IX. CONCLUSION

This paper presents a physical polyculture farming testbed
for estimating plant growth parameters and inter-plant com-
panion effects. We use the estimated parameters to tune
AlphaGardenSim 2.0 parameters, and developed an opti-
mization algorithm that uses companion plant relations to
generate a seed placement which yields high coverage and
plant diversity. We trained a supervised-learned policy that is
able to achieve high leaf coverage and plant diversity 1000X
faster than a lookahead policy. In future work we will esti-
mate stochastic models of growth parameters observed in the
physical testbed and use these to optimize seed placements
for subsequent growth cycles. This seed placement algorithm,
learned plant phenotyping model, and learned irrigation and
pruning models will be combined into a fully automated
controller that will operate irrigation and pruning tools over
multiple plant growth cycles.
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