
Environmental Map Learning with Multiple-robots

Azin Shamshirgaran Stefano Carpin

Abstract— This paper explores decision-making processes in
robotic systems tasked with reconstructing scalar fields through
sensing in uncertain environments. Each robot must handle
noisy perception and operate within specific environmental
and physical constraints. The complexity increases in multi-
agent scenarios, where robots must not only plan their actions
but also anticipate the movements and strategies of other
agents. Effective coordination is crucial to prevent collisions
and minimize redundant tasks. To address this challenge, we
propose an online, distributed multi-robot sampling algorithm
that combines Monte Carlo Tree Search (MCTS) with Gaussian
regression. In this approach, each robot iteratively selects its
next sampling point while exchanging limited information with
other robots and predicting their future actions. Predictions
about other robots future actions are computed with a MCTS
that is recomputed at each iteration to incorporate all informa-
tion collected up to that point. We evaluate the performance
of our method across diverse environments and team sizes,
comparing it to algorithmic alternatives.

I. INTRODUCTION

The use of multi-robot teams for information gathering
across multiple domains has seen a steady increase in recent
years. Examples of applications include search and rescue to
locate survivors [11], ocean exploration to map underwater
terrain and monitor water quality parameters such as pH
and chlorophyll [20], and data gathering in agricultural
settings for pesticide spraying, seed sowing, as well as farm
monitoring and sampling [6]. The work presented in this
paper continues our ongoing research on the use of single
and multi-robot systems to implement precision agriculture
practices relying on accurate data collection at scale [4],
[15], [16]. In particular, we focus on the implementation of
budget-aware algorithms, therefore casting our problem as an
instance of constrained optimization, whereby the goal is to
collect good data (in a sense to be formally defined later),
while being subject to constraints on the available energy
limiting the distance a robot can travel while fulfilling its
mission. The main contribution of this work relies on predict-
ing the next movements of other robots in the team to prevent
multiple robots from visiting and collecting data samples at
the same locations. This is achieved by sharing only limited
information, consistently with technologies currently used in
precision agriculture, such as LoRA. Each robot maintains an

A. Shamshirgaran is with Omron Robotics and Safety Technologies,
Inc., Pleasanton, CA, USA. S. Carpin is with the University of California,
Merced, USA. A. Shamshirgaran performed this work while she was with
UC Merced and was partially supported by USDA-NIFA under award
#2021-67022-33452 (National Robotics Initiative). S. Carpin is partially
supported by the IoT4Ag Engineering Research Center funded by the
National Science Foundation (NSF) under NSF Cooperative Agreement
Number EEC-1941529. Any opinions, findings, conclusions, or recommen-
dations expressed in this publication are those of the author(s) and do not
necessarily reflect the view of the USDA or the NSF.

estimate of the quantity being estimated using Gaussian Pro-
cess (GP) regression – a technique that has found widespread
application in this domain. For coordination, each robot relies
on Monte Carlo tree search to anticipate what other robots
may do based on the limited information exchanged. The
remainder of this paper is organized as follows. Selected
related work is presented in Section II and the necessary
background information needed is given in Section III. The
problem formulation for a single robot is presented in Section
IV, while the multi-robot version is discussed in Section V.
Extensive simulation results are presented in Section VI, and
conclusions are offered in Section VII.

II. RELATED WORK

We review selected works addressing some of the issues
we discuss in this paper. For multi-robot informative path
planning, MCTS has recently gained a great deal of attention.
In [2], [8], the authors proposed a method that combines
Gaussian processes (GPs) and MCTS to monitor the en-
vironment, while in [14], the authors study the 2D area
exploration by modifying MCTS. The goal is to minimize
the time required to cover the areas of interest by first
creating a tree of possible actions for the robots to take,
and then choosing the one that maximizes exploration gain.
To adapt to changes in the environment as it is explored,
the underlying tree structure is continuously adjusted by
changing the feasible actions for each node. The authors
of [14] also explored the decentralized multi-robot scenario.
Each robot shares its plan with another and each robot
stores the shared information in a buffer. At the beginning
of the next round of MCTS, the robot will choose one of
each robot’s shared information from the buffer and it will
update the map (reward function) based on that. Among the
differences between these works and ours is the fact that
budget constraints do not influence the choice of actions.
In [20], the goal is to plan the paths to identify hotspots in
unknown 2D environments with single as well as multiple
mobile robots. The spatial field of the environment is mod-
eled using Gaussian processes whose covariance function
has unknown hyperparameters. Their adaptive GP-MCTS
monotonically changes the hyperparameters of the GP model
to capture more complex function candidates. In the multi-
robot version, they divide the environment using Voronoi
partitioning whose center has been computed based on the
GP model. Our method differs from these because we do not
aim to only identify hotspots, but we rather aim at estimating
an unknown scalar field over its entire domain. This, in turn,
leads to the definition of a different reward function guiding
the selection of sampling locations.



III. PRELIMINARIES AND PROBLEM DEFINITION

A. Informative Path Planning
By collecting samples at a finite set of locations in an area

of interest U ⊂ ℜ2, using a team of robots we aim to estimate
a scalar function h : U → R which models a parameter
of interest (e.g., water chlorophyll, soil moisture, etc.). As
common in this domain [3], [19], the underlying physical
phenomenon is modeled using a Gaussian Process (GP).
We assume there are m robots in the team, each indicated
as Ri with i ∈ [1, 2, 3, ...,m]. All robots in the team are
equipped with identical sensors to estimate h. The location
of each robot (x, y-position) is denoted by sRi

s . Each robot
starts from a preassigned position sRi

init, and must terminate at
a preassigned final location sRi

f The location sRi
init models the

deployment location for robot Ri, while sRi

f represents the
desired end location for the robot. Each robot is assigned a
predetermined travel budget BRi limiting the distance it can
travel. This constraint models the limited energy provided by
the robot’s battery. If a robot exceeds its travel budget before
reaching its assigned goal location sRi

f , the robot stops and
this is considered a failure, as from a practical standpoint
this will require someone to go and retrieve or recharge the
robot in the field – a costly operation. For simplicity, we
assume in the following that all robots have the same budget
BRi , but the algorithms we present can generalize. A multi-
robot informative path planning (IPP) method aims to select
paths and sampling locations for each robot Ri that do not
exceed the travel budget and maximize the quality of the
reconstructed field h. In this paper, as common in literature
[4], [7], we use mean square error to quantify the quality of
the reconstructed field (see also Section VI.)

B. Gaussian Process Regression
To model the spatial distribution of the scalar field h,

we use Gaussian Processes (GP). GPs are widely used in
geostatistics [17], [19] to model environmental parameters.
Considering that xRi

g is the scalar reading collected by robot
Ri at location sg , and χRi

g is the random variable modeling
xRi
g that follows a Gaussian distribution with mean µg

and variance σ2
g , GP regression algorithms can be used to

estimate the posterior of h using the data collected at the
sample locations (see [13] for a thorough introduction to
this topic.)

C. Monte Carlo tree search (MCTS)
MCTS is widely used to solve model-based sequential

stochastic decision problems [5], [21]. In the MCTS frame-
work, one constructs a tree with a root representing the cur-
rent state and edges connecting states that can be reached by
executing a single action. A tree is built by adding nodes that
represent states that can be reached by following a sequence
of actions. Q-values are assigned to each action indicating
how good the action will be, which is an estimation of the
value that will be obtained from complete execution starting
with that action. The action is selected after the tree has been
constructed. As soon as the selected action is executed, the
tree is discarded and rebuilt with the next state as its root.

A critical component in MCTS is the tree policy for action
selection. For selection of actions, one popular criterion is
the UCT rule defined in Eq. (1) (Upper Confidence bound
for Trees) derived from [9] in which each candidate action
a is assigned a UCT (a) value defined as

UCT (a) = Qt(a) + c

√
ln t

Nt(a)
(1)

In the end, the action with the highest UCT value is selected.
In Eq. (1), Qt(a) is the estimate of action value based on
rollouts, Nt(a) is the number of times that action a has
been selected before time t, and c is the exploration constant
balances exploration and exploitation. Initially, Nt(a) is zero
for all actions1.

IV. SINGLE ROBOT SAMPLING

We start presenting two methods for single robot informa-
tion acquisition that will then be extended for the multi-robot
instance. In both cases the area of interest is partitioned into
a uniform grid where each robot occupies one grid cell. We
introduce two methods: the All grid MCTS algorithm (All-
MCTS) and the sampling location based MCTS (SMCTS).

A. All grid MCTS algorithm (All-MCTS)

The All-MCTS method has been built upon the AdaptGP-
MCTS discussed in [20]. The main difference is that the
method presented in [20] operates on a continuous domain
and assumes that robots can move to any point by executing a
set of preassigned motion primitives. In addition, [20] does
not consider a finite travel budget. The method presented
in this section, instead, operates on a grid and aims at
reaching the preassigned final location before the robot runs
out of energy. Each robot’s next sampling location is selected
using the MCTS algorithm where the current location of
the robot ss is considered as the root node of the MCTS
tree. Each grid cell (and therefore each robot position) has
an associated children set Ψ[ss] including all locations that
can be reached through the execution of a single motion
action. Ψ[ss] includes all grid neighbors located one or two
hops away from the current robot location (see Figure 1
where the highlighted area represents the children; one step
neighbors are shown in blue and two step neighbors are in
orange color.) In addition, the final location sf is always
added to the children map so that from any location robot
Ri can always consider moving to the final goal location.
This is useful when the travel budget is about to expire.
Due to the fact that the children set includes all possible
neighbors surrounding the robot’s current location, we call
this algorithm All-MCTS. MCTS then expands the tree by
adding for each node one of the node’s children.

The reward rg associated with each neighbor potential
sampling location sg considered by robot Ri is defined as
(as per the original method in [20]):

1UCT (a) is assumed to be ∞ when Nt(a) = 0, thus forcing explo-
ration.



Fig. 1: Left: Robot’s children set Ψ[ss] in the All-MCTS method.
One step neighbors are shown in blue and two step neighbors are
in orange color. Right: Candidate locations in the SMCTS method
consisting of a set of locations V scattered in the environment.

rg = σ + β1/2µ (2)

where σ is the variance of the candidate location, µ is
mean, and β is the number of measurements collected.
The factor β encourages the robot to visit locations with
high estimated values for h before exploring unknown areas
with higher variance. The selection of the next location
is performed online, i.e., the reward associated with each
location is not predetermined, but re-estimated iteratively
using GP regression algorithms using the data collected at the
locations already visited. This means that in Eq. (2), σ and
µ are the values estimated by the GP regression algorithm
based on the samples collected thus far.

MCTS is iterated for a fixed number of times, and at each
iteration, the path and leaf are chosen using the UCT formula
defined in Eq. (1). When a leaf is reached, as per the MCTS
framework, a rollout is executed to estimate the quality of the
leaf, i.e., its Q value. In our implementation we use a simple
random rollout, i.e., the planner continues to select additional
random locations from the children map until it either reaches
the final destination or runs out of energy. During the MCTS
expansion and rollout, every time a candidate location is
included in the tree, a generative model is used to estimate
how much energy would be consumed. This estimate is given
by the formula defined in Eq. (3)

cgs = αd(ss, sg) + l · ε(1, d) (3)

where d(ss, sg) is the Euclidean distance between the current
location, ss and candidate location sg , ε is a random sample
from a uniform distribution over the interval [1, d] and l is a
constant. This additional term accounts for the stochasticity
in the energy consumed. After the tree T has been built,
the next location sg is selected based on the UCT formula
and the robot moves to sg and collects a sample. Then, the
budget of the robot is updated by considering the amount
of estimated energy consumed during the motion and the
GP is updated based on the value read at sg . The process
continues until the robot reaches the final destination, which
is a success, or it runs out of energy, which is a failure.
Algorithm 1 sketches the process.

The inputs are the initial location sinit, the final location
sf , and the assigned budget, B. In the beginning, the set of
visited locations A contains just the initial location. To avoid

Algorithm 1 Online All-MCTS planner for robot R with
limited Budget B

1: Input: sinit, sf , B
2: A ← {sinit}
3: ss ← sinit
4: while B > 0 and ss ̸= sf do
5: cand← Ψ[ss] \ A
6: T , sg ← MCTS(ss, cand)
7: Move to sg , collect reading xg , and observe con-

sumed energy cgs
8: σg, µg ← update GP with new observation xg

9: B ← B − cgs
10: A ← A∪ {sg}
11: ss ← sg
12: end while
13: return B, A

revisiting the same locations, the input of the MCTS planner
is the set Ψ[ss] \A stored in cand set instead of Ψ[ss]. This
algorithm returns the remaining budget and the set of visited
locations.

B. Sampling location based MCTS algorithm (SMCTS)

This method (dubbed SMCTS in the following) differs
from All-MCTS in how it selects the possible next locations
and in how it assigns rewards to candidate locations. The
children set in All-MCTS method included all grids sur-
rounding the current location for sampling, but the children
set in this method consists of n preassigned sample locations
of interest scattered in the environment that are often identi-
fied a-priori by domain experts based on past experience. In
this case, we have one more input to the Algorithm 1, i.e., the
set V = {s1, s2, . . . , sn} of candidate locations. The number
of locations and the placements of the elements V is such
that the robot does not have sufficient budget to visit all of
them, otherwise the problem becomes trivial (see Figure 1).
This setup is similar to what we considered in our former
works [15], [16], and is informed by practices implemented
in precision agriculture (e.g., the definition of sentinel lo-
cations to be monitored through the growing season). For
SMCTS, the children set Ψ[sg] contains the locations that
can be reached from ss. Problem instances may have tens or
hundreds of possible locations, so considering them all would
result in search trees with extremely high branching factors,
and this would be unmanageable. To minimize planning time,
we limit the locations that are considered from each location
in children set, which is returned by Ψ[ss]. Setting M (an
even number) as the maximum for the branching factor for
the MCTS, M/2 elements in Ψ[ss] are the nearest elements
in V , while M/2−1 are chosen randomly from the rest. This
selection balances global exploration and local exploitation.
Additionally, the final location sf is always added to children
set Ψ. As in the previous method, the addition of sf ensures
that from any location the robot can always consider moving
to the final location if the travel budget is about to expire. In
SMCTS, each candidate location is assigned a reward rg as



per the following formula which favors locations with high
uncertainty (σg) and small distance:

rg =
σ2
g

d(ss, sg) + l · ε(1, d)
(4)

where d(ss, sg) is the Euclidean distance between the
current location, ss and candidate location sg and l · ε(1, d)
models noise as formerly described.

V. MULTI-ROBOT EXTENSION

We now extend our algorithms for multi-robot scenarios.
Since the differences between All-MCTS and SMCTS are
in the children set and reward function, for brevity we will
only cover Multi Robot SMCTS, with a note that Multi
Robot All-MCTS is the same except for changing the two
aforementioned components. Algorithm 2 sketches how the
previous SMCTS algorithm can be extended for multiple
robots. Our proposed method relies on predicting the next
k movement of other robots to prevent two robots from
visiting the same location simultaneously, which is the main
contribution of this work. Simultaneous visits to the same
location by multiple robots are undesirable because duplicate
efforts lead to less efficient resource use. The proposed
algorithm also balances exploration and exploitation based
on energy consumed, remaining energy, and rewards each
robot receives after visiting different locations. This will
allow each robot to determine its next destination while
respecting the budget constraint. Let us assume there are
m robots in the team. Considering all visited locations by
robot Ri and other robots j ̸= i that have been shared with
robot Ri and all predicted locations for other robots j ̸= i,
the next location, sg will be chosen as follows:

sg = argmaxQt(sg) for sg ∈ cand[sRi
s ]

with

cand[sRi
s ] = Ψ[sRi

s ]−ARi − ∪mj=1j ̸=i
ARj − ∪mj=1j ̸=i

sRj
g

(5)

where Ψ[sRi
s ] is the children set for the current location sRi

s ,
ARi is the set of visited locations by the robot itself, ARj

is the set of visited locations by other robots, and s
Rj
g is the

predicted locations visited by the other robots in a team.
Robot Ri predicts the next decision (the next sample

location that will be visited), sRj
g of other robots, Rj , using

the following equation

rRj
g =

σ2
g

d(s
Rj
s , sg) + l · ε(1, d)

(6)

where σg is variance of the candidate location sg ∈ V ,
and d(s

Rj
s , sg) is the Euclidean distance between the current

location of robot Rj , s
Rj
s , and selected location, sg , and

l · ε(1, d) models noise. In Eq. 5, Qt(sg) is defined as a
function of the reward sequence

Qt(sg) = rtg + λrt+1
g′ + ...+ λT−trTgT ; 0 ≤ λ ≤ 1

where λ is a factor discounting future rewards, T is the time
of the last action, g, g′, ..., gT are selected sample locations
and rg is the reward associated with the sampling location
g.

Lemma 5.1: In case sr has been predicted in step k as
the next sampling location of robot j, i.e s

Rj
g , which will be

eliminated from candidate locations of current location robot
Ri, sr still has a chance of being considered in candidate
location of robot Ri and being chosen in step k+m, where
m ≥ 1. (In other words, removing the nodes from candidates
in step k does not remove them permanently)

Proof: Let us consider sample location sr is in the
children set in step k, Ψ[sk] = {sl, ..., sr, ..., sf} and in step
k + m, Ψ[sk+m] = {st, ..., sr, ..., sf} for location sk and
sk+m. Let us assume in step k, the sr has been removed
from cand[sRi

k ] because it has been predicted as a s
Rj
g ,

so cand[sRi

k ] = {sl, , ..., sf}. In step k + m, if sr has
not visited by other robots and has not predicted as a next
sampling location by other robots, then it will appear in the
cand[sRi

k+m] in step k+m no matter that it has been removed
from it previously in step k (that is due to the fact that in
each step and for each location, the Ψ[sk] are independent
from each other) and then it has a chance of being chosen
based on Equation 6.

The MCTS algorithm is used to select the next location
to be visited, sg . The current location of the robot Ri, sRi

s

is considered as a root node of the MCTS tree.

Algorithm 2 Online Multi Robot SMCTS planner (executed
by each robot Ri)

1: Input: V , sRi
init, s

Ri

f , BRi

2: ARi ← {sRi
init}

3: sRi
s ← sRi

init

4: while BRi > 0 and sRi
s ̸= sRi

f do
5: candRi ← Ψ[sRi

s ] \ ARi

6: for all j ̸= i& j ∈ m do
7: estimate s

Rj
g based on argmax r

Rj
g (Eq. (4))

8: candRi ← candRi \ ARj

9: end for
10: T , sg ← MCTS(sRi

s , candRi )
11: Move to sg , collect reading xRi

g , and measure con-
sumed energy cgs

12: σ2
g ← update GP with new observation xRi

g

13: BRi ← BRi − cgs
14: ARi ← ARi ∪ {sg}
15: sRi

s ← sg
16: Brodacast(sRi

s )
17: end while
18: return BRi , ARi

In our proposed method, each robot Ri shares its visited
locations with other robots. Even though robots share their
locations at each iteration, they do not share the values of
the collected samples. Using the data collected at the sample
locations, a posterior of h can be estimated using standard



GP regression algorithms. As this posterior was created based
on local data from one robot, it remains local and is not
shared. Our communication model assumes that robots can
exchange limited information (such as locations) at long
range. This is in line with the current technology used by
robots in agricultural applications and previous work [4],
[10]. In particular, LoRa [18] permits transmitting limited
data at long distances. If two candidates’ predicted variances
are the same, adding the distance to the reward function
biases the algorithm toward closer locations. In Eq. (6) and
Eq. (3), noise is added in the predictive models to account
for the uncertainty in travel costs.

Lemma 5.2: If the robots’ current locations are different,
but their distance to the candidate location is the same, they
will not choose the same location.

Proof: The next location is selected based on
argmaxQt(sg) for sg where Qt(sg) is defined as a function
of reward sequence

Qt(sg) = rtg + λrt+1
g′ + ...+ λT−trTgT ; 0 ≤ λ ≤ 1

Qt(sg) =
σ2
g

d(sRi
s , sg) + lϵ(1, d)

+

λ
σ2
g′

d(sRi
s , sg′) + lϵ(1, d)

+ ...

where λ is a factor discounting future rewards and T is
the time of the last action. g, g′, ..., g′′ are selected sample
locations and rg is the reward associated with the sampling
location g. As it can be seen, rtg depends on the distance
metrics plus random samples from a uniform distribution, so
even though the variance may be equal, the distance will not
be similar since it uses random samples and the rewards will
not be equal either.

VI. RESULTS AND DISCUSSION

We evaluate the two proposed methods using two different
datasets (see Figure 2.) The California Central Valley soil
moisture dataset is a self developed dataset featuring soil
moisture data manually collected and interpolated in a com-
mercial vineyard [22]. The NASA chlorophyll concentration
dataset includes measures collected on Sep 1, 2023, obtained
from NASA Earth Observations from a Pacific ocean sub-
region [1]. The purpose of this satellite observation is to
determine how much phytoplankton is growing in the ocean.
The green color of phytoplankton is due to chlorophyll.
Both datasets, albeit different in nature, include a scalar
datafield to be estimated through measurements. To assess
and compare the performance of the various algorithms, we
consider three metrics. The first is the mean square error
(MSE) between ĥ (the estimate of h) and h itself:

MSE =
1

n
Σn

i=1(hi − ĥi)
2 (7)

where n is the number of cells in the grid. In our im-
plementation, GP regression is computed using the scikit-
learn Python library [12] and its GP regression module
using Mattérn Kernel with length scale of 1 and smoothness

Fig. 2: Left: the scalar field modeled by the California Central
Valley soil moisture dataset. Right: the scalar field modeled by
the NASA chlorophyll concentration dataset. In both cases, warmer
colors indicate higher values for the underlying scalar field h.

parameter of ν = 1.5. The choice of the kernel and of the
parameters was made after having experimentally evaluated
different alternatives and having assessed that these are the
best choices. Both algorithms build the posterior for h over
all grid cells based on all collected measurements. As the
SMCTS selects sample locations that are potentially far away
while All-grid MCTS always selects nearby locations, we
allow SMCTS to also collect samples along the way towards
the sample location. This ensures that in both cases the
number of collected samples is comparable. The second
metric we consider is the remaining budget, which is the
amount of energy that has not been used when the mission
terminates. Ideally, this value should be low to ensure robots
make the best of use of their allocated energy resources.
Finally, we want to minimize the number of failures in the
team. In this context, a team failure is defined as the event
when at least one robot runs out of energy before reaching the
final location. In the soil moisture dataset, we compare our
algorithms with the algorithm proposed in [10] using their
own implementation. This experimental setup is similar to
what we did in [16] and allows to compare our proposed
methods against established literature.

A. California Central Valley soil moisture dataset

For SMCTS, we have 100 sample locations that are
distributed throughout the environment by sampling from a
uniform distribution, i.e., the locations are not informed by
the underlying unknown scalar field. For Ψ we set M = 30,
while in Eq. (1) we set c = 3, and in Eq. (3) we use Euclidean
distance. Table I summarizes the results. The table displays
the budget B, the number of robots NRi , the average MSE
error, and the average remaining budget for each robot Bre.
The numerical comparison shows that SMCTS outperforms
All-MCTS across the board. As the budget and number
of robots increase, the performance of All-MCTS becomes
similar to SMCTS. This happens because with a large budget
and a large number of robots, it is possible to visit more
locations without coordination. The opposite is true when
the number of robots is smaller or the budget is tight, and in
such cases coordination is essential. This is ensured by the
different reward function used by SMCTS. Importantly, we
also see that for small budgets, SMTCS outperforms MRS,
while for large budgets MRS emerges as the best option. This
is an important observation, as we are interested in scenarios



(a) (b)

(c) (d)

Fig. 3: Figures (a)-(b) show five-robots sampling paths with budget
B = 100 in vineyard environment using SMCTS and All-MCTS.
Figures (c)-(d) show five-robots sampling paths with budget B =
100 in ocean environment using SMCTS and All-MCTS.

where resources are constrained, i.e., small budgets. Note that
since MRS is a deterministic method, its standard deviation
is 0.

Figures 3(a) and 3(b) show the paths taken by 5 robots
with B = 100 using SMCTS and All-MCTS, respectively.
In SMCTS, the reward function encourages the robots to
explore the entire environment while in All-MCTS, the
reward function drives them to visit hotspot locations first,
and thus they cannot explore the rest of the environment
due to budget constraints. Therefore, with tighter budgets,
SMCTS perform better than All-MCTS.

B. NASA chlorophyll concentration dataset

Having established the relative merit of SMCTS and All-
MCTS with respect to MRS, for lack of space we here just
compare SMCTS and All-MCTS. For SMCTS, again, we
have 100 sample locations that are distributed throughout
the environment. For the function Ψ we set M = 30. In
Eq. (1) we set c = 3, and in Eq. (3) we use Euclidean
distance and k = 0.1. Table II summarizes the metrics for
All-MCTS, and SMCTS. It can be seen that SMCTS again
outperforms All-MCTS with a tight budget, while All-MCTS
achieves better MSE with a higher budget. Figure 3 (c) and
(d) show the paths taken by 5 robots with B = 100 using
SMCTS and All-MCTS, respectively. All-MCTS rewards the
robots for only visiting hotspot locations, and since there
is a hotspot at the beginning of their paths, they spend
much of their time exploring it, which means they can not
explore the rest of the environment due to a limited budget.
Alternatively, SMCTS rewards the robot for exploring the
entire environment resulting in better performance with a
tight budget.

B NRi
method MSE (std) Bre(std)

100 1 All-MCTS 3.81 (0.94) 8.18 (2.17)

100 1 SMCTS 3.66 (0.79) 7.91 (1.09)

100 1 MRS 3.84 (0) 8.5 (0)

100 3 All-MCTS 3.52 (0.80) 9.24 (3.41)

100 3 SMCTS 3.21 (0.71) 8.22 (2.87)

100 3 MRS 3.30 (0) 7.5 (0)

100 5 All-MCTS 2.43 (0.83) 12.96 (3.27)

100 5 SMCTS 2.30 (0.64) 10.78 (2.76)

100 5 MRS 2.37 (0) 14 (0)

200 1 All-MCTS 3.61 (0.82) 12.16 (3.04)

200 1 SMCTS 3.27 (0.70) 13.09 (3.41)

200 1 MRS 3.47 (0) 13.5(0)

200 3 All-MCTS 2.31 (0.68) 14.11 (3.81)

200 3 SMCTS 2.38 (0.73) 14.17 (4.20)

200 3 MRS 1.14 (0) 13 (0)

200 5 All-MCTS 2.35 (0.55) 13.01 (4.10)

200 5 SMCTS 2.21 (0.48) 11.90 (3.29)

200 5 MRS 0.24 (0) 12.5 (0)

TABLE I: Results for the California Central Valley soil moisture
dataset.

B NRi
method MSE (std) Bre(std)

100 1 All-MCTS 1.12 (0.37) 5.6 (1.74)

100 1 SMCTS 1.04 (0.29) 5.1 (1.08)

100 3 All-MCTS 0.93 (0.28) 7.18 (2.01)

100 3 SMCTS 0.84 (0.23) 8.1 (2.17)

100 5 All-MCTS 0.69 (0.17) 9.80 (3.21)

100 5 SMCTS 0.48 (0.11) 8.23 (2.84)

200 1 All-MCTS 0.91 (0.23) 9.19 (2.97)

200 1 SMCTS 0.74 (0.19) 10.45 (3.61)

200 3 ALL-MCTS 0.42 (0.16) 8.76 (2.64)

200 3 SMCTS 0.37 (0.13) 8.31 (2.26)

200 5 All-MCTS 0.28 (0.07) 11.04 (3.49)

200 5 SMCTS 0.32 (0.09) 11.27 (4.18)

TABLE II: Results for the NASA chlorophyll concentration dataset.

VII. CONCLUSIONS AND FUTURE WORK

Using the MCTS algorithm, we proposed an online dis-
tributed multi-robot sampling method that scales with the
number of robots in the team. The robots share their past
experiences (visited sampling locations), and each robot
estimates the next movement and decision of the others in
order to minimize revisiting locations. Each time a sample
location is measured, the GP model of the scalar field is
updated. We propose a method that is more accurate, fails
less frequently, and has a lower remaining budget than
baseline methods. Also, our proposed methods do not require
prior knowledge of the environment distribution. The next
step will be to examine different fleet sizes and to test the
proposed method with real robots.



REFERENCES

[1] NASA Chlorophyll concentration data-set. Available at
https://neo.gsfc.nasa.gov/view.php?datasetId=
MY1DMM_CHLORA (2024/04/01).

[2] G. Best, O. M Cliff, T. Patten, R. R. Mettu, and R. Fitch. Dec-
mcts: Decentralized planning for multi-robot active perception. The
International Journal of Robotics Research, 38(2-3):316–337, 2019.

[3] L. Booth and S. Carpin. Informative path planning for scalar
dynamic reconstruction using coregionalized Gaussian processes and
a spatiotemporal kernel. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 8112–8119,
2023.

[4] L. Booth and S. Carpin. Distributed estimation of scalar fields
with implicit coordination. In J. Bourgeois et al., editor, Distributed
Autonomous Robotic Systems 16., pages 466–478. Springer, 2024.

[5] S. Carpin and T. C. Thayer. Solving stochastic orienteering problems
with chance constraints using monte carlo tree search. In 2022 IEEE
18th International Conference on Automation Science and Engineering
(CASE), pages 1170–1177. IEEE, 2022.

[6] A. Dechemi, D. Chatziparaschis, J. Chen, M. Campbell, A. Shamshir-
garan, C. Mucchiani, A. Roy-Chowdhury, S. Carpin, and K. Karydis.
Robotic assessment of a crop’s need for watering. IEEE Robotics and
Automation Magazine, 30(4):52 – 67, 2023.

[7] G. A. Hollinger and G. S. Sukhatme. Sampling-based robotic infor-
mation gathering algorithms. The International Journal of Robotics
Research, 33(9):1271–1287, 2014.

[8] D. Jang, J. Yoo, C. Y. Son, and H. J. Kim. Fully distributed informative
planning for environmental learning with multi-robot systems. arXiv
preprint arXiv:2112.14433, 2021.

[9] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In
European conference on machine learning, pages 282–293. Springer,
2006.

[10] S. Manjanna, M. A. Hsieh, and G. Dudek. Scalable multirobot plan-
ning for informed spatial sampling. Autonomous Robots, 46(7):817–
829, 2022.

[11] J. Orr and A. Dutta. Multi-agent deep reinforcement learning for
multi-robot applications: A survey. Sensors, 23(7):3625, 2023.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830, 2011.

[13] C.E. Rasmussen and C.K.I. Williams. Gaussian processes for machine
learning. MIT Press, 2005.

[14] B. Sean, L. Bartolomei, F. Kennel-Maushart, and M. Chli. Decen-
tralised multi-robot exploration using monte carlo tree search. In
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robotis and Systems, pages 7354–7361, 2023.

[15] A. Shamshirgaran and S. Carpin. Reconstructing a spatial field with
an autonomous robot under a budget constraint. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 8963–8970, 2022.

[16] A. Shamshirgaran, S. Manjanna, and S. Carpin. Distributed multi-
robot online sampling with budget constraints. In Proceedings of the
IEEE International Conference on Robotics and Automation, pages
12658–12664, 2024.

[17] M. L. Stein. Interpolation of spatial data: some theory for kriging.
Springer Science & Business Media, 1999.

[18] J. S. P. Sundaram, W. Du, and Zh. Zhiwei. A survey on lora
networking: Research problems, current solutions, and open issues.
IEEE Communications Surveys & Tutorials, 22(1):371–388, 2019.

[19] V. Suryan and P. Tokekar. Learning a spatial field in minimum time
with a team of robots. IEEE Transactions on Robotics, 36(5):1562–
1576, 2020.

[20] V. Suryan and P. Tokekar. Efficiently identifying hotspots in a spatially
varying field with multiple robots. arXiv preprint arXiv:2309.07981,
2023.

[21] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[22] T. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin. Multi-
robot routing algorithms for robots operating in vineyards. IEEE
Transactions on Automation Science and Engineering, 17(3):1184–
1194, 2020.

https://neo.gsfc.nasa.gov/view.php?datasetId=MY1DMM_CHLORA
https://neo.gsfc.nasa.gov/view.php?datasetId=MY1DMM_CHLORA

	Introduction
	Related Work
	Preliminaries and Problem Definition
	Informative Path Planning
	Gaussian Process Regression
	Monte Carlo tree search (MCTS)

	Single Robot Sampling
	All grid MCTS algorithm (All-MCTS)
	Sampling location based MCTS algorithm (SMCTS)

	Multi-robot extension
	Results and Discussion
	California Central Valley soil moisture dataset
	NASA chlorophyll concentration dataset

	Conclusions and Future Work
	References

