Leveraging LLMs for Mission Planning in Precision Agriculture

Marcos Abel Zuzuérregui

Abstract— Robotics and artificial intelligence hold significant
potential for advancing precision agriculture. While robotic
systems have been successfully deployed for various tasks,
adapting them to perform diverse missions remains challenging,
particularly because end users often lack technical expertise.
In this paper, we present an end-to-end system that lever-
ages large language models (LLMs), specifically ChatGPT,
to enable users to assign complex data collection tasks to
autonomous robots using natural language instructions. To
enhance reusability, mission plans are encoded using an existing
IEEE task specification standard, and are executed on robots
via ROS2 nodes that bridge high-level mission descriptions
with existing ROS libraries. Through extensive experiments, we
highlight the strengths and limitations of LLMs in this context,
particularly regarding spatial reasoning and solving complex
routing challenges, and show how our proposed implementation
overcomes them.

I. INTRODUCTION

Mission planning (MP) can be defined as “any system that
plans the operations of another system or any of its compo-
nents” [15] and is central to the deployment and adoption
of autonomous robotic systems operating in semi-structured
or unstructured environments [4], [5], [17]. MP is related
to other classic areas in robotics and planning, such as task
and motion planning [11] and mission specification through
linear temporal logic [24]. Solving MP problems involves
multiple challenges. One deals with synthesizing a plan
leading to the desired outcome. In classic Al research dealing
with assembly tasks, it is often assumed that the outcome of
actions is predictable, and notwithstanding the problem re-
mains often very difficult due to the large branching factor in
the search space. Another aspect relates to how one informs
the MP system about the desired outcome, especially when
the desired behavior involves complex sequences of actions
with uncertain outcomes. Our ongoing research in robotics
for precision agriculture [9] motivates our interest for MP
in this application area, and there are various interrelated
challenges we tackle in this paper. As agricultural robots
are expected to be operated by non specialists, a natural
requirement is to empower users with the ability of syn-
thesizing complex mission plans without having to deal with
low level details or understanding system level complexities.
Moreover, in precision agriculture missions, robots operate in
semi-structured environments where the outcome of actions

The authors are with the Department of Computer Science and Engineer-
ing, University of California, Merced, CA, USA. This work is partially
supported by the IoT4Ag Engineering Research Center funded by the
National Science Foundation (NSF) under NSF Cooperative Agreement
Number EEC-1941529 and under grant CMMI-2326310. Any opinions,
findings, conclusions, or recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the view of the National
Science Foundation.

Stefano Carpin

Fig. 1: A task in precision agriculture: a robot acquiring
thermal imaging of a pistachio tree for water stress detection.

is unpredictable. Importantly, the outcome of the mission
may depend on data collected at run time. For example, a
robot may be tasked with collecting pictures of some trees
(see e.g. Figure [I), and the actions may be adjusted at run
time based on partial results (e.g., if trees appear to be
stressed, the robot may be additionally required to collect
soil moisture samples). Another layer of complexity arises
from the fact that robots operating in rural areas often lack
network connectivity, making it impossible to access remote
services in real time. Additionally, a critical component of
these applications is the need for spatial planning and rea-
soning, both in quantitative terms (e.g., taking three moisture
measurements 15 meters apart) and qualitative terms (e.g.,
measuring soil nitrate levels on the east side of the orchard).

Starting from these premises, we present an end-to-end
system that tackles these challenges exploiting the novel
abilities offered by large language models (LLMs). With the
advent LLMs, the intersection between natural language pro-
cessing, planning and robotics is seeing tremendous growth
[18], [23], in an effort to make human-robot interactions
seamless. Considering our focus on precision agriculture,
we question whether the same principles applied in large
language models (LLMs) could be relevant in this domain.
For instance, when planning a robot’s path through an
orchard, numerous contingencies must be taken into account,
which can influence the trajectory. While the primary goals
are being met, it is also essential to optimize resources
and adhere to various constraints. Can current LLM models
solve mission planning problems in precision agriculture
requiring to handle uncertain outcomes, spatial awareness

and resource optimization?

In this paper, we examine the use of LLMs to generate
mission plans and explore the standardization of LLM-
generated mission plan outputs based on the recently pub-
lished IEEE Standard for task specification. [2]. We will
also show the limitations of ChatGPT and the necessity to
augment a mission plan with human designed components to
solve mission relevant resource optimization problems. The
contribution of this paper are the following:

o we present an LLM to robotic task execution pipeline
for autonomous navigation and data collection;

o we show how our use of a LLM mission planner can
be integrated with the IEEE standard 1872.1-2024 [2];

o we investigate whether mission plans generated lever-
aging LLMs can effectively reason about space and
consider stochastic optimization constraints typical of
the precision agriculture domain;

o we validate our proposed system in the field and show
limits and strengths.

The rest of the paper is as follows. Selected related work
is presented in Section [[I} In Section |1l where we describe
the system we developed, experiments detailing our findings
are given in Section and conclusions are given in Section

II. RELATED LITERATURE

1) Mission Planning: Literature in MP for robotics is vast,
and over the years we have seen an increase in mission
planning literature ranging from distributed and dynamic
mission planning [5], [17] to applied mission planning [4] to
the ever popular manipulator planning [3], [12], [13]. While
often mission plans are specified using linear temporal logic
(LTL) [16], [17], [19], this creates a difficult interface for end
users. Notably, many of these papers focus on some form
of runnable code generation. We differ by implementing a
well-formed, decomposed task representation by way of [2]
to standardize our mission plan output. For example, [18],
[23], [25] used logical, non-standardized task decomposition
definitions generated in Python. To our knowledge, this
paper is the first to use this type of generic non-executable
framework in mission planning.

2) LLMs: While solving MP problems, many authors
also integrate modern LLMs into their architectures, such
as [12], [18], [21], [23], among others. However, in all of
these papers and many others, the task is typically some
form of robotic manipulation. While there exists literature
in autonomous navigation [8], [10], [30] using LLMs, to the
best of our knowledge, we have yet to read anything about
precision agriculture mission planning using LLMs. The key
difference in these autonomous navigational papers is that
they mostly focus on semantic reasoning, while we address
task representation.

Where previously LTL [14] and Planning Domain Defini-
tion Language (PDDL) [2] were used extensively in the past
to generate mission plans, the difference in our experiments
is that we use ChatGPT to generate Extensible Markup Lan-
guage (XML) against an XML Schema Definition (XSD).

While seen before in [27] where LLM output is well-
formed by format-restriction prompting, our contribution also
incorporates a rationale behind the format through [2].

III. SYSTEM ARCHITECTURE AND DESIGN

As mentioned in the introduction, one of our design
objectives is to align the MP output with the IEEE standard
1872.1-2024 for representing robotic tasks [2]. This choice is
motivated by the goal of developing tools that can be easily
interfaced with other systems following the same standard.
While we considered alternatives such as IEEE 1872.2-2021
[1], we decided on 1872.1-2024 due to its focus on task
specific representation. Accordingly, the framework behind
our architecture is broken up into the functional software
blocks defined in [2]: specification, user, approval, execution,
and evaluation (see Figure [2). These five modules are further
organized into two levels. Defined in [2], a Level 1 (L1)
plan is an abstract mission format representation with a
modular decomposition of tasks. An L1 plan specifies what
should be done, but not sow it should be done. In our
implementation, L1 plans are represented by XML files
following an XSD schema encoding the task representation
defined in the standard. A Level 2 (L2) plan defines how
each of the tasks in an L1 plan can be executed on a specific
robot platform.

Core to the proposed approach is our cloud-based user
interface powered by OpenAI’s GPT-40 which generates the
L1 mission plan. In the current implementation, a simple text
based interface is exposed for the user to input a mission
using natural language. There are no special computational
requirements for this module other than internet connectivity
and an OpenAl API token. The second part of the pipeline
consists of a set of ROS2 nodes processing missions repre-
sented as L1 plans, and decoding them into L2 plans and
then executing them. Depending on the robot platform used
to execute the mission, these will target specific hardware
modules. As explained in Section in our case the L2
module targets a ClearPath Husky with a self-developed
sensor suite appropriate for the agricultural monitoring tasks
we are interested in. We next describe the role of each of
the five functional modules.

1) Specification: The specification step provides the con-
text necessary for the LLM to solve the MP problem. It
is within this context that a mission described in natural
language is later converted into an L1 plan encoded in XML.
Accordingly, the specification consists of two files. The first
is an XSD L1 schema representing both the mission plan
format as well as an available atomic action pool for the
robot(s) being commanded. While in some literature PDDL
is used to to represent this knowledge, we chose XML for
its established presence in the software engineering industry.
Notably, the first instance of the XSD framework was also
created by ChatGPT after being provided with the standard in
[2]. Starting from the initial XSD file produced by ChatGPT,
we then added the robot task pool and schema level detail to
ensure task sequences are encoded as behavior trees. These
manual additions were necessary because they were not part

Specification

XSD Schema:
Defines XML syntax and robotc

"Send my robot to take
pictures of 5 yellow
trees if.”

Approval

Execution

1#ROS 2‘“—‘ e

N

MoveToFirstTree

L1 Plan

TakePictureOfTreel

Ket MoveToSecondTree

TakePictureOfTree2

MoveToThirdTree

(‘:l} wission outcone

Level 1 Plan

Level 2 Plan

Fig. 2: Our proposed architecture follows the guidance of [2] and breaks up MP into five functional roles. We place each
of our software modules into at least one of the five blocks to get a data pipeline that ingests context and natural language,
creates an offline L1 plan, converts — at run time — said plan into a L2 plan, and then executes it.

of the standard. Moreover, the addition of the robot task
pool does require domain knowledge of which capabilities a
specific robot hasﬂ Accordingly, we shaped the relationship
between XML tags such that when an L1 plan is generated
its resulting task sequence takes the shape of a behavior
tree. This creates a conformance to both the IEEE standard
and behavior tree modeling, something that can be used
generally by other applications seeking to integrate a mission
planner. The second part of the specification provides instead
the spatial context describing the environment where the
mission will be executed. In our domain, this represents the
spatial layout of the specific farm where the mission will
be executed. This is presented in Geographical JavaScript
Object Notation (GeoJSON). This file contains locations and
characteristics about the farm, e.g., the GPS location of trees,
as well as other characteristics, such as tree attributes (age,
type, recorded yield, etc.) and more. In a typical use of
our system, a user (described in the next subsection) would
start by typing a desired mission query, e.g., “Send the robot
to take pictures of yellow trees in the northern half of the
farm.” GPT-4o0 translates this request into a mission plan
being aware of both the high level capabilities of the robot
(as per the XSD file) and the geographic area where the robot
should operate (as per the GeoJSON file).

2) User: The user role encompasses any entity that uti-
lizes the specification to generate an output. In our imple-
mentation, there are two user entities, i.e., the human end
user who types the mission request, and the ChatGPT front
end that generates an L1 plan. In this context, ChatGPT
serves as an extension of the end user, bridging the gap
between the user’s textual query and the context provided
by the specification.

IThe complete XSD schema, supplementary material, and the code are
available on lucmercedrobotics.github.io/gpt-mp-ros2.

Both user entities bring complementary expertise relevant
to the precision agriculture domain. The human, with farming
experience, can formulate natural language queries aimed
at gathering domain-specific data. ChatGPT, empowered by
the background knowledge of the large language model
and the provided context, synthesizes mission plans based
on underlying robotic capabilities, ultimately achieving the
desired outcome — even if the human has limited knowledge
of the robotic platform and its capabilities. This approach
abstracts from the complexities of MP by allowing ChatGPT
to take on the role of curator to eliminate the need for the
human to require much context at all, farm or robot related.

3) Approval: After an L1 plan is generated, the approval
step validates the L1 output against the XSD schema pro-
vided in the specification. This ensures that the mission
plans can be sent offline to the robot for execution. During
this phase, there is a closed loop with the ChatGPT agent
ensuring that whatever mission is generated is syntactically
valid. This step is driven by the observation that ChatGPT
sometimes generates XML files that do not fully comply with
the XSD provided in the specification. When this happens,
the L1 plan is sent back to ChatGPT together with the error
identified by the XSD validator and ChatGPT is asked to fix
the error. In all instances we observed that a single iteration
through this feedback loop is sufficient to fix any detected
error. It shall be noted that this iteration, when executed,
is fully automated and does not necessitate of any human
intervention. After this first approval step, the L1 plan is
sent to the robot, where the same validation step occurs on
target, to verify successful transmission. This step is critical
in that after this stage there is no further syntactic validation
and the robot will be subject to whatever mission plan has
been generated. After these two validation steps, starting
from a simple mission prompt provided by the human end

ucmercedrobotics.github.io/gpt-mp-ros2

user, a valid L1 plan encoded in XML and compliant with
the 1872.1-2024 standard and the XSD schema has reached
the robot. On the target robot, a set of ROS2 nodes then
converts an approved L1 plan into an L2 plan by parsing
the XML file and decoding it to generate a task sequence.
More specifically, the ROS2 nodes ensure that the L1 input
follows the structure of a behavior tree, with attributes that
define both each individual task and the overall system state.
While this step could in principle also be performed off the
robot, in our implementation it is executed on the robot,
because verifying robot configuration and preconditions can
be done directly while decomposing tasks. After decoding
is successful, a list of task objects is generated in ROS2’s
messaging framework via a service. The robot will first check
all preconditions to ensure it is ready to accept this plan.
Then, a list of tasks in the form of a behavior tree are parsed
and sequenced for the next block.

4) Execution: During execution, the robot performs the
sequence of tasks derived from the L2 plan with the objective
of achieving the goal specified by the human. At this stage,
the execution becomes a classic closed loop system until
successful completion of the mission. Using the same exam-
ple query from Section [[II-.1} a decomposed atomic L2 task
would be presented to the navigational ROS2 software stack,
Nav2, and the robot would head north. Note that it is up to
ChatGPT to extract from the GeoJSON file a GPS coordinate
corresponding to “north” and making it available to Nav2
via the pipeline we discussed so far. The handshake between
execution and evaluation (discussed in the next subsection)
is shared by Nav2 and our custom ROS?2 task orchestration
node. Both will manage task execution and evaluation to
varying degrees. Given execution and evaluation are tightly
coupled, we will decouple the data flow and discuss the
former in the remainder of this section with the latter in the
next. For navigation specific tasks, integral to applications in
robotics for precision agriculture, Nav2 is leveraged to ensure
accurate execution via localization relying on the Kalman
filter node provided by ROS2 augmented with RTK GPS.
In our example case, the request to take pictures in the
northern half of the orchard will result in a task moving
the robot to a specific GPS point satisfying the geographic
request. Nav2 handles the navigation, together with obstacle
avoidance also leveraging our formerly developed custom
extension for robust navigation in agricultural environments
[26]. For data collection and sensor tasks, we leverage
peripheral management nodes that orchestrates the onboard
sensors set to collect data. Following again the same example
query from Section [[II-.T] this node detects yellow leaves via
a camera. For each peripheral onboard the robot, a ROS2
service is executed to handle requests as the tasks come in.

5) Evaluation: As the robot executes L2 tasks, evaluation
is implemented on two different levels. First, we leverage
ROS2’s Nav2 stack for handling dynamic evaluation of an
initial path between two points. The path navigator packaged
with Nav2 will receive said points and perform the evaluation
of success via the same localization techniques that helped
it traverse the path. In the second level, we incorporate

custom ROS2 nodes that query data collection for use in
adhering to constraints or abiding by the behavior tree.
In our example, the robot would constantly be checking
navigational status while executing movement between two
points: the start point and a tree in the north of the farm.
Upon reaching the tree, the next sequential task, taking a
picture, would be sent to the picture action server and the
orchestrator then waits for a response on whether the tree
is yellow or not. In the experiments presented in the next
section, we show how evaluation also tackles some tasks that
the LLMs alone cannot properly solve. In our application
domain we have to assume an offline scenario where there
is no network connectivity, thus preventing ChatGPT from
possibly revising a mission plan that is not progressing
as expected. For example, if the user specifies a mission
with resources constraints, the evaluation module monitors
progress and intervenes if run time execution shows that the
constraints will likely be. This is particular important because
we observed ChatGPT’s limitations in solving optimization
tasks and its occasional inability to properly reason about
space. Additionally, the user may specify a mission without
constraints because it ignores the the limitations of the
robotic system that will execute the mission. For example,
robots operating in orchards have limited energy budget
and must return to the charging station or deploy point
before their batteries are depleted. To complicate matters,
the consumed energy is not fully predictable upfront, but is
rather a random variable. This problem is known to be an
instance of the the stochastic orienteering problem (SOP), a
problem we have formerly studied in the context of precision
agriculture [6], [28] With a constraint on total distance
traveled and no way of pre-planning, due to the stochastic
nature of the travel, the ability to manage these constraints
at run time is delegated to the evaluation step. It is our
contention that the proposed architecture not only solves for
SOPs, but can be generalized to solve for other optimization
problems that cannot be fully solved offline by the LLM. We
will show the results for solving SOPs in Section

IV. RESULTS

In this section we show how the system we described can
synthesize and execute complex missions starting from high
level descriptions in natural language. Due to space limita-
tions, only a subset of results is presented. The companion
video, as well as the website linked in Section provide
additional details and visuals for the interested reader, as well
as the code.

A. Experimental Setup

All missions are run on a ClearPath Husky controlled by
an Nvidia Jetson Orin Nano running ROS2 Humble. The
robot is equipped with a U-blox ZED-F9P GNSS module
and with a Bosch BMIO85 IMU for localization (both feeding
the extended Kalman Filter node part of ROS2 and used for
outdoor localization). We used GPT-40-2024-05-13 with a
temperature of 0.2 and set max response tokens to 4096,
i.e., the max supported by GPT-4o0. While this could be a

Mission Queries Number of Tasks Success?
non-spatial reasoning
73 pictures in row of 57 8 (0 conditionals) True
74 trees, 2 sensors” 8 (0 conditionals) True
”Reward shaping” 20 (0 conditionals) True
75 nested if conditionals” 14 (5 conditionals) True
“If-else with nesting” 16 (5 conditionals) True
spatial reasoning
4 corners relative” 8 (0 conditionals) False
”4 corners absolute” 8 (0 conditionals) False
”Sample 100 meters of trees” 10 (O conditionals) True*
”North, center, east samples” 6 (0 conditionals) False
”Relative conditionals” 8 (2 conditionals) False
“Relative + absolute conditionals” 17 (2 conditionals) False

TABLE I: Assessment of various mission prompts presented
to our MP system. * technically correct, but extremely
suboptimal. See Section for more.

limitation in that complex mission plans could be longer than
4096 tokens, in our experiments this never happened.

We assess ChatGPT’s ability to solve MP problems in
precision agriculture, focusing on generating complex con-
ditional mission plans using behavior trees and evaluat-
ing mission success. We compare its performance on non-
spatial and spatial planning problems of varying complexity.
Building on these findings, we demonstrate the need for
additional planning software to optimize LLM-based MP.
Using our Husky robot in a real-world testbed, we showcase
mission execution with and without supplementary planning
tools. Finally, we evaluate how easily ChatGPT’s output can
be generalized across different problem types. Full mission
prompts are available on the website and video, with Table [I]
showing abbreviated versions. Our study aims to answer: 1.
Can we use ChatGPT to solve offline MP problems without
any supporting planning software modules? 2. Can ChatGPT
understand spatially complex mission queries? 3. Can we
leverage the generality of LLMs to optimize mission planning
problems with constraints?

B. Solving MP problems and Spatial Awareness

We began by evaluating ChatGPT’s capability in solving
general MP problems with and without spatial awareness
requirements. Similar to previous works [18], [22], [23],
our goal is to assess ChatGPT’s proficiency in generating
behavior trees that support mission specifications involving
navigation and data acquisition tasks. To this end, we asked
an array of mission queries to understand ChatGPT’s lim-
itations with respect to conditional complexity and spatial
awareness. The set of queries range from simple, complex,
conditional, to spatial. Note that all missions were manually
reviewed for semantic success. Their results are found in
Table [l Syntactically, all missions generated from ChatGPT
were correct and paths generated were feasible. When deal-
ing with all forms of non-spatial MP (i.e., requests not asking
to reason about space), our architecture never failed. From
simple tasks like taking three pictures in a row of five trees to
more complex conditional tasks like taking samples of trees
depending on the outcomes of previous samples, ChatGPT
proved to generate semantically valid and feasible mission
plans. However, while we were able to generate behavior tree

logic for complex conditional navigational missions, doing
so sometimes required an extremely detailed specification in
natural language — something a non-specialist user would
not easily produce. More precisely, an example request was,
“From the starting point, find a tree somewhere in the middle
of the orchard and measure CQOs. If low reading, go to and
take 2 pictures of nearby trees. From there, measure another
tree as far away as possible for COs and repeat the same
process. Once done, take a temperature reading at any one of
the northern most trees. Finally, return to end.” The problem
comes from the second sentence, where we had originally
intended that the robot visits two unique trees nearby, with
“trees” being plural, and take a single picture at each of them.
However, no matter the configuration, the LLM produced a
mission plan to visit a single tree and take two pictures of
it. After changing the second sentence to, “If low reading,
go to 2 different trees nearby and take a picture of each of
them” we finally saw the intended output. The nature of this
problem is visualized in Figure [3] In requiring this explicit
distinction, we see the need for effective functional validation
practices shown by [14] and the venue for future work.

MoveToMiddleTree MoveToMiddleTree

low reading low reading

MeasureCO, MeasureCO,

MoveToNearbyTree

MoveToNearbyTree TakeThermalPic

Take2ThermalPics MoveToNearbyTree

normal reading
normal reading

TakeThermalPic

MoveToFarAwayTree —1

MoveToFarAwayTree

Fig. 3: Demonstration that without explicit intent, sometimes
nuanced statements are missed. Here, we see two different
behavior trees from two very similar queries. The added tasks
are highlighted in green with the starting tasks in light blue.

Next, we tested our system on more complex, realistic
missions that would come from a typical data aggregation ex-
pedition. This often involves some form of spatial awareness
or reasoning, and we correspondingly broke this assessment
into two parts: absolute and relative spatial cognition. In
these cases we tested ChatGPT’s ability to interpret prompt
including terms such as “north” or “south” and simple spatial
concepts like what is the shape of the orchard in which
the robot operates. During this testing, as Table [I| suggests,
we almost immediately ran into problems. While all of
the missions were syntactically valid, ChatGPT often times
misunderstood the geometry of the farm or its orientation.
In two of the queries, 4 corners absolute/relative” in Table
[we asked our LLM planner to trace the four corners of
our farm plot. As seen in Figure] ChatGPT creates a path
through the orchard which is close but not actually what we
asked for. A similar output in ”Sample 100 meters of trees”,
where we ask ChatGPT to sample the most trees possible
in 100 meters and it only samples roughly trees spanning
17 meters which is is obviously suboptimal. These nuances
demonstrate the limitations of using only ChatGPT output to
guide a navigational stack. In the next subsection, we will

expand on this last mission prompt and show how adding
a spatially aware software module as part of the evaluation
block can immensely improve performance.

Fig. 4: With left being north, we asked ChatGPT to trace the
4 corners of our “rectangular” farm layout, shown in white.
The green is a relative query (corners of rectangle) and the
blue is an absolute query (cardinal direction).

C. Optimization and constraints

As we just saw, the current version of ChatGPT does
not display the type of spatial awareness needed for MP in
precision agriculture [20]. Therefore, given that many of the
problems we study have an inherent optimization component
related to spatial awareness, we included in our system
a spatial planning module to overcome ChatGPT’s current
limitations. For these experiments, we follow the architecture
drawn in Figure 2] and add to the validation block a stochastic
orienteering solver [31] to enable constrained route optimiza-
tion. We focused on stochastic orienteering — a variant of
deterministic orienteering particularly relevant in precision
agriculture— in which an agent must maximize the utility
collected by visiting a set of locations while subject to a
hard bound on the traveled distance due to the limited energy
provided by the onboard battery. Uniquely, distance traveled
is not known until after path execution as the environment is,
as the name suggests, stochastic. Performance is measured
in two ways: collected utility R, and failure, F', defined as
the fraction of missions that violate the constraints. We use
these metrics to compare the offline mission provided by
ChatGPT used alone or in conjunction with an optimization
algorithm (called GPT-SOP in the following) as part of the
evaluation block. For completeness, we also show the results
with the optimal offline mixed integer linear programming
(MILP) [29] solver that, for graphs above size 20, must be

Fig. 5: A plot of our Husky robot’s GPS path on our pistachio
orchard testbed while solving for an instance of a mission
plan where not all trees can be visited with the allocated
budget.

GPT-SOP Solver ChatGPT MILP
R F R F R F
graph20p_, | 2.092 11% 2.095 | 4% 3414 | 12%
graph30p_, | 5.592 9% 2531 | 10% | 6973 | 10%
graphd0p_, | 5.785 7% 2710 | 13% | 8.843 | 10%

TABLE II: Overall results from benchmarks used in [7]
averaged over 100 trials.

capped at 10 minutes per solution, while GPT alone operates
in the seconds range and [31] in the milliseconds. This gives
us measurable metrics showing how our SOP online solver is
essential to the architecture. To grasp the significance of this
addition, we started by asking ChatGPT to collect pictures
of a large set of trees in an orchard, ignoring the fact that
the robot does not have sufficient autonomy to visit them
all. Figure [5] shows that even though ChatGPT produces an
L1 plan aiming at visiting numerous trees (marked in blue)
the GPT-SOP component embedded in the evaluation plan
intervenes and limits the visit to a few, ensuring the robot
reaches the end point (red dot) before it runs out of energy.

In Table |ll we show numerical results where Chat-GPT
is asked to produce plans visiting as many trees as possible
on orchards with different number of trees (varying from 20
to 40) while sticking to a limit on the maximum traveled
distance (parameter). Note, B has no units due to being
based on the normalized total size of the graph in any units.
As we can see, ChatGPT alone (middle), produces plans that
are extremely conservative in terms of collected rewards R,
while still incurring in relatively high failure rates. Once the
system is augmented with our online GPT-SOP solver (left),
results dramatically improve. When reading the rationale
ChatGPT sends with the mission plan, it expresses that it is
using some form of a greedy strategy when selecting nodes.
Due to the complexity presented in SOPs, such a simple
heuristic will only perform so well. Plans generated by GPT
alone will succumb to more failures due to being offline
solutions, whereas [31] implements an online solution that
is trained to understand stochasticity.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented a full pipeline that leveraging
LLM:s starts from a high level objective specified in natural
language and produces mission plans that can be executed by
a robot operating in an orchard with no internet connectivity.
To the best of our knowledge, this is the first example
leveraging LLMs in this domain. The solution we proposed
provides a valuable tool to enable non specialists to utilize
robotics and Al in precision agriculture. Our experimentation
has shown that LLM can be beneficial, but may fall short
when facing tasks requiring spatial awareness or constrained
optimization. These limitations are overcome by augmenting
the system with optimization algorithms part of the evalua-
tion block in the proposed architecture. Future research will
explore how this architecture can be extended to systems
featuring multiple robots, as well as robots interacting with
fixed deployed infrastructure such as static sensors.

[1]
[2]
[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

IEEE Standard for Autonomous Robotics (AuR) Ontology. IEEE Std
1872.2-2021, pages 1-49, 2022.

IEEE Standard for Robot Task Representation. /EEE Std 1872.1-2024,
pages 1-32, 2024.

M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, and
C. et al. Finn. Do As I Can, Not As I Say: Grounding Language in
Robotic Affordances, August 2022. arXiv:2204.01691 [cs].

M. Askarpour, C. Menghi, G. Belli, M.M. Bersani, and P. Pelliccione.
Mind the gap: Robotic Mission Planning Meets Software Engineering.
In Proceedings of the 8th International Conference on Formal Methods
in Software Engineering, FormaliSE *20, pages 55-65, New York, NY,
USA, October 2020. Association for Computing Machinery.

B.L. Brumitt and A. Stentz. Dynamic mission planning for multiple
mobile robots. In Proceedings of IEEE International Conference on
Robotics and Automation, pages 2396-2401 vol.3, 1996.

S. Carpin. Solving stochastic orienteering problems with chance
constraints using monte carlo tree search. IEEE Transactions on Au-
tomation Science and Engineering, (Accepted for publication) Preprint
available on ArXiv https://arxiv.org/abs/2409.03170.

S. Carpin and T. C. Thayer. Solving stochastic orienteering problems
with chance constraints using monte carlo tree search. In Proceedings
of the IEEE International Conference on Automation Science and
Engineering, pages 1170-1177, 2022.

L. Chen, O. Sinavski, J. Hiinermann, A. Karnsund, A.J. Willmott,
D. Birch, D. Maund, and J. Shotton. Driving with LLMs: Fusing
Object-Level Vector Modality for Explainable Autonomous Driving.
In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 14093-14100, 2024.

A. Dechemi, D. Chatziparaschis, J. Chen, M. Campbell, A. Shamshir-
garan, C. Mucchiani, A. Roy-Chowdhury, S. Carpin, and K. Karydis.
Robotic assessment of a crop’s need for watering. IEEE Robotics and
Automation Magazine, 30(4):52 — 67, 2023.

A. Elhafsi, R. Sinha, C. Agia, E. Schmerling, I. Nesnas, and
M. Pavone. Semantic Anomaly Detection with Large Language
Models, September 2023. arXiv:2305.11307 [cs].

C.R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L.P. Kaelbling,
and T. Lozano-Pérez. Integrated task and motion planning. Annual
Review of Control, Robotics, and Autonomous Systems, 4:265-293,
2021.

W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language Models as
Zero-Shot Planners: Extracting Actionable Knowledge for Embodied
Agents, March 2022. arXiv:2201.07207 [cs].

W. Huang, F. Xia, and T. et al. Xiao. Inner Monologue: Embod-
ied Reasoning through Planning with Language Models, July 2022.
arXiv:2207.05608 [cs].

C. JanBen, C. Richter, and H. Wehrheim. Can ChatGPT support
software verification?, November 2023. arXiv:2311.02433 [cs].

M. Jones, E. M. Sorensen, T. Wolff, and C. R. Haddow. A review of
mission planning systems. In Proceedings of the Second International
Symposium on Ground Data Systems for Space Mission Operations,
1993.

S. Kalluraya, G. J. Pappas, and Y. Kantaros. Resilient Temporal
Logic Planning in the Presence of Robot Failures, October 2023.
arXiv:2305.05485 [cs].

S. Kalluraya, G.J. Pappas, and Y. Kantaros. = Multi-robot Mis-
sion Planning in Dynamic Semantic Environments, March 2023.
arXiv:2209.06323 [cs, eess].

S.S. Kannan, V.L.N. Venkatesh, and B.C. Min. SMART-LLM: Smart
Multi-Agent Robot Task Planning using Large Language Models,
March 2024. arXiv:2309.10062 [cs].

A. Kumar and R. Kala. Linear Temporal Logic-based Mission Plan-
ning. International Journal of Interactive Multimedia and Artificial
Intelligence, 3(7):32, 2016.

F. Li, D.C. Hogg, and A.G. Cohn. Advancing Spatial Reasoning in
Large Language Models: An In-Depth Evaluation and Enhancement
Using the StepGame Benchmark, January 2024.

J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng. Code as Policies: Language Model Programs for Em-
bodied Control. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 9493-9500, 2023.

A. Macaluso, N. Cote, and S. Chitta. Toward Automated Programming
for Robotic Assembly Using ChatGPT, May 2024. arXiv:2405.08216
[cs].

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

C.E. Mower, Y. Wan, H. Yu, A. Grosnit, J. Gonzalez-Billandon, and
M. et al. Zimmer. ROS-LLM: A ROS framework for embodied AI with
task feedback and structured reasoning, July 2024. arXiv:2406.19741
[cs].

E. Plaku and S. Karaman. Motion planning with temporal-logic speci-
fications: Progress and challenges. Al communications, 29(1):151-162,
2016.

Y. Rizk, M. Awad, and E.W. Tunstel. Cooperative heterogeneous
multi-robot systems: A survey. ACM Comput. Surv., 52(2), apr 2019.
E. Sani, A. Sgorbissa, and S. Carpin. Improving the ros 2 nav-
igation stack with real-time local costmap updates for agricultural
applications. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 17701-17707, 2024.

ZR. Tam, CK. Wu, YL. Tsai, C.Y. Lin, HY. Lee, and Y.N.
Chen. Let Me Speak Freely? A Study on the Impact of Format
Restrictions on Performance of Large Language Models, August 2024.
arXiv:2408.02442 [cs] version: 1.

T.C. Thayer and S. Carpin. A fast algorithm for stochastic orienteering
with chance constraints. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 7961-7968,
2021.

P. Varakantham and A. Kumar. Optimization approaches for solv-
ing chance constrained stochastic orienteering problems. In Patrice
Perny, Marc Pirlot, and Alexis Tsoukias, editors, Algorithmic Decision
Theory, pages 387-398, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

Z. Xu, Y. Zhang, E. Xie, Z. Zhao, Y. Guo, K.K. Wong, Z. Li, and
H. Zhao. DriveGPT4: Interpretable End-to-end Autonomous Driving
via Large Language Model, March 2024. arXiv:2310.01412 [cs]
version: 4.

M.A. Zuzudrregui and S. Carpin. Solving Stochastic Orienteering
Problems with Chance Constraints Using a GNN Powered Monte
Carlo Tree Search, September 2024. arXiv:2409.04653 [cs].

	Introduction
	Related Literature
	Mission Planning
	LLMs

	System Architecture and Design
	Specification
	User
	Approval
	Execution
	Evaluation

	Results
	Experimental Setup
	Solving MP problems and Spatial Awareness
	Optimization and constraints

	Conclusions and Future Work
	References

