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Abstract— For robots tasked with surveying the temporal
dynamics of a changing environment, a choice must be made to
observe novel regions of the environment or to re-survey pre-
viously visited regions, which may have changed. We present a
novel multi-robot informative path planner (IPP) that combines
an environmental and task kernel to direct mobile robots to
gather samples from regions that would result in the greatest
expected improvement in map accuracy. Our planner utilizes
a multi-output Gaussian process to unify priors about the spa-
tiotemporal environment along with priors about observational
correlations between sensing vehicles. Additionally, we extend
our analysis into an adaptive planning scenario and examine
the performance under different planning configurations. We
find that planning performance is largely driven by the choice
of environmental priors, and that unrepresentative priors can
be improved through adaptive planning.

I. INTRODUCTION AND RELATED WORK

With the growth in use of antonomous vehicles for agri-
culture and natural resource management [15], so too grows
the burden for distilling actionable information from the
observations gathered. In the field of geostatistics, there is a
long history of using mathematical methods for modeling
environments through sparse measurements [24]. This is
particularly relevant when observations require direct sam-
pling, such as for robotic plant phenotyping [6] and robotic
sampling of plant tissues [5].

This paper considers the task of modeling a dynamic phe-
nomenon in an environment with a team of robots equipped
with point sensors. Given a limited movement budget, it is
desirable for the robots to visit locations that will result in
the most accurate signal reconstructions when the surveying
mission is complete.

This task of informative path planning (IPP) aims to find
obstacle-free trajectories in an environment that maximize
the information gathered during traveling. When applied to
environmental monitoring tasks, it is closely related to the
task of optimal sensor placement [10], and can be considered
as an optimization problem subject to constraints such as
the physical confines of the rows of an vineyard [25] or the
locations of pre-established monitoring stations [3]. When
the process to be monitored evolves over time, there is a
choice to be made: whether to explore unvisited locations in
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Fig. 1: An example of a planning mission with 3 vehicles in an
ocean turbidity monitoring example. Vehicle movement history is
displayed with a white outline. In this image, 3 vehicles have
acquired 4 observations each. Candidate paths and sampling lo-
cations as proposed by our planner are shown in dashed lines. The
planner for the green vehicle has just finished, and proposed the
best candidate path, shown in the dotted red line.

the environment, or to re-survey previously-visited locations
that may have changed. Approaches explored in prior works
include a recursive-greedy approach for surveying a time-
varying field with a single robot [2] and multi-robot efforts
that leverage clustering in order to divide the observa-
tion domain among different sampling vehicles. Recent IPP
approaches consider robotic path planning in response to
multiple objectives, such as variable sensor models [19], and
multi-modal sensor configurations [17].

When surveying unknown environments, it is often desir-
able to utilize an adaptive sampling scheme, where new sam-
ples are targeted based on information collected from previ-
ous samples in the surveying mission in order to improve the
overall surveying ability of the robotic system (subject to the
evaluation criteria) [7]. When extended to robotic surveying,
this has been called the adaptive informative path planning
(AIPP) problem. Recent literature has found learning-based
approaches to be particularly suited to AIPP across a wide
variety of mapping objectives [18] [26] [11] and different
approaches have been used to extend the task into multi-
robot surveying efforts [14] [22].

In this work we present a multi-robot informative path
planner IIG-Cooperative, that guides robots to gather obser-
vations in regions that result in a higher expected improve-
ment of the environmental map. Our approach is cooperative
as it is able to incorporate information from other robots
involved in the team surveying task. This algorithm builds



upon IIG, an informative sampling-based planner [13] that
utilized mutual information as the basis for establishing when
a proposed sampling location would result in an improved
model of an environment. The algorithm in turn builds
upon RIG, which presented an informative planner based
on RRTs [16] to find obstacle-free trajectories through an
environment that maximize information gathered along the
way by leveraging the asymptotic optimality of random-
trees. [12]. In a previous effort, we presented IIG-ST, which
utilizes an information-theoretic stopping criterion with an
information function that trades off between exploring new
environments and re-surveying previous potentially-stale ob-
servations, when monitoring a time-varying spatiotemporal
phenomenon [4].

IIG-Cooperative adds an information function that in-
corporates the location of observations from other sensing
vehicles into a robot’s evaluation of the information gain at
proposed sampling locations. In [4], the performance of the
algorithm was dependent on tuning the information function
to the environment through expert selection of spatial and
temporal priors. In this work, we overcome the limitation
by presenting an adaptive planning framework that alternates
between planning, execution, and updating the environmental
priors in order to generate an improvement of planning
performance as a survey proceeds. The main contributions
of this work are as follows:

• IIG-Cooperative, an informative path planner that in-
tegrates multi-vehicle interactions through a separable
kernel, reconciled to the surveying objective

• An open-source 1 adaptive planning framework that
takes advantage of observations gathered to create a
best-effort continuous improvement of model hyperpa-
rameters and planning optimality

• An experimental validation of the base planner and a
spatiotemporal variant under different configuration and
communication scenarios

Figure 1 shows an example of our cooperative planner
used in an ocean monitoring example. Our approach is dis-
cussed in section III and is enabled by the use of a multi-task
Gaussian process, where each robot’s observations comprise
an input of a multi-input modeling task. We extend this effort
in an adaptive planning framework, applied in experiments
on simulated and natural environments in section IV. Our
framework can accommodate a diverse variety of planning
and configuration scenarios, including variable sensor models
and variable noise models, all of which will serve as the basis
for future investigation (discussed in section V).

II. PROBLEM FORMULATION

Consider the case where an environmental field is observed
by different sensing agents v, comprising a team of Nv

agents. The different agents may be equipped with different
sensors that may have different noise characteristics, and
observations that are unlikely to be coincident in space and
time.

1https://github.com/ucmercedrobotics/ipp-RRT-family

We can consider three scenarios:
1) Where observations from all sensing agents are shared

to form one unified training set, for a unified model
that serves as the basis for allocating future sampling
locations for all sensing vehicles, by a global planner.

2) Where observations from a given sensing agent v are
used to build a representation of the environment that
is only used to inform future plans for the agent v.

3) Where correlations between sensing agents are cap-
tured in a covariance function. Each agent indepen-
dently builds a representation of the environment,
assisted with knowledge of observations collected from
other sensing agents.

Case 1 can be addressed through a variety of approaches,
including partitioning an environment among a set of sensing
agents. Case 2 is applicable if we apply any single-robot IPP
algorithm to a team of surveying robots, who independently
sample and plan without knowledge of the other agents in
the team.

This paper considers Case 3, where each member v of
the team of robots is tasked with producing an independent,
internal representation of the environment to guide its own
planning. We denote each task with the letter j. Observations
are shared between robots and are used to update each robot’s
internal representation of map uncertainty.

In our planning framework, robots alternate between:
planning, surveying, communicating, updating priors, and re-
planning. This occurs in a continuous loop until the end
of the allotted survey period, or until the robots consume
their movement budget. At the end, observations from all
robots are aggregated to form a final, unified model of the
environment.

III. METHODS

A. Overview

Our planning framework encodes the intuition that it is
more desirable to collect observations where a model is
deficient, rather than where a model is sufficient. In the fol-
lowing sections we describe: the form of the environmental
model and how we derive model adequacy (subsection III-
B); how we encode and update prior knowledge about the
environment and the sensing vehicles (subsection III-C); and
how this knowledge allow us to determine where to sample
(subsection III-D). Implementation details of our planner and
an algorithmic overview are found in (subsection III-E)

B. Environmental model

Congruent with standard approaches in geostatistics, we
extend a 2D spatial regression task (Kriging) to consider a 3D
regression task of an unknown scalar-valued environmental
process that changes over time (e.g., chemical concentration
and distribution, soil moisture content, etc.) represented as
the function: f : X → R that is modeled on discrete intervals
in space (Nx,y) and time (Nt) where, X ⊂ RNx,y×RNt . The
phenomenon is observed through noisy measurements yi,j
made at location i ∈ Nx,y ∪ Nt by sensing agent j where,
yi,j = f(xi) + εj . Noisy perturbations εj are modeled with



a zero-mean, homoskedastic, additive Gaussian noise model,
that is consistent within a given sensor on vehicle v (denoted
by task j): ε ∼ N

(
0, σ2

j I
)
.

1) GP regression: We model f as a realization of a
Gaussian process, represented over a space of functions in
R3 and follow the standard notation provided in [20]. We
can represent the joint distribution of noisy observations y
(f(x1)+ε1, . . . , f(xn)+εn) and predictions of the function
f (f⋆, . . . , f⋆n ) as:

[
y

f(x⋆)

]
∼ N

(
µ,

[
k(X,X) + σ2In k (X, x⋆)

k (x⋆,X) k (x⋆, x⋆)

])
(1)

defined over the vector of input observations X and query
points x⋆ (where predictions are made). k is a covariance
function (or kernel), that establishes a basis of correlation
in the environment as a function of distance in the input
space. This basis can encode prior knowledge about the
environment and sensing agents and is discussed in detail
in subsection III-C.

From this joint distribution, we can obtain the expected
value of the environmental field (E[f⋆]) and variance (V[f⋆])
evaluated at a query point x⋆. For path planning, we are
particularly interested in the posterior variance (the joint
variance after incorporating observations at (X)), which can
be derived as:

σ = V [f⋆] = k (x⋆, x⋆)− k (x⋆,X)× (2)[
k(X,X) + σ2

nIn
]−1

k (X,x∗)

From this, we can obtain the conditional probability dis-
tribution of f , conditioned on an observation y: f | y =
N (µf |y,Σf |y), which will be used in the utility function
described in subsection III-D.

C. Spatiotemproal and task priors

1) Spatiotemporal prior: The kernel (or, covariance func-
tion) k is a function that provides the expected correlation
between pairs of data points. While arbitrary functions of in-
put pairs are not guaranteed to be valid covariance functions,
there exists a considerable amount of choice and discretion in
choosing a function that is appropriate to the predictive task.
Both the choice of kernel and the function hyperparameters
encode assumptions about the property which we wish to
predict [20].

Following [4], we establish a base kernel, composed of a
spatial and temporal kernel:

k((s, t), t(s′, t′)) = ks(s, s
′)kt(t, t

′) (3)

where s refers to the spatial index (such as, a geographical
coordinate) and t refers to a temporal index (a timestamp).
For the spatial dimensions, we use a Matérn kernel with
ν = 3/2, chosen in part for its use in the geostatistical
literature and its ability to capture discontinuities present in
natural phenomena. We use a radial basis function kernel
to capture smoothly diffusive process in the time dimension.
For additional discussion and details about the kernel choice,
readers may refer to [24] and [4].

2) Task prior: In section II, we describe how each sensing
agent is tasked with producing a unique model of the
environment, to guide its path planning. Following the termi-
nology from [1], we describe our system of models as multi-
task, where the process f is observed by different sensing
agents j. Our model is multi-output, where each output d can
produce a unique representation of the environment based on
observations collected from a particular sensing agent j.

Following the notation of [1] let us consider a
training set constructed of data pairs Sd = (Xd,Yd),=
(xd,1, yd,1), . . . (xd,Nj , yd.Nj ) for outputs d where, |d| = Nj

(where, Nj is the number of sensing agents). From
this, we obtain a vector of sampling locations for each
sensing vehicle j: X = {Xj}Dj=1 = X1, . . . ,XD, where
Xd = {xd,n}Nn=1. In this general sense, a separate
process fd can be learned by training set Sd, where, f(X) =
(f1 (x1,1) , . . . , f1 (x1,N )) , . . . , (fD (xD,1) , . . . , fD (xD,N ))
and where N represents the number of query points.

We can construct a similar formulation for a vector-valued
GP as in Equation 1. The vector-valued kernel K is an ND×
ND with entries: (K (xi,xj))d,d′ , for i, j = 1, . . . , N and
d, d′ = 1, . . . , D.

We can consider a separable kernel function, formulated
as a sum of products between a kernel function for the
input space alone (the spatiotemporal kernel in this work)
and a task kernel function that encodes interactions between
the outputs (correlations between the sensor models, in this
work). Such a kernel can be defined as the Hadamard product
of an input kernel and a task kernel and takes the form:

(K (x,x′))d,d′ = k(x,x′)kT (d, d
′) (4)

where k is the input kernel, kT is the task kernel, both
defined over X × X with {1, . . . , D} × {1, . . . , D}. Equiv-
alently, this can be written as a matrix expression:

K (x,x′) = k (x,x′)B (5)

We establish an index kernel, defined by a lookup table of
indices corresponding to the number of tasks. In this paper,
the number of tasks is equal to the number of sensing agents
(Nv), that is: Nv = Nj = D:

k(i, j) =
(
BB⊤ + (Iv)i,j

)
(6)

where B is a low-rank matrix that establishes the variance
between tasks and v is a positive constraint on the inter-
task variance. Refer to [1] for a detailed treatment of kernel
functions for multi-output GPs and [8] for details of the
function gpytorch.kernels.IndexKernel used in
our implementation.

It is important to note that the vehicles do not attempt
to construct the posterior variance from the perspective of
other vehicles in the team. For each vehicle, only the output
corresponding to the ego vehicle is used for planning. The
other outputs could be used to infer model variance from
the perspective of other sensing agents, and could be used to
project their probable next-actions. While an interesting area



Fig. 2: Schematic overview of the adaptive planning routine. Not pictured: When the vehicle controller has reached its movement budget
(time or distance), the modeler is called one last time to produce a final map prediction.

for future work, this consideration is outside of the scope of
this study.

D. Utility Formulation

Understanding that the differential entropy of a Gaussian
random variable is a monotonic function of its variance, we
can construct a utility function based on the reduction of map
entropy H , given a new observation Z. We derive this from
the posterior variance, which is obtained from Equation 2.
Specifically, we evaluate the information gain of a new
proposed sampling location, using the mutual information
I between the current training set X and a new set X ′,
containing the observation Z.

For a random vector of observations X = (X1, . . . , Xn) ,
for every Xi the mutual information becomes:

Î [i] (Xi;Z) =
1

2

[
log (σXi)− log

(
σXi|Z

)]
(7)

and can be calculated as the sum of marginal variances at
i: Î(X;Z) =

∑n
i=1 Î

[i](Xi;Z). Refer to [4] for additional
context and see [13] for a derivation. Crucially, we are able
to obtain from the covariance matrix produced by the kernel
V [Xi] = K [i,i].

E. Path selection and planning

1) General framework: Path planning proceeds according
to the procedure described in [13] (IIG) and [4] (IIG-ST),
using the task-aware covariance function described in the
subsection III-C. The complete set of parameters used by
the planner can be found in the accompanying video and
code repository.

2) Convergence criterion and path selection: We utilize
the convergence criterion from [4] in the re-planning stage,
to establish when the agent should stop adding new proposed
locations to the RIG tree and switch to path generation. Path
generation is performed using a vote-based heuristic from
[13]. We use posterior map variance as a lower bound for
mean-square error, given optimal hyperparameters θ for the
kernel function.

MSE
(
f̂⋆

)
≥ V [f⋆]︸ ︷︷ ︸

=σ2
⋆|y(θ)

(8)

These kernel hyperparameters θ comprise another com-
ponent of our spatiotemporal and task-priors. Optimal pa-
rameters can be chosen in a standard Bayesian approach,
using the marginal log likelihood (MLL) of the GP model,
when applied to observed data. We employ this approach to
update model hyperparameters, as the sensing agents receive
observations during the survey mission.

3) Adaptive planning: An overview of the complete adap-
tive planning routine is visualized in Figure 2. Each vehicle
alternates between collecting observations, updating internal
parameters and re-planning at a fixed interval until a time
budget is elapsed. Each agent broadcasts the value and
location of a sample immediately upon collection, and all
agents continuously listen for observations from other robots
in the team. Each robot re-plans after every 2nd sample.

In the experiments, it assumed that vehicles have access
to a wide-area, low-bandwith communication link (such as
LoRa [23]) and are able to communicate their observations
globally. Prior to the next re-planning procedure, each vehi-
cle evaluates the map expectation E (posterior mean) from
the multi-task model, incorporating all observations yj col-
lected by the agent and communicated by other agents. The
model output is used to calculate the marginal log likelihood
of the GP with respect to the observations collected, which
forms the basis of the hyperparameter optimization routine.

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

In this section, we evaluate our coordinated planner IIG-
Cooperative against the non-cooperative IIG-ST introduced
in [4] as applied to the task of surveying and modeling
a physical phenomenon that changes in an environment
over a fixed period of time. In the first scenario, the
surveyed phenomenon advects and diffuses in a simulated
fluid environment over time, similar to the dynamics of an
environmental contaminant in the soil, water, or air. In the



Fig. 3: Advection/diffusion simulation: Map error (lower is better) at different moments in the survey mission time for different planning
configurations for IIG − Cooperative with varing numbers robots deployed in the sensing task. Planners with fixed priors are run in
two configurations, fixed-suboptimal (ℓt = 50 and ℓs = 100) and fixed-optimal (ℓt = 20 and ℓs = 30). The adaptive planner starts with
the suboptimal priors and continuously updates model hyperparameters throughout the survey mission. All planners are run with global
communication (bottom row) and without communication, in an independent planning scenario (top row).

second scenario an oceanic turbidity dataset is used as the
target for the surveying objective.

We evaluate our planner according to the objective that
would be most salient to a surveyor; that is, the accuracy of
the final map representation at the end of the survey period
(t = 100) with a root-mean squared error metric (RMSE). We
also consider the auxiliary objective of making predictions
at arbitrary points in time. This is relevant if the operator
wishes to reconstruct the dynamics of the system. However,
while our spatiotemporal planners incorporate time into the
planning objective, the robot and sensor can obviously only
travel forward through the temporal dimension.

A. Experimental setting

The simulated world implements advection and diffusion
according to the Navier- Stokes equations for an incompress-
ible fluid (forward-differencing discretization). All robots are
initialized with the same path planner with fixed planning
parameters that are updated independently during the course
of a survey. The full table of parameters set for the planner
can be found in the accompanying video and the code
repository. We executed the experiments in a GNU/Linux
environment on a 3.6 GHz Intel i7-4790 computer with
10 GB of RAM available. RRT planning procedures were
derived from [21] and GP posterior variance and final map
predictions were executed with GPyTorch [8], run without
hardware acceleration so as to simulate the resources avail-
able on a mobile robot.

B. Comparison of cooperative and adaptive planning

To assess the effectiveness of the cooperative and adaptive
planners, we compare the planners in three configurations:

A planner with fixed model lengthscales (ℓ) chosen pro-
portional to the size of the world (“fixed” planner, ℓs =
100, ℓt = 50); an adaptive planner that starts with the same
hyperparameters as the fixed planner, but is allowed to update
as observations are collected; and a fixed, planner given
parameters determined through hyperparameter optimization
along a dense, coverage path plan (“optimal” planner, ℓs =
30, ℓt = 20).

A summary of the main results can be found in Figure 3,
which presents the RMSE between the state of the world
at time t and the state of the predicted world at time t,
constructed after observations have been compiled by all
sensing vehicles at the end of the survey mission. This aligns
with the typical mode of operation in multi-agent surveys.
All scenarios are run with the multi-task planner, which
degenerates into a single-task problem when n = 1 sensing
vehicle, and/or when there is no transfer of information
between the vehicles (in other words, there is no information
for the other input tasks). This later case is labeled as
“independent” planning.

In Figure 3, lower error values found on average across
nearly the entire mission envelope for the adaptive planner,
although it does not produce as accurate a map posterior
as if it were given “optimal” hyperparamters. A notable
observation is the map accuracy for the final time index
of the survey period, when all planners converge to similar
performance, with the “optimal” planner producing a slightly
less accurate representation at t = 100 than the adaptive
planner (or even the fixed planner, in some configurations).
There are a few possible explanations for this phenomenon:
1. For large numbers of vehicles, by t = 100, the environ-
ment has been uniformly surveyed, regardless of the direction



Coordinated Independent

Planner Function Nv t100 tall t100 tall

Adaptive

IIG

1 0.888 1.344 0.935 1.367
2 0.670 1.104 0.827 1.234
3 0.749 1.109 0.703 1.091
5 0.664 0.988 0.689 0.999

IIG-ST

1 0.845 1.263 0.983 1.477
2 0.703 1.174 0.797 1.181
3 0.683 1.080 0.650 1.143
5 0.618 0.986 0.566 1.015

fixed

IIG

1 0.820 1.321 0.839 1.374
2 0.787 1.372 0.710 1.225
3 0.806 1.312 0.782 1.374
5 0.778 1.197 0.791 1.177

IIG-ST

1 0.782 1.293 0.841 1.294
2 0.760 1.247 0.749 1.365
3 0.726 1.203 0.785 1.205
5 0.745 1.161 0.648 1.149

optimal

IIG

1 0.841 1.162 0.841 1.128
2 0.839 1.093 0.842 1.069
3 0.825 1.043 0.802 0.986
5 0.802 0.946 0.787 0.969

IIG-ST

1 0.833 1.164 0.851 1.113
2 0.843 1.143 0.812 1.063
3 0.783 0.936 0.818 0.984
5 0.787 0.963 0.796 0.972

TABLE I: Fluid Simulation: Summary of average map error (RMSE)
produced by observations collected by all vehicles v at the end of a
survey mission. Error is represented across entire survey envelope
(tall) and for the last time step of the survey mission (t = 100).
Lowest values within a given configuration are emphasized in bold.

given by the informative planner. 2. The “optimal” param-
eters were derived through sampling along a conventional,
coverage path, of a distance equal to the average distance
traveled by the informed planners. This deterministic route
does not guarantee representative samples across the entire
spatiotemporal domain (an thus are not strictly optimal).
This demonstrates another weakness of traditional surveying
procedures. 3. The “optimal” parameters were determined
through a maximum-likelihood estimator, optimized for the
predictive ability across the entire survey envelope, and not
solely on the final map state. Likely, different results would
be obtained for parameters chosen to minimize the error of
the final map state. Reconciling these potentially competing
objectives within a unified planning framework could be
explored in future studies.

A summary of the performance for all planning configu-
rations is presented in Table I, where the two objectives are
presented under: t100 for the predictive accuracy at t = 100
and tall, for the predictive accuracy across the entire survey
envelope using the coordinated planner (IIG-Cooperative)
and the independent planning scenario. We also explore the
addition of the spatiotemporal kernel to each configuration
(“Function” column). Notably, the adaptive planner often
outperforms the non-adaptive configuration, given informed
“optimal” priors. This is due to the reasons outlined in
the previous paragraph. In multi-robot configurations with-
out coordination, minimal to no gains are found with the
spatiotemporally-informed planner across most configura-
tions. This is likely due to the aggregate effect of a more
even coverage of the environment that occurs with time-naive
robots, at high numbers.

Fig. 4: Ocean turbidity: Summary of average map error produced
for different planner configurations and varying number of survey
vehicles.

C. Environmental monitoring scenario

As a proof of concept, we demonstrate our planners
in a synoptic-scale ocean monitoring experiment, using
ocean reflectance off the west coast of California from
the Moderate Resolution Imaging Spectroradiometer as a
turbidity proxy [9]. Our simulated vehicles are configured
with velocities congruent to the Wave Glider autonomous
aquatic vehicle, based on the reported long-mission average
speed of 1.5 knots (approximately 330 km per week) [?].
Figure 4 presents the results for different configuration of
the coordinated and independent planners, configured with
the spatiotemporal kernel. With a sampling rate of 1/week
for a ~50 week interval, inputs were relatively sparse and
no distinguishing trends were observed between the perfor-
mance of the cooperative and independent planners.

As with the synthetic simulation, a basis of comparison for
the “optimal” fixed planner was established with hyperpa-
rameters collected by a single-vehicle lemniscatic coverage.
As with the previous experiments, the adaptive planner re-
sults in improved map accuracy for all configurations across
the survey envelope.

V. CONCLUSIONS

This work presented a novel integration of multi-vehicle
informative path planning, informed by both model uncer-
tainty and information from other sensing agents, which
may differ in their contribution toward reducing model
uncertainty. We also demonstrated how this approach could
be utilized in an adaptive planning framework. Finally,
we quantified the effectiveness of our planning approach,
grounded in map accuracy, the salient objective for the survey
operator.

This work illuminates multiple avenues for future work.
Given global communication, each robot could directly in-
tegrate observations from all other robots, using a distri-
butional or variational kernel. Robots could also attempt
to project likely future movements by other agents in the
team, using a similar utility metric grounded in model
uncertainty. Observations collected in these experiments used
a point sensor model, where the robot obtained a low-noise
observation of the environment directly beneath the vehicle.
Multi-task planning scenarios can incorporate variable sensor
models, including variable noise, observation windows, and
observation frequency.
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