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Abstract— The ROS 2 Navigation Stack (Nav2) has emerged
as a widely used software component providing the underlying
basis to develop a variety of high-level functionalities. However,
when used in outdoor environments such as orchards and
vineyards, its functionality is notably limited by the presence
of obstacles and/or situations not commonly found in indoor
settings. One such example is given by tall grass and weeds that
can be safely traversed by a robot, but that can be perceived as
obstacles by LiDAR sensors, and then force the robot to take
longer paths to avoid them, or abort navigation altogether. To
overcome these limitations, domain specific extensions must be
developed and integrated into the software pipeline. This paper
presents a new, lightweight approach to address this challenge
and improve outdoor robot navigation. Leveraging the multi-
scale nature of the costmaps supporting Nav2, we developed
a system that using a depth camera performs pixel level
classification on the images, and in real time injects corrections
into the local cost map, thus enabling the robot to traverse areas
that would otherwise be avoided by the Nav2. Our approach
has been implemented and validated on a Clearpath Husky and
we demonstrate that with this extension the robot is able to
perform navigation tasks that would be otherwise not practical
with the standard components.

I. INTRODUCTION

Outdoor robot navigation presents numerous challenges
to autonomous robots due to the unpredictability of natu-
ral environments. In agriculture, where the terrain is often
uneven, vegetation is diverse and uncontrolled, and lighting
conditions can vary significantly, the demand for robust
autonomous robots is pressing. For robots operating in these
outdoor settings, the ability to make real-time decisions
informed by sensorial perceptions is essential.

One of the central difficulties in outdoor robot navigation,
especially in agricultural settings, is the effective recognition
of traversable space when moving in environments with
tall grass and/or small bushes. Figure 1 illustrates such a
situation. Off-the-shelf obstacle detection systems tuned for
indoor or structured environments often categorizes these
traversable obstacles as permanent ones, resulting in sub-
optimal path planning, or even compromising the planning
process altogether.
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Fig. 1: A robot navigating in an almond orchard facing high weeds
and bushes that are classified as obstacles by the standard ROS 2
navigation stack, but that can be safely traversed.

Addressing the challenge of recognizing traversable ob-
stacles in outdoor robotics navigation has significant impli-
cations for the practical deployment of autonomous systems
to solve real-world tasks. More accurate detection and dif-
ferentiation of traversable areas can lead to more efficient
path planning, reducing the risk of getting stuck or lost in
challenging outdoor environments.

ROS and ROS 2 have emerged as the de-facto standard
for numerous robotic applications and the navigation stack
Nav2 [10] has proved to be an essential building block to
develop more high-level capabilities, such as data collection,
anomaly detection and the like. However, Nav2 is mostly
tailored towards indoor applications and heavily relies on
input coming from sensors such as LiDARS that treat weeds
and bushes as untraversable space, thus making this software
module not fully adequate for field operations.

In this context, we introduce a new approach to robustify
outdoor robot navigation relying on Nav2. Our primary ob-
jective is to develop a comprehensive solution for enhancing
outdoor robot navigation that can be transparently integrated
into Nav2 and enable the robot to navigate through areas
with high weeds or bushes that can be safely traversed.
Specifically, we implemented a lightweight real-time com-
puter vision system that accurately identifies traversable areas
within the robot’s field of view, even in the presence of
environmental features classified as non-traversable by the
LiDAR, and then injects its output into the ROS local
costmap, allowing for dynamic path planning and navigation
in real-world outdoor environments. Exploiting the plugin
architecture used to implement the Nav2, our solution can
be seamlessly integrated into existing systems without com-
promising other functionalities, and, importantly, without the



need to modify or reconfigure any other software component
inside or outside Nav2. Our contribution does not modify
Nav2; rather, it introduces a smart solution that utilizes the
ROS Layered Costmap to incorporate custom information
from the robot’s vision system. This strategy ensures that
our method can be seamlessly adopted by the agricultural
robotics community, which might resist modifications to the
standard ROS navigation framework.

The rest of this paper is organized as follows: Section
II reviews the literature on outdoor robot navigation and
discusses relevant approaches. Our technical approach is
presented in Section III where we detail the technical as-
pects of our solution, including sensor integration, real-time
image segmentation using YOLOv8, dataset preparation, and
integration with Nav2. Section IV presents the results of our
experiments, including performance metrics and real-world
applications of our system with on-the-field experiments
conducted in agricultural orchards. Finally, in Section V we
summarize the findings and the contributions of our research
and discusses future directions.

II. RELATED WORK

Outdoor robot navigation remains a complex and evolv-
ing field, with numerous challenges posed by unstructured
environments. This section provides an overview of recent
developments and relevant research, showcasing the contri-
butions of this paper in this area. Earlier solutions to solve
similar problems are presented in [13], [21], [22].

The work of Guan et al. [4] uses computer vision for
terrain segmentation to improve robot navigation in outdoor
environments. While our approach aligns with segmenting
images to identify traversable areas, it is different in that
it focuses on enhancing path planning where the laser
sensor detects overcomable obstacles. This approach utilizes
computer vision techniques to classify terrain in the robot’s
field of view based on navigability levels using RGB images.
Reference [15] also shares a similar point of view. The
approach of [19] instead segments the robot’s surroundings
through anomaly detection, identifying situations or terrains
that fall outside the norm or training data. This approach can
help the robot navigate safely in diverse environments by
recognizing unfamiliar or potentially hazardous conditions.

While these approaches are intriguing, they are suited in
scenarios where the terrain in front of the robot exhibits
substantial variability. Nonetheless, the agricultural field of
work is more likely to involve a robot operating within a
lane or predefined path in an orchard. In such scenarios,
despite the terrain’s relatively consistent nature, the robot
may face difficulty planning a path to its next goal due
to the presence of overcomable obstacles detected by the
laser sensor. Therefore, addressing these specific kinds of
obstacles is of paramount relevance for agricultural robot
navigation.

In our research, we drew inspiration from numerous prior
work [6], [14], [17], [20] to construct our custom dataset
for training a neural network for terrain classification. In

particular Procopio et al. [14] provide a valuable contri-
bution for autonomous robot navigation within unstructured
environments, introducing an ensemble learning strategy that
combines multiple classifiers to segment terrains.

The research presented in the article by Martini et al. [11]
focuses on addressing navigation challenges in agricultural
contexts, particularly vineyards and orchards, by developing
a lightweight and flexible navigation solution that does not
rely on precise localization data. One notable aspect of
this approach is its reliance on depth images and position-
agnostic robot state information. However, it is important
to note that the experiments conducted in this work are
primarily in simulated vineyard environments.

In outdoor robot navigation, Dima and Hebert [2] ad-
vanced supervised learning, particularly in obstacle detection,
revealing active learning’s potential for reducing labeling
efforts.

The work by Weerakoon et al. [18] offers another approach
to enhancing robot navigation in uneven outdoor terrains.
Their method relies on leveraging deep reinforcement learn-
ing (DRL) to address the challenges of unpredictable and
rugged environments, combining elevation maps, robot pose,
and goal information as inputs for a fully-trained network.
The approach presented in [8] also addresses the same
problem with DRL.

Guan et al. [5] combine visual and inertial data to classify
traversable surfaces and enhance robotic navigation. The
authors developed an innovative navigation-based labeling
scheme for terrain classification, employing a combination of
RGB images and inertial measurement unit (IMU) data. This
fusion of visual and inertial information enhances the ability
to accurately classify traversable surfaces and adaptively
guide robotic navigation across diverse terrains.

Lastly, the article by Silver et al. [16] addresses the task
of autonomous navigation in heavily unstructured environ-
ments. The study emphasizes the crucial interplay between
perception and planning systems and highlights their impact
on the robot’s behavior and overall performance.

III. TECHNICAL APPROACH

In this section, we present the details of our proposed
method for enhancing outdoor robot navigation through
modified perception. Our method has been developed and
tested on the robot shown in Figure 2. It is a Clearpath
Husky robot tasked with navigating in pistachio and almond
orchards to collect images of trees for early disease detection
and growth monitoring. It includes a Sick LMS111 LiDAR
in the front, a Bosch BNO085 9 axis IMU, a Ublox GNSS
receiver, and an Oak-D 3D camera by Luxonis. The robot is
controlled by an onboard laptop with Ubuntu 22 and ROS 2
Humble.

The algorithmic pipeline shown in Figure 3 unfolds as
follows: integration of sensor inputs, use of YOLOv8 image
segmentation algorithm, generation of a PointCloud2 repre-
sentation, and integration with the Nav2 framework via a
custom costmap plugin.



Fig. 2: Field experiment in orchard: The Clearpath Husky robot,
equipped with sensors including a laser sensor, IMU, GNSS, and
an Oak-D camera, navigating autonomously during an experiment.

A. Sensor Inputs

The input to our pipeline comes from the Oak-D camera.
This device provides both RGB images and corrected depth
images. The depth information derives from a stereo sensor
configuration, where two images with a calibrated baseline
separation are triangulated to yield accurate and reliable
depth maps suitable for outdoor applications. Moreover, to
ensure the fidelity of our data inputs, we performed syn-
chronization procedures to guarantee the temporal alignment
and dimensional congruence of the paired RGB and depth
images. More precisely, for message synchronization, we
used the ROS 2 message filter package, a utility library
for managing and synchronizing messages within ROS 2.
It allows for the precise alignment of messages from various
sensors based on their timestamps. We employed the ap-
proximate time synchronizer filter, which processes messages
of varying types from multiple sources. This filter triggers
the corresponding callback only when it receives messages
from each of these sources with timestamps falling within a
defined threshold of 0.1 seconds.

B. Nav2 Integration

Integration into Nav2 is achieved by generating a Point-
Cloud2 representation of the traversable terrain at the end
of our pipeline, as described in Section III-E. To merge
this information with the Nav2 Local Costmap, a custom
component typically used by the Nav2 planner for finding a
path, we developed a Custom Costmap Plugin, serving as a
component of this integrated system.

Nav2’s Local Costmap continuously builds and updates
a dynamic representation of the robot’s surroundings, and
it features different layers. Each layer contributes specific
information to the Local Costmap by assigning varying cost
values to different parts of the robot’s local map, with higher
costs denoting obstacles and lower costs representing open
spaces. The layered structure combines these cost values
from all layers to create a comprehensive map. Examples
of these layers include:

• Static Layer: Assigns costs based on known, static
obstacles like walls or trees.

• Obstacle Layer: Uses sensor data to detect dynamic
obstacles such as pedestrians or moving objects.

• Voxel Layer: Utilizes voxel grid representations to han-
dle complex three-dimensional environments.

• Inflation Layer: Inflates cost values around obstacles to
ensure a safety navigation margin for the robot.

Nav2’s default behavior is to populate the Local Costmap
with obstacles identified by the laser sensor. As the robot
moves, this costmap is continually updated to reflect real-
time changes in its surroundings. The Local Costmap pro-
vides essential information for collision avoidance and path
planning algorithms, allowing the robot make informed
decisions and adjust its trajectory to reach its intended
destination.

The plugin structure of Nav2 is designed to enhance
its modularity and flexibility, and every costmap plugin
constitutes a layer of the costmap. Accordingly, our computer
vision algorithm is implemented as a plugin because it allows
to inject its inputs into one of the layers without affecting
the core Nav2 functionality. This flexibility ensures that our
computer vision-based approach for terrain segmentation,
which can improve path planning in some scenarios, can be
easily integrated or excluded from the navigation pipeline as
needed.

In real-world contexts it often happens that the laser
scanner detects areas potentially traversable as obstacles,
such as vegetation or taller grass, which might be erroneously
categorized as zones to avoid the costmap. As this happens,
the Custom Plugin integrates the PointCloud2 data derived
from the computer vision algorithm, clearing all zones
detected as traversable. Figure 4 shows a schema of the
Nav2 layered costmap’s behavior with our Custom Costmap
Plugin. Placed after the Voxel Layer, our Custom Layer
integrates the information of traversable zones by changing
the Local Costmap. Consequently, this method enables the
Nav2 framework to plan trajectories through areas initially
identified as obstacles, thereby unveiling potentially shorter
pathways toward the goal.

C. YOLOv8 Image Segmentation

We utilized the YOLOv8 [7] deep neural network-based
object detection algorithm as an off-the-shelf solution to
achieve accurate image segmentation. YOLOv8 operates
on RGB images and generates a segmentation mask that
partitions the image into distinct regions namely traversable
space and obstacles. Subsequently, the regions identified
as traversable are used as the basis of the fusion of this
information into our Local Costmap. The YOLOv8 model
was trained using a custom dataset comprising over 1000
manually labeled images.

The motivation for using YoloV8, which offers instance
segmentation capabilities, as opposed to a solution that
performs only semantic segmentation without identifying
individual instances lies in its state-of-the-art performance
and computational requirements. However, it is important to
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Fig. 3: Schema of the proposed pipeline: from RGBD images to Nav2 Costmap.

Fig. 4: Schema of the Nav2 Layered Costmap. The Custom Layer,
positioned above the Voxel Layer, integrates information regarding
traversable zones, thereby modifying the Local Costmap. The red
pixels denote obstacles identified by the Voxel Layer, while the
green pixels represent areas cleared by our custom plugin. The
yellow pixels are generated by the Inflation layer, which expands
obstacles to ensure safe navigation within the Nav2 stack.

mention that for the specific issue addressed, any existing
multiple instances and merged, and solely the semantic pixel-
level information provided by YoloV8 is utilized. After
areas without obstacles are labeled, determining whether
an area is traversable also depends on the robot’s physical
characteristics, such as its clearance underneath. This issue
is managed by the Nav2 Costmap Inflation layer, Figure 4.

D. Custom Dataset

With meticulous labeling, we assembled a dataset that en-
compasses various outdoor scenarios for training the model
to accurately identify and segment obstacles and traversable
areas within the images. The dataset consists of 1066 anno-
tated images with a considerable proportion, approximately
85%, drawn from outdoor experiments conducted as an inte-
gral part of this research endeavor. Figure 5 shows a sample
of these images for reference. Supplementary images were
sourced from publicly available outdoor datasets [12] [1]
and we manually labeled both collected and external dataset
images to ensure homogeneity. The annotation process, fa-
cilitated by the Roboflow software [3], categorized each im-
age’s regions into two primary classes, i.e., “traversable” and
“obstacle” zones, while designating the remaining sections
as “do not care” regions (see Figure 6 for an example).
We used a range of augmentation techniques each targeted
at introducing variance and complexities into the training
data. These strategies, including image flipping, probabilistic
grayscale conversion, saturation adjustment, brightness vari-
ation, Gaussian blurring, exposure fluctuations, and pixel-
level noise addition, foster the model’s adaptability and
generalization capabilities. By applying these data augmen-
tation techniques, we expanded the dataset’s diversity and
size, leading to better generalization and performance of the
neural network in image segmentation tasks. The enriched
dataset allowed the model to learn from more scenarios,
resulting in more accurate predictions in challenging real-
world environments.

E. Point Cloud Generation

Building upon the segmentation mask obtained from
YOLOv8, we apply this mask to the corresponding corrected



Fig. 5: Example of images in the dataset.

Fig. 6: Example of ground truth manual annotation in the dataset: (a) Original image and (b) Image with manually applied labels. Red
pixels correspond to “obstacle”, while green pixels correspond to “traversable”.

depth image. For this process, we ensure that the two images,
RGB and depth, have congruent dimensions and refer to the
same time instant. This operation results in extracting depth
information only from traversable areas, resulting in a 3D
reconstruction of the zones that the robot can safely traverse.

To transform a segmented depth image to a point cloud,
we utilize the ROS 2 depth image proc node, that generates
a PointCloud2 message as a structured and concise repre-
sentation of the 3D environment. This message encapsulates
spatial information about the regions the robot can safely
navigate, as shown in Figure 7.

Fig. 7: Point Cloud of the traversable area generated from the
segmented depth image.

IV. EXPERIMENTAL EVALUATION

A. Neural Network Training

We performed training on different YOLOv8 architectures,
with the main objective of exploring the tradeoffs between

accuracy and inference speed, given that the classification
step at run time has to be executed frequently. The dataset
was divided into three subsets: the Training set (70%), the
Validation set (20%), and the Test set (10%). Evaluation
results based on the Validation set are outlined in Table I.
All models were trained on an NVIDIA GeForce RTX 3090
GPU within the PyTorch 2.0.1 environment. Furthermore,
we leveraged YOLOv8’s built-in RayTune [9] utility for
hyperparameter optimization. It is important to note that this
feature was exclusively compatible with the two smallest
architectures, namely, yolov8n and yolov8s. We evaluated
each trained network on the basis of mean Average Precision
(mAP), inference speed, and model size. In particular, infer-
ence time holds critical significance due to its influence on
the overall timing of the algorithm and power consumption.
We directly evaluated the Average Inference Time with
the entire algorithm running on an Intel i7 Core processor
without GPU. Based on the evaluation of the trained neural
networks, we opted for the yolov8n-seg model, utilizing
RayTune hyperparameter optimization. This selection was
motivated by its low inference time, which aligns with our
stringent real-time requirements. Additionally, the model
offered a reasonable mean Average Precision, making it a
well-suited choice for our specific needs in outdoor robot
navigation. The scores on the Test set are: 0.810 mAP@0.5,
0.632 mAP@0.5:0.95, 0.832 Precision, and 0.783 Recall.

B. On-field test

Figure 8 illustrates the final outcome of the pipeline. By
identifying and clearing traversable zones, the plugin sets
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Fig. 8: Real-time behavior comparison of the custom plugin: (a) Costmap generated using standard Nav2 without the custom plugin; (b)
Costmap generated with the custom plugin, which clears zones with grass detected as traversable; (c) Corresponding segmented image
captured during this experiment.

Model Size mAP@0.5 mAP@0.5:0.95 Precision Recall Average Inference Time
yolov8n-seg 6.5 MB 0.795 0.604 0.851 0.716 32.9 ms
yolov8s-seg 23 MB 0.805 0.617 0.843 0.748 77.0 ms
yolov8m-seg 53 MB 0.832 0.648 0.883 0.770 176.6 ms
yolov8l-seg 89 MB 0.840 0.655 0.863 0.800 336.0 ms
yolov8x-seg 138 MB 0.845 0.665 0.856 0.796 553.5 ms
yolov8n-seg R 6.5 MB 0.822 0.631 0.827 0.773 32.9 ms
yolov8s-seg R 23 MB 0.845 0.665 0.870 0.795 76.9 ms

TABLE I: Comparison of YOLOv8 Architectures: Training Results on the Validation Set and Average Inference Times for real-world
applications. (R: result obtained with RayTune to optimize hyperparameters.)

specific sections of the map as free. More comprehensive
results are featured in the video associated with this submis-
sion. Figure 8c visualizes an example of the outcomes of the
computer vision process. Notably, on the right-hand side, the
region of terrain containing tall grass is correctly categorized
as traversable (green). The impact of our proposed pipeline
becomes evident when comparing Figures 8a and 8b. In
Figure 8a, the tall grass in front of the robot is detected
as an obstacle by the laser sensor, leading to its inclusion in
the standard Nav2 costmap as an obstacle.

However, as shown in Figure 8b, the custom plugin
efficiently removes this obstacle from the costmap, enabling
the robot to plan paths with fewer obstructions, thus leading
to shorter paths to its goal. The portion of terrain initially
identified as an obstacle due to tall grass by the laser sensor
is now recognized as free space. This snapshot was captured
during an experiment conducted in an orchard, showcasing
the real-time applicability of this solution. Our proposed
method addresses the challenge of outdoor robot navigation
through the modification of perception. By combining RGB
and corrected depth images, utilizing YOLOv8 for image
segmentation, generating PointCloud2 representations, and
interfacing with the Nav2 framework, our pipeline enhances
path planning performance in scenarios with traversable
and real obstacles. Finally, we outline that our software
is made freely available as open source on GitHub at
https://tinyurl.com/ycyp6df8.

V. CONCLUSIONS

In this work we proposed a method to enhance outdoor
robot navigation, focusing on the challenges faced in real-

world agricultural environments. Our goal was to create a
comprehensive pipeline that could robustly detect traversable
zones, overcoming limitations where areas covered in tall
grass are treated as obstacles.

To accomplish our task, we created a custom dataset,
collecting images from diverse outdoor scenarios and ap-
plying manual annotations. This dataset was the foundation
for training our chosen neural network, YOLOv8, known for
its real-time capabilities. The core of our approach lies in
the fusion of pixel level visual classification with the Nav2
framework. By integrating real-time image segmentation into
the robot’s perception, we enable it to distinguish traversable
areas from obstacles.

Our custom costmap plugin, designed to interface with
the Nav2 framework, ensures that the information retrieved
from computer vision is integrated into the robot’s costmap,
enabling the path planner to make more informed deci-
sions regarding the terrain around the robot. Our evaluation
process, including real-world experiments, underscores the
effectiveness of our approach.

This work does not modify Nav2, ensuring that our method
can be adopted by researchers who are already familiar with
the ROS navigation framework. However, it introduces a
smart solution that significantly expands the applicability
of Nav2, while retaining its strengths. By augmenting the
robot’s perception with real-time image segmentation, we
enhanced outdoor navigation, a crucial step in autonomous
agricultural robotics. We think that our pipeline represents a
valuable contribution to the field, addressing the challenges
of real-world agricultural environments. Future work will
include more systematic evaluation in the field.
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