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Abstract— Graph-patrolling problems in the adversarial do-
main typically embed models and assumptions about how
hostile events, from which an environment must be protected,
are generated at a specific time and location. Relying upon
such attacker models prevents algorithms from synthesizing
strategies that can generalize in different settings, providing
good performance under different and uncertain scenarios. In
this paper, we propose a first method to deal with adversarial
patrolling using a data driven approach. We cast the problem
in an RL setting where the reward function is based on the
ability to neutralize attacks that can follow an unknown strategy
and that, hence, can be viewed as a black box component.
We apply a policy gradient framework for optimizing action
probabilities under such a reward model showing how effective
patrolling strategies can be obtained from repeated attack-
defense interactions between a patrolling agent and an attacker.
Our results show that the data driven patroller can effectively
provide protection against multiple, diverse attacker behaviors.

I. INTRODUCTION

Surveillance is an application domain that is getting no-
table attention from research communities and companies
alike. In this domain, several solutions at the intersection be-
tween Artificial Intelligence and Robotics have been devised
in the last years [21]. Robotic Patrolling is a term used to
refer to a family of problems in a domain where the general
objective is to deploy one or more autonomous robots in
some environment to guard a set of assets against adversarial
actions that can be detrimental to their integrity or value.

Many formulations exist for robotic patrolling [6], and in
this work we focus on the approach where the arrangement
of assets to be defended is represented by a graph. Each
vertex has a value associated with the corresponding asset,
and weighted edges encode the temporal cost necessary to
move between locations. The agent tasked with defending
the assets is dubbed patroller, while the agent trying to
compromise the assets is called attacker. We consider a
common set of rules (described in more detail later) where
the patroller moves from vertex to vertex, and the attacker
aims at entering a vertex when the patroller is not occupying
it. We shall focus on the single patroller/single attacker case,
although the problem with multiple agents in either category
has been investigated, too [3]. Figure 1 sketches a typical
instance of this setting.

Security games [26] are an example of methods where
the patroller and the attacker are assumed to be rational and
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Fig. 1: Example of a patrolling instance. Each vertex has a value v
and an attack time a representing the effort needed to compromise
it. A patroller moving from vertex vi to vj will spend time di,j .

fully informed agents. The mathematical model takes the
form of a game, where concepts like Nash or Stackelberg
equilibrium are used to determine the optimal patrolling
strategy. The mainstream approach to model this type of
attacker is to optimize against a cost function encoding the
attacker’s behavior. The most popular indicators used in
graph-based patrolling settings to define such cost functions
are the idleness, namely the time elapsed since the last
patroller’s visits to a given vertex and the values of the assets
present in the environment. Once a cost function is defined,
deriving its exact or approximate optimal solutions provides
a patrolling strategy.

In our past works [2], [7] we followed this approach to
design strategies with the objective of defending the graph
from an attacker that may be learning through observations
of the patrolling activities. Key to our former works was
some background knowledge about how the attacker would
decide if, when, or where to attack the graph. While these
patrolling strategies may be successful against the specific
attacker they assume to face, they require modeling the
behavior inside some optimization framework and typically
fail when the attacker is different from the one considered.
Being unsuitable to face novel attackers means also that
these methods are not applicable in settings where the
attacker’s behavior is unknown or not fixed (a feature of great
practical relevance). Some works in the literature studied
Bayesian frameworks [17] where the attacker is known (e.g.,
it strikes the most valuable asset), but its parameters (e.g.,
its preferences) are uncertain. However, the definition of a
method for patrolling that could defend against dynamic and
unknown attackers is still an open problem.

Starting from these observations, we address the above



challenges by exploiting a reinforcement learning (RL) ap-
proach [14] where the patrolling strategy is learned by
repeated interaction with what, from the point of view of
the patroller, is a black box running some arbitrary, non–
stationary, and randomized adversarial behavior. Our findings
show how exploiting a technique based on Proximal Policy
Optimization (PPO) [24] a single patrolling algorithm can
learn to deliver effective strategies against several heteroge-
neous attackers. As a key contribution, such a method can
provide fair performance not only against single arbitrary
attackers but also against many attackers at the same time –
a feature not addressed by other approaches. In our patrolling
RL setting, we achieve this by training the PPO agent with
Domain Randomization (DR) [30] over different attacker
behaviors.

II. RELATED WORK

A multi-agent formulation of the patrolling problem has
been introduced in [9] where idleness is proposed as a
cost metric. It measures the time passed since the last
surveillance inspection of any given location. Idleness is a
natural proxy for the effectiveness of a patrolling strategy
since it is inversely proportional to the frequency of vis-
its. Approaches built around the optimization of idleness
(typically the average or the maximum over the environment)
are typically combined with other metrics and domain-
dependent constraints. In [27], for example, robots’ sensing
capabilities are confronted with a cost function that grows
in each node if this is not falling in the range of any robot
and decreases otherwise. The approaches presented in [18]
and [23] are examples where idleness is coupled with the
cost of establishing situational awareness between the robots
by communication, either with teammates or with a base
station. Optimizing this metric is typically hard. Other works
explored the adoption of optimization paradigms for dealing
with maximum idleness constraints. For example, [16] pro-
posed approximated and heuristic algorithms for the problem
of computing the minimum number of robots under idleness
constraints [4], and devised approximated methods [1].

Supervised learning has been evaluated to synthesize de-
centralized multi-agent patrolling strategies by leveraging
historical data of surveillance tours computed by a reference
ideal method [15]. Despite showing promise, the need for
a training dataset makes this type of approach difficult to
deploy. Reinforcement learning (RL) provides a more natural
environment-driven paradigm. A first RL formulation has
been proposed in [22] where idleness plays a central role
in shaping the reward function providing feedback to an
agent moving in the environment. This idea has been reused
under the latest advances in RL by some recent works.
In [20] and [13] deep reinforcement learning is adopted to
learn patrolling policies that maximize a reward defined as
a variable interest metric on each node. Such an interest
increases, at a node-dependent rate, as long as the node
is not patrolled by the agent. Deep R-learning is exploited
to solve a persistent area coverage problem in [25]. The
task is characterized by the need to sense stochastic events

in the environment as soon as they appear. This problem,
sharing in its definition some of the features of the patrolling
problem, is solved by adopting a reward function based on
the average detection rate of the events. The main difference
with our work is that events are not modeled as the product
of some adversarial process, a defining feature for the class
of adversarial patrolling problems called Security Games [8].

Works in this last field use attacker models best respond-
ing to patrolling strategies [12], [19]. This task might be
cast in an online framework where the patroller executes
a strategy for some time and then receives feedback [5].
When compared to ours, this class of approaches, despite
adopting an online setting, models the problem under a game
theoretical perspective according to which attackers often
comply with some level of rationality. Recent advancements
in so-called “green security games” proposed the use of deep
Q-learning for computing optimal strategies. In [31] deep
RL is exploited to approximate best responses in an iterative
resolution of a patrolling game where real-time observations
suggesting how the attacker is operating are exploited. In
our work, we do not necessarily assume rationality for the
attackers and hence we do not rely on an underlying game-
theoretical formulation.

III. PATROLLING SETTING

We adopt a graph-based representation of the environment
where K target locations must be protected through visits by
a single patrolling robot. Targets are denoted as {l1, ..., lk}.
Their topological layout is described by a weighted undi-
rected graph G = (V,E, d) where V = {l1, ..., lk} and
(li, lj) ∈ E indicates that the patroller can move from li
to lj (or vice versa) in a time equal to dij . We assume
that this graph is connected and we will always work on its
transitive closure, that is if (li, lj) /∈ E we add it and set the
corresponding dij to the length of the shortest path between
li and lj in the original graph. Each target li is characterized
by a value vi measuring its importance and an attack time ai
expressing the temporal cost needed to compromise it. In our
experiments, values are drawn uniformly within the range [1,
2]. Attack times are assumed to be derived as follows:

ai = k · U(lb, ub)

lb = m−
(m
L

)
ub = m+

(m
L

)
where: L denotes a positive real number, m denotes the
average travel distance on the undirected graph, the function
U(·) denotes a random uniform sample on the interval
[lb, ub], and k scales the resulting random sample by a
positive real number. To generate non-trivial instances, attack
times cannot be either too large (capture would be too
easy) or too small (attacks would be too hard to defend
against.) The above formulas capture this requirement by
uniformly drawing their values from an interval (whose width
is controlled by the parameter L) centered at the patroller’s
expected distance to be traveled by any two targets.

The patrolling mission unfolds in discrete time steps. In
each of them, the patroller protects the graph by moving from



one target location to the next, but may also decide to stay at
the current vertex for another time step. If the patroller does
decide to stay at the current vertex, the travel time is not
zero. Instead, the patroller travels some random time along
an edge and returns to the vertex it left from. It is assumed,
in the model, that if the patroller travels to a vertex where
an attack is taking place then the attack is neutralized and
the attacker captured.

For generality, all attackers, before a game starts and after
any re-spawn, derive their deadline by randomly sampling
from a pre-defined real–valued set.

IV. DEEP REINFORCEMENT LEARNING AND PATROLLING

A. Problem Formulation

We model our robotic patrolling setting as a Markov
Decision Process (MDP) and then apply Deep Reinforce-
ment Learning (DRL) to synthesize a patrolling strat-
egy. A Markov decision process is defined by the tuple
(S,A, P,R, γ) where: S denotes the set of states, A refers
to the set of available actions, P denotes the transition
probabilities for the environment, R is the reward function
and γ the discount factor.

Considering that in our setting the environment is modeled
as an undirected graph, we introduce a state representation
with the aim of encoding key aspects of the patrolling strat-
egy realization over a finite temporal history. Specifically,
we define a state as a (M + n + 1)-dimensional vector
combining several patrolling-related aspects of the graph and
the patroller’s past decisions:

[ ti, pi−M , ..., pi−1, pi, s0, ..., sn ]

The first entry in the state representation (ti) is the current
time measured as the sum of the dij’s up to the ith transition
in the patrolling mission. The next M entries in the state
vector represent the last M vertices that the patroller visited.
Finally, the last n entries denote the current (or instan-
taneous) idleness of each vertex, a common optimization
criteria used in literature [22]. Idleness is defined as the
time since the patroller’s last visit to a particular vertex.
Hence, the currently occupied vertex has always an idleness
of 0 that starts increasing as long as the patroller leaves
the vertex and does not return to it. The state aims to
both capture the current coverage of the graph and any
cycles relevant to patrolling the graph. Each idleness value
encodes information about which vertices are visited more
often (resulting in a lower idleness value) and which vertices
are being ignored (larger idleness value). Furthermore, the
history of past vertices is included to enable the patroller
to make correlations between graph cycles, defined as a
sequence of traveled vertices where the first and last vertex
are the same, and coverage of the graph.

The use of MDP–based representations is a widespread
practice in patrolling [10]. Our formulation, however, adopts
a richer state description by combining several attributes.
The action set A for every state is the entire set of vertices,
{l1, ..., lk}, denoting which target location the patroller will
move to next. We assume deterministic transitions and use a

discount factor of 0.99 for all experiments. Moreover, M in
all experiments equals k, or the number of vertices.

We adopt a reward function that rewards the patroller
only when an attack is neutralized. In other words, every
action that the patroller takes receives a reward signal of 0,
however, when the state transition results in the capture of
the attacker the patroller receives some positive real reward,
r. After a parameter sweep, we settled on a reward value
of 5 for captures. A limitation of this reward function is the
sparseness of the signal and from our experience generally
requires that the patroller captures the attacker within a
reasonable number of transitions, in order to learn. In our
experiments, this was handled by tuning the deadline of the
attackers. A modest deadline (about 10 transitions) allows for
the algorithm to produce adequate results during training.

The proposed function encourages the patroller to extend
the episode for as long as possible by rewarding it for
repeatedly capturing the attacker indefinitely. We opted for
not including a negative reward signal at the end of the
episode when the patroller is unable to counter the attack
because experiments showed that including the negative
signal had almost no effect on the performance. We postulate
this is due to the fact that as the patrolling agent begins
to capture more and more attackers, the accumulation of
positive rewards outweighs the single negative signal that
could be sent to the agent during learning at the end of a
failing episode (the patroller can capture many attackers in
one episode, but can only lose the game once).

B. Resolution with Proximal Policy Optimization

Policy gradients [29] is a family of methods for finding an
optimal policy of an MDP where the agent’s policy itself is
parameterized by a vector θ and the optimization happens in
the policy space π(a|s, θ). To use policy gradient methods in
our setting we define a policy as π(lj |st, θ) i.e., the policy
receives as input the state at time t and outputs the probability
of selecting lj as the next vertex to visit.

These policy gradient methods can be extended to Actor-
Critic [28] methods where not only is the agent’s policy pa-
rameterized (Actor) but also a value function approximation
(Critic) is used to discriminate between good and bad per-
forming actions. By adopting Proximal Policy Optimization
(PPO) [24] we approximate the objective by a first-order
surrogate problem we will refer to as Clipped–PPO agent.
The agent obtains its name from the objective function used
to optimize the actor:

L(θ) = E[min(ft(θ)At, clip(ft(θ), 1− ε, 1 + ε)At)]

where
ft =

π(lt|st, θt)
πold(lt|st, θt)

,

At is an estimator of the advantage function at time step t,
and ε is some small real valued scalar.

In an adversarial patrolling setting where the attacker is
able to make observations of the patroller’s strategy, the
defender must exhibit some non-determinism or else risk
making the prediction problem too simple for the attacker.



This means that the optimal strategy for the patroller will be a
mixed strategy. Stochastic policies are a natural way to model
mixed strategies over an undirected graph leading to our
choice of using the Clipped Proximal Policy Optimization
agent (Clipped–PPO) from [24].

V. MODELING THE ATTACKER’S BEHAVIOR

An important departure in our work from others is the
explicit modeling of attacker behavior. In general, one can
have different attacker models, each representing a poten-
tial attacker to defend against. We propose six different
attacker models and discuss their corresponding rationale.
All attacker models draw their deadline randomly at the
beginning of each game from the discrete set of values
{100, 150, 200, 300} in all experiments. The six attackers we
consider are described in the following.

Max Idleness Attacker (MIA): Once the deadline is
reached, the MIA will attack the vertex with the largest
idleness. The MIA model will target locations that have been
left vulnerable for more since a vertex with larger idleness
means that the patroller has ignored that particular vertex for
longer. Generally, a larger deadline makes this model (and
other idleness models) stronger since it is able to observe the
patroller for a longer period of time. This model assumes that
the attacker can observe all vertices in the graph.

Average Idleness Attacker (AIA): Once the deadline is
achieved this model will penetrate the vertex with the largest
average idleness. Average idleness is measured as:

1

t

y=t∑
y=0

Iy

where Iy is the instantaneous idleness at transition y. The
rationale here follows from the MIA model in that this model
will penetrate more vulnerable (i.e., larger idleness) targets.
However, this model will not consider instantaneous idleness
but average idleness up to the current time step. This attacker
observes a history of idleness and attacks the vertex that
has been visited with the least regularity. Like MIA, AIA
assumes full observability of the graph.

Idle Subset Attacker (MISA): This attacker model works
exactly like MIA, but it only focuses on a subset of the ver-
tices and completely ignores the vertices not in its purview.
This model’s rationale follows exactly from the MIA model,
but also it captures scenarios where the attacker is not
interested in all the target locations or cannot observe the
entire graph. Whether because of preference or restriction,
this attacker models intruders who have curtailed their total
attention. In all subsequent experiments, the MISA attacker
focuses on a fixed subset consisting of half of the target
locations.

Scaled Idleness Attacker (SIA): This model attacks the
vertex with the largest value of the product between the idle-
ness vector and the vector of vertex values once the deadline
is reached. This attacker uses the idleness information but
also incorporates a preference for target locations with higher
values. This model emulates intruders that are not interested

in vertices that are being ignored by the patroller if these
have low values.

Max Value Attacker (MVA): Once the deadline is reached,
the Max Value Attacker always attacks the vertex with the
largest value. Vertex values are generated once for a particu-
lar graph and remain static. This MVA model implements
cases where the attacker is only interested in the largest
payout and thus repeatedly tries for the target with the most
assets. This model’s observational capabilities are limited to
the maximum value target location and is unaware of the
patroller location when it is not at the maximum value vertex.

Preference Attacker (PA): Once the deadline is achieved
this model chooses a vertex to attack according to a prob-
ability distribution over the vertices. This model does not
take into consideration idleness or value. As the distribution
approaches a uniform probability the problem becomes more
difficult for the patroller. The PA model is a general model
that can represent any preference that the attacker might
have over the vertices and models an intruder who has the
ability to infiltrate any target location but cannot observe
the patroller’s movements. All experiments presented here
(where |V | = 10) were done with a distribution of 0.86
probability on one vertex and the remaining 0.14 distributed
non-uniformly among the other vertices.

VI. TRAINING, DOMAIN RANDOMIZATION AND RESULTS

All graphs are created by randomly placing points on a
grid of size 50 by 50; It is important to note that the attackers
can be divided into categories: those that make an attack
based on some function of the graph idleness induced by
the patroller, and those that do not. We can expect that the
policies that will yield large rewards against the idleness
group will not perform well when compared to the non–
idleness group since the objectives are not correlated.

Before training considering multiple attackers, we assess
whether the Clipped–PPO agent is able to learn against
individual attacker models. Figure 2 shows the learning
curves for the Clipped–PPO for such a scenario.

A single architecture was used to generate all of the
curves. It consists of an actor and value network both with
two hidden layers. For both networks, the first hidden layer
contains 200 units, and the second hidden layer 100 units.
Training procedures and agent implementations are built
upon the TF–Agents library [11]. An epoch consists of
running 30 game simulations in parallel and then optimizing
both actor and critic networks according to the loss functions
and training loop presented in [24]. The learning rate starts
at a value of 1 · 10−4 and is annealed according to an
exponential decay function. Rewards and observations were
normalized and for Clipped–PPO an ε value of 0.01 was
used. From the slope and final values of individual curves,
it is evident that some of the attacker models are easier
for the Clipped–PPO agent to learn against than others. For
example, the Max Value Attacker curve (in purple) shows
that the patroller quickly learns a good policy for defending
the graph. However, the policy that the agent settles on may
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Fig. 2: Learning curves for the Clipped-PPO agent against the
different attacker models. |V | = 10 and all curves were smoothed
using a sliding window average. The x-axis represents the number
of epochs trained and the y-axis shows the returned cumulative
reward. Some attacker models are easier to learn against than others
as evidenced by the slope and final value of the distinct curves.

not be robust to other attacker models (corroborated later
empirically).

Next, we present the Domain Randomization (DR) [30]
training procedure to generalize across attacker models. The
approach at training time exposes the RL agent to all of
the available attacker models instead of just a single model.
Tables I and II show the results for the case of DR training,
where before the start of any game (or episode) during
training an attacker model is selected by sampling uniformly
over all the available models. The first seven rows of Table I
form a confusion matrix for the different Clipped–PPO
agents, while the last row shows the performance of the
Domain Randomization (DR) Clipped–PPO agent.

MIA AIA MISA SIA MVA PA
Clipped-PPO-MIA 198 107 98 52 1.0 3.4
Clipped-PPO-AIA 45 101 48 3.0 0.0 2.9

Clipped-PPO-MISA 0.3 0.2 394 0.9 4.3 0.3
Clipped-PPO-SIA 8.6 7.3 3.4 83 0.6 8.2

Clipped-PPO-MVA 0.5 0.4 1.5 0.0 214.3 0.2
Clipped-PPO-PA 0.3 0.3 0.0 0.0 0.0 71.6

MI-P 17.3 3.9 3.1 5.1 0.4 0.9
DR Clipped-PPO 78 79 310 312 247 11

TABLE I: Confusion matrix for a graph with |V | = 10. An entry
in the table is generated by first training a Clipped-PPO agent
exclusively against some attacker model then deploying it against
different attackers. Results are averaged over 5,000 games.

Each entry is a testing scenario where a Clipped–PPO
agent is deployed against a different attacker model. The
table corroborates the expectation that an agent trained
exclusively on a single attacker model will perform well
against the attacker it was trained on but will also generalize
badly to other attacker models. Row ”Clipped–PPO–MVA”
clearly shows that while the agent can learn to protect well
against the MVA the resulting policy leaves the patroller
vulnerable if the attacker changes strategies. DR Clipped–
PPO, however, performs well across the attacker models and

Average Performance Worst Case
Clipped-PPO-MIA 77 1.0
Clipped-PPO-AIA 33 0.0

Clipped-PPO-MISA 67 0.2
Clipped-PPO-SIA 19 0.6

Clipped-PPO-MVA 36 0.0
Clipped-PPO-PA 12 0.0

MI-P 5 0.4
DR Clipped-PPO 173 11

TABLE II: Results presented here are some statistics gathered from
Table I. Domain randomization helps the Clipped-PPO patroller
generalize over the attacker models. As shown here, the DR
Clipped-PPO agent performs better on average when facing any
of the attacker models and at the same time has a better worst case
return.

Table II substantiates the claim that the DR training will
converge to policies that are robust to changing attacker
strategies.

For completeness, we also compare our method against
a heuristic strategy that represents an established class of
approaches to the patrolling problem (see Section II for a
discussion of idleness optimization techniques). At every
turn, the Maximum Idleness Patroller (MI-P) decides to move
to the vertex with the largest instantaneous idleness. In this
way, the MI-P approximates a schedule that will minimize
the average idleness induced over the graph. As can be
seen from Table I, the MI-P patroller performs its best
when playing against the idleness–based attacker models.
Our Clipped–PPO–MIA agent does better by more than a
factor of 10 meaning it learns ways to manipulate the idleness
so as to capture the attacker. The MI-P meanwhile does not
respond or react to the attacker.

DR Clipped–PPO was able to learn a patrolling strat-
egy that can cope against what from the perspective of
the patroller is an unknown and non–stationary attack–
generation process. Particularly significant is the fact that
the attacker behaviors we combined exhibit substantially
different dynamics. Idleness attackers (MIA, AIA, MISA)
exploit observations of the patrolling strategy’s realization.
Value–related ones (MVA, PA) follow a set of predetermined
and arbitrary preferences, which depend on the environment,
not on the patroller, and the remaining one (SIA) combines
idleness and values. In traditional patrolling applications,
these dynamics always result in conflicting objectives to be
optimized. The results obtained with DR Clipped–PPO show
how our method is a first promising step to overcome this
limitation and build robust patrolling agents.

A. Ablation Study

Our state representation (and input to our function approx-
imators) can be partitioned into the tuple (t, P, S) where: t
is a real–valued scalar representing the current time, P is a
vector of size K denoting the last K vertices visited, and S
is also a vector of size K denoting the instantaneous idleness
of each vertex. Building our state representation equates
to concatenating t, P , and S. As discussed in Section IV,
the P vector is a history of the previous actions taken by



the patrolling agent which helps the agent identify cycles
and relevant patrolling patterns. The S vector (also called
idleness vector) while also containing information related
to past actions identifies areas of the environment that are
under–visited. To corroborate the individual usefulness of S
and P we study the training performance of the Clipped–PPO
agents: first by removing only the history vector P from the
state and then by removing only the idleness vector S from
the state. For all experiments, the size of vector P is equal
to the number of vertices in the graph. For brevity, we focus
on two attacker models that are representative of our attacker
library: the Max Idleness Attacker (MIA) and the Preference
Attacker (PA).

Figures 3 and 4 show the training performances under
different state representations against MIA and PA, re-
spectively. Focusing on Figure 3 (MIA) first, we see that
removing the idleness component from the state diminishes
the performance of the RL agent more than when solely
removing the history S. Intuitively, this makes sense as the
RL patroller is inferring correlations between the idleness
component in the state and the attacker’s decisions. Re-
moving one or the other, however, does have a negative
impact on the RL agents’ training performance. Figure 4 (PA)
demonstrates a similar pattern wherein removing the idleness
information significantly harms the training performance of
the RL patroller. From both charts, we may deduce that the
idleness component in our state representation provides vital
information for the patroller during the learning process. The
idleness vector provides ongoing information about which
vertices have been visited most recently, thus also capturing
information about past actions. From both figures, we see
that the actual history of actions alone is not sufficient for
learning to patrol the graph, but as is the case with Figure 3
its addition can improve performance. Note that removing
both the components S and P would leave the state vector as
a single scalar and thus we did not perform any experiments
as such.

VII. CONCLUSIONS

In this paper, we proposed a method to deal with adver-
sarial patrolling using deep reinforcement learning. We cast
the problem in an RL setting where the reward function is
based on the realization of attacks that can follow arbitrary
logic that is unknown to the patroller. Our main contribution
is the combination of a Proximal Policy Optimization agent
and Domain Randomization training techniques to generate
patrollers that are robust to changing attacker strategies. Key
to the method is changing attacker models before the start
of every episode which effectively exposes the RL patroller
to different MDPs during training. This method pushes the
reinforcement learning algorithm (PPO) to converge to a sort
of average policy that is able to generalize across different
environments. To the best of our knowledge, this is the
first work that applies a framework and presents significant
results against a mixture of very distinct attacker behaviors.
Our ablation study revealed that including a history of past
actions in the state is less important than including the
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current instantaneous idleness, yet it is needed. Future direc-
tions include the application of graph neural networks to the
actor and critic networks and multi-patroller settings where a
team of patrollers must cooperate to patrol an environment.
This involves studying different network architectures for
the graph neural network and applying Centralized Training
and Decentralized Execution (CTDE) methods to handle the
multi-robot setting. With respect to the GNN, we could
obtain a model that does not need re-training for every new
graph instance since the new network could handle variable
graph size input. Furthermore, the CTDE technique will
encourage agents to spread out so as to cover the entire graph
and avoid redundancies.
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