
Combining Coordination and Independent Coverage
in MultiRobot Graph Patrolling

Carlos Diaz Alvarenga Nicola Basilico Stefano Carpin

Abstract— Graph patrolling algorithms provide effective
strategies for coordinating mobile robots in the context of
autonomously surveilling valuable assets. Optimizing patrolling
strategies often aims to minimize the time between subsequent
visits to a vertex, a measure known in the literature as idle-
ness. In the domain of multi-robot patrolling, two approaches
have received the most attention so far. The first involves
coordinating all robots to follow a shared patrolling strategy
covering the entire graph, while the second approach partitions
the environment into disjoint areas that are then assigned
to individual robots. Starting from these existing solutions,
this paper introduces a new method that bridges these two
complementary approaches. Our technique splits the vertices
of the graph into a partition that includes a shared portion of
the environment patrolled collectively by all robots, along with
disjoint areas allocated exclusively to individual robots. This
problem is formulated in terms of minimizing the maximum
weighted idleness of the graph and is shown to be NP-hard. We
then describe an exact solution for the problem and propose
various heuristics to efficiently compute solutions for large
problem instances. We evaluate and compare the proposed tech-
niques in simulation and demonstrate that, in most cases, our
methods produce better patrolling strategies when compared to
classic solutions. Moreover, for small problem instances where
the exact solution can be found, we show that our proposed
heuristic has a competitive performance ratio.

I. INTRODUCTION AND RELATED WORK

In recent years, algorithms for graph patrolling, especially
in autonomous surveillance using mobile robots, have re-
ceived great attention [4]. This involves modeling environ-
ments as graphs and devising strategies to guide patrollers
across vertices, mirroring real-world scenarios [20] where
vertices represent locations of interest, patrollers are robots
with surveillance capabilities, and visits entail checking
locations for threats and taking action if needed.

Computing a patrolling strategy is usually addressed as
an optimization problem defined by constraints and costs.
Typical goals include following the graph’s topology, en-
suring a minimum frequency of visits on vertices [10], or
complying with latency constraints [3]. Cumulative costs are
normally associated with traveling along edges and, in some
cases, with vertex visits as well. Different approaches have
been applied to solve these problems. These range from the
minimization of selected optimization criteria [1], [12] to
using game-theoretical frameworks where the behavior of a
rational adversary is considered [6], [9].

N. Basilico is with the Department of Computer Science, University
of Milan, Milan, Italy. C. Diaz Alvarenga and S. Carpin are with the
Department of Computer Science and Engineering, University of California,
Merced, CA, USA.

Our work belongs to the first group of methods as we
adopt an optimization criterion that has been extensively
studied in the literature: the idleness between visits [7],
[19]. This metric measures the temporal difference between
subsequent visits (attack-clearing actions) to a vertex. By
measuring the idleness in each vertex of the graph and
computing an aggregate function of the obtained values
(maximum, average, or variants) it is possible to assess how
well a strategy protects an environment. The rationale is that
the lower the idleness of a vertex, the less likely that vertex is
to be subject to an attack. The idleness of a vertex is often
scaled by the vertex’s importance obtaining what is often
referred to as the weighted idleness [2].

Solving these optimization problems is usually hard, often
leading to high computational costs when seeking exact
solutions. Prior research has therefore proposed heuristics
and approximations to efficiently find sub-optimal strategies
that offer practical performance. This is especially crucial in
MultiRobot Patrolling (MRP) scenarios where the problem’s
complexity grows significantly with the number of robots.
Nonetheless, employing multiple patrollers remains an effec-
tive means to increase performance and robustness. In our
work, we propose a novel offline approach to computing
MRP strategies by combining two commonly used tech-
niques, which are typically considered mutually exclusive.

Assuming that m is the number of robots, the first tech-
nique involves assigning each robot the patrolling task over
the whole environment and using a coordinated strategy [15].
This strategy typically relies on a single Hamiltonian cycle
(or traveling salesman problem – TSP cycle) that all robots
follow. Coordination entails synchronizing the traversal of
this path by the m robots, resulting in a collective reduction
of maximum idleness on any vertex by a factor of m when
robots are uniformly spaced along the tour [7]. While this
approach enhances patrolling compared to a single robot, it
necessitates computing a complete graph tour and does not
leverage the advantages that a potential division of effort
among the robots might induce.

The second technique is instead an implementation of the
divide et impera principle [10], [16], [18]. The idea is to par-
tition the environment into m subsets of the sites to protect,
one for each robot, i.e., if V is the set containing all the graph
vertices, the partition is defined as P = {V1, . . . , Vm}, with
∪iVi = V and Vi∩Vj = ∅ for i ̸= j. The set P can prescribe
a division of effort among the robots thus allowing to reduce
the MRP problem to m simpler single-robot instances. In
this setting, each robot independently patrols its assigned
sub-graph. Since sub-graphs are disjoint, coordination among

robots cannot introduce improvements and is therefore not
necessary. Typically, each robot covers the TSP cycle (exact
or approximate) on the vertices it is in charge of.

The two techniques can be characterized in terms of over-
lap between partition elements. The first case corresponds
to full overlap (and hence a single element identical to V)
while the second case would be associated with an empty
overlap, namely a partition of V into m disjoint subsets. In
this work, we introduce an intermediate approach to take
advantage of both the coordination of patrollers (enabled
by some overlap over portions of the environment) and
the division of effort (requiring no overlap). Starting from
the methods described above, we compute a partition of V
into up to m + 1 subsets, P+ = {V0, V1, . . . , Vm} with
|V0| ≥ 2, i.e., subset V0 will always have at least two vertices
(we motivate this constraint in the next sections.) In such
partition, subset V0 represents a portion of the environment
that is patrolled by all m robots in a coordinated fashion,
while the remaining subsets Vk define subsets patrolled by
exactly one robot, i.e., Vk is patrolled exclusively by the k-th
robot. The resulting patrolling strategy will be obtained by
combining a set of Hamiltonian paths, computed on each
partition’s elements, to enable a scaling factor of m for
the maximum weighted idleness over the shared vertices
(V0) while allowing independent patrolling over the non-
shared parts (see also [7] for more details). By assuming
such a structure in the joint patrolling strategy, we leverage
situations where it is convenient to coordinate shared efforts
on a selection of critical vertices that we dub “the core” while
applying a disjoint division of effort over less important ones.
Our formulation however allows for some or all of the Vk

(k > 0) to be empty. When that happens, the corresponding
k-th robot just patrols V0. Note that in the limit, if all
Vk = ∅ for k > 0, the patrolling strategy coincides with
the classic coordinated strategy where each robot patrols the
entire graph.

Below, we provide the following contributions.
• We define our patrolling setting (Section II), propose

a novel formulation of the MRP problem (Section III)
that can accommodate coordination and independent pa-
trolling, and characterize its computational complexity.

• We define an exact formulation for computing optimal
strategies that minimize a notion of weighted idleness
(Section IV).

• We propose a set of principled heuristics (Section V)
that enable efficient computation of strategies with
competitive performance.

• We extensively compare and evaluate our methods (Sec-
tion VI).

II. PROBLEM SETTING

We consider the classical graph patrolling setting refining
a model we formerly considered in prior works [8], [5]. The
environment is modeled by a graph G = (V,E), where
vertices V = {1, 2, . . . , n} represent locations and edges
(i, j) ∈ E represent their connections. A value cij represents
the traveling cost (time or distance) to move from i to j.

We assume that the graph is complete and that cij is the
shortest cost. (Such a representation can always be computed
from an arbitrary connected graph). Each vertex i ∈ V is
assigned an importance value vi > 0, indicating the level
of criticality for its protection. A set R = {1, 2, . . . ,m} of
m patrollers must protect the environment by moving from
vertex to vertex in the graph. When a patroller visits a vertex,
the vertex is protected, i.e., it cannot be compromised by
an attacker, or, if the vertex is under attack, the attack is
neutralized. Our optimization criterion uses the idleness of a
vertex i, indicated as Ii and defined as the time between two
successive visits to i by any of the patrollers. A common
function to optimize is the weighted idleness:

minmax
i∈V

viIi (1)

This favors patrolling strategies where valuable vertices are
visited more frequently, thus resulting in lower idleness. The
m patrollers can be organized according to the following. (i)
Coordinated patrolling: each patroller can visit any of the
vertices in G. (ii) Disjoint partitions: the set of vertices V
is partitioned into m non-overlapping subsets, and each pa-
troller is assigned a subset of vertices (to prevent degenerate
cases, we assume each subset has at least two vertices). (iii)
Overlapping partitions: V is subdivided into m subsets that
may share some vertices, each subset is then assigned to one
of the patrollers.

III. OVERLAPPING PARTITIONS

We propose a new way to split the workload between
m patrolling agents by introducing the concept of core and
periphery on the vertex set V . The core V0 is a subset of
V patrolled by all m robots. The periphery P = V \ V0 is
the set of remaining vertices that is instead split into up to
m non-overlapping subsets. Let these subsets be indicated
as V1, V2, . . . , Vm. The idea is that each robot k first patrols
the core V0 by traversing a Hamiltonian path between some
start and end vertices, then patrols its assigned subset Vk,
also traversing it with a Hamiltonian path, and then goes
back to the core and repeats. This strategy is sketched in
Figure 1 for a case where m = 2.

Fig. 1: Overlapping partition for m = 2. Both robots patrol
the core’s blue vertices following the same path between π0

e

and π0
x. Subsequently, robot 1 patrols the red vertices, while

robot 2 patrols the green vertices.

We make these assumptions about robots’ coordination.
• All robots traverse V0 following the same Hamiltonian

path π0 from π0
e (entry) and π0

x (exit).
• When exiting π0

x, if Vk ̸= ∅ robot k traverses the
assigned subset Vk by following an Hamiltonian path

πk starting at πk
e and ending at πk

x. Then it travels back
to π0

e and repeats. If instead Vk = ∅, robot k moves
from π0

x to π0
e and resumes patrolling the core following

π0.
• Robots (i) adapt their speed so that each robot spends

the same time to complete its tour (the time of the
longest tour followed by any robot) (ii) uniformly
distancing in time their arrivals at the core’s entrance.

For a given core V0 with entry vertex π0
e and exit vertex

π0
x, let tc be the time it takes to follow the Hamiltonian path

π0. Similarly, for each of the subsets Vk, let tk be the time
to complete πk also including the movement from π0

x to πk
e

(Vk’s entry) as well from πk
x (Vk’s exit) to π0

e – see Fig. 1.
Given this construction, the idleness of each vertex in Vk

for k > 0 will be tc + tk because the robot in charge of
that subset must patrol, in sequence, V0 and Vk. However,
vertices in V0 will be subject to a lower idleness thanks to
robots’ coordination. If robots coordinate their starts from
π0
e , then the maximum idleness experienced by the vertices

in V0 will be scaled by a factor of m. More formally, when
we impose the existence of a shared core V0, the objective
function defined in Eq. (1) can be rewritten as follows:

min max
1≤k≤m

{
Ac tc + tk

m
,Ap(tc + tk)

}
(2)

where
Ac = max

i∈V0

{vi}, Ap = max
i∈V \V0

{vi}.

Note that, to be well-defined, this formulation requires that
|V0| ≥ 2 to allow for at least two vertices in V0 as π0

e and
π0
x must be distinct. However, if useful towards the solution

of the above minimization problem, we do allow Vk = ∅ for
one or more periphery sets (k > 0). When that is the case,
the corresponding agent just patrols the core. The following
problem formulation formalizes the problem we described.

Overlapping Partitions Problem (OPP) Given a
weighted graph G = (V,E) with n vertices, edge
costs c : E → R+, and vertex values v : V → R+.
Let m be a given number of robots. Determine a
core subset V0 ⊂ V with at least two vertices and
a partition of V \ V0 into at most m elements that
solve the minimization problem defined by Eq. (2).

The pivotal question therefore is how to determine the core
V0, the periphery V1, . . . , Vm, and the corresponding Hamil-
tonian paths, solving the minimization problem formulated
in Eq. (2), also in light of the following theoretical result.

Theorem 1: The OPP problem is NP-hard.
Proof: for the special case m = 1 the OPP problem is
equivalent to the traveling salesman problem (TSP) over the
entire set of vertices V .

IV. EXACT FORMULATION

We here provide an exact mathematical formulation for
OPP. This formulation can be useful to solve small instances
(i.e., graphs with few vertices), and to better understand
the structure of the problem. Note that the formulation we
provide allows for the case where all Vk = ∅ for k > 0,

but imposes that V0 ̸= ∅. As will be shown in Section VI,
in some peculiar cases this could be a disadvantage, i.e., the
disjoint partitions approach could provide better solutions to
the problem defined in Eq. 3.

Let V + = V ∪{0} and R+ = R∪{0} and let us consider
a directed version of the edge set E, where we replace each
edge with the two corresponding symmetric arcs. Notably, as
we will show in the end, the formulation is nonlinear. Both
sets include an additional 0 element, which will be useful
for the following construction. In the set V +, the element
0 represents an extra vertex that does not correspond to any
real location but that allows us to express the resolution of
the problem as finding a set of m+1 tours starting and ending
at it. In the set R+, the 0 element represents an extra robot
which we will associate with the shared patrolling task of the
core. We introduce the following binary decision variables
for each i, j ∈ V + and k ∈ R+.

xk
ij =

{
1, if robot k will travel on edge (i, j)

0, otherwise

An assignment of the xk
ij variables defines a partition of

the environment. Each element V k ⊆ V (k ∈ R+) of the
partition can be recovered as follows: V k =

{
j ∈ V |∑n

i=1 x
k
ij = 1

}
. Another set of similar binary variables ykij is

introduced with the same definition but a different meaning
(see usage below).

Notice that the above set definition assumes that the
assignment to the xk

ij variables is consistent with the set of
constraints that will be introduced in the formulation, which
will enforce that each vertex will be visited by exactly one
robot (including robot 0). The definition has the following
rationale: if the robot k travels vertex (i, j) for any i then j
is considered part of that robot’s subset of vertices. In our
problem formulation, V 0 will represent the vertices assigned
to the core, i.e., the portion that is shared among the m
robots. Conversely, V k for 1 ≤ k ≤ m represents the vertices
that are patrolled exclusively by robot k.

The variable ti represents the time at which vertex i is
visited within the sequence of vertices in the partition to
which i belongs. In the solution, we do not require that
variables ti will be assigned values that are consistent with
traveling costs: we only require that if a vertex i is visited
later than a vertex j then ti ≥ tj .

The formulation shown in Table I is inspired by the ILP
formulation for the maxmin Multiple TSP (see [14]) from
which we take a basic set of constraints and we extend it to
enforce the core/periphery structure we propose in this work.

Constraints (4) and (5) require that each robot leaves
and returns to the depot along a single arc. Constraints (6)
and (7) require that exactly one robot shall arrive and leave
each vertex (except for vertex i = 0, the dummy depot).
Constraints (8) ensure that the robot that arrives is the same
one that leaves. Constraints (9) are the Miller-Tucker-Zemlin
(MTZ) subtour-elimination constraints. They eliminate solu-
tions where one robot covers its vertices through two or more
disjoint tours on the graph. Here it is assumed that n ≥ m

min U (3)
s.t.
n∑

j=1

xk
0j = 1, ∀k ∈ R+ (4)

n∑
i=1

xk
i0 = 1, ∀k ∈ R+ (5)

m∑
k=0

n∑
i=0

xk
ij = 1, ∀j ̸= i ∈ V (6)

m∑
k=0

n∑
j=0

xk
ij = 1, ∀i ̸= j ∈ V (7)

n∑
i=0

xk
ij =

n∑
i=0

xk
ji, ∀j ∈ V, k ∈ R+ (8)

ui − uj + (n−m+ 1)

m∑
k=0

xk
ij ≤ n−m, ∀i ̸= j ∈ V (9)

x0
i0 + xk

0j − 1 ≤ yk
ij , ∀i ̸= j ∈ V, k ∈ R (10)

x0
0j + xk

i0 − 1 ≤ yk
ij , ∀i ̸= j ∈ V, k ∈ R (11)

n∑
i=1

n∑
j=1

cij
(
x0
ij + xk

ij + yk
ij

)
≤ Ik, ∀k ∈ R (12)

1

m

n∑
i=0

x0
ijvj ≤ Ac, ∀j ∈ V (13)

n∑
i=0

xk
ijvj ≤ Ap, ∀j ∈ V, k ∈ R (14)

AwIk ≤ U, w ∈ {c, p}, k ∈ R (15)

TABLE I: An exact formulation for the OPP problem.

and that, in the solution, each robot will cover at least one
vertex.

The above basic constraints will enforce solutions whose
structure is the same as that required for classical multi-
TSP problems: m+ 1 tours, each starting and ending at the
depot i = 0. The tours are such that each vertex i > 0
is covered once by just one robot. The tour for robot k is
composed in this way: leaving the depot, traveling an inner
path πk, and returning to the depot. We need to combine
these m + 1 tours in order to obtain m tours, one for each
real robot k > 0, each defined as start at the first vertex of
π0, follow π0, travel to the first vertex of πk, follow πk,
travel to the first vertex of π0, repeat. We can show that
the optimal solution to our problem can be expressed in the
multi-TSP form described above provided that the required
objective function is defined. Hence we embed our required
structure in the costs minimized by the objective function.

Constraints (10) and (11) select, through the y variables,
those arcs that will connect, for each real robot, the inner path
π0 with the inner path for just that robot πk. Constraints (12)
define Ik as the upper bound on the tour cost (and hence, the
idleness) for a real robot k > 0. Constraints (13) and (14)
similarly define, an upper bound for the maximum vertex
value in the core (Ac) and outside of it (Ap). Notice that these

upper bounds will be “pushed” to be tight since the problem
is a minimization one. Finally, Constraints (15) provide an
upper bound to the objective function we seek to minimize.
This cost is the maximum weighted idleness that accounts
for a discount of 1/m for the maximum value among the
vertices in the core (those visited by π0). Notice how this
final constraint, crucial to the whole problem, is also the one
that introduces a non-linearity.

As mentioned earlier, the exact formulation illustrated in
this section could be used to solve small problem instances,
i.e., instances with few vertices and edges, but obviously do
not scale to larger ones. For this reason, in the next section,
we propose various heuristics that scale with the problem’s
size.

V. HEURISTICS FOR OPP

In light of the computational complexity of OPP, in this
section we introduce various heuristic methods for finding
solutions to large problem instances where exact methods
cannot be applied. As mentioned in the previous section
our problem is related to the min-max multiple traveling
salesman problem (mTSP) formulation [14] and this insight
informs our solving strategy. A valid solution to OPP can be
determined as follows:

• Select some vertices to form the core.
• Compute a TSP tour on the core with arbitrary starting

and ending vertices (this can be achieved for example by
adding a dummy vertex to the graph that is connected to
all other vertices with edges of zero cost) and restricting
the TSP tour to start and end at the dummy vertex; these
arbitrary starting and ending vertices become π0

e and π0
x;

• Solve the min-max mTSP problem on the periphery
where all m tours must start at π0

x and end at π0
e .

Furthermore, the solution to the mTSP will partition
the periphery vertices into disjoint sets for the robots.

• Finally by combining the Hamiltonian path on the core
with each of the m Hamiltonian paths on the periphery
we form a valid path for each robot and thus a valid
solution to the problem.

Thus given a core set of vertices, a TSP solver, and a min-
max mTSP solver1 one can form a solution by performing
the aforementioned steps. However, the question of how to
select the vertices that belong in the core so as to effectively
minimize Eq. 2 remains open. In the following, we propose
different methods aiming at obtaining low values for Eq. (2)
that differ in the strategy to build the core.

A. K-means core

A first heuristic is based on the intuition that to minimize
the objective function one should minimize the distance
traveled by the robots, i.e., reducing the sum tc + tk. These
two terms are conflicting since reducing the total distance
traveled on the core means removing a vertex from there
and adding it to the periphery hence increasing the distance

1Note that we are not requiring an exact solver for these two NP-hard
problems.

traveled by some robot on its independent workload. Because
we would like every robot to have some minimum workload
we propose to use k-means clustering based on the Euclidean
distance between vertices with m + 1 clusters to identify
the subsets V0, V1, . . . , Vm. After running the algorithm, we
assign the largest cluster to the core.

B. Weighted K-means core

Weighted k-means clustering [13] works similarly to the
non-weighted version but exploits the fact that each of the
vertices in the graph has an associated value. Since in
Eq. (2) the values of vertices multiply the travel times, in
the weighted k-means heuristic the values of the vertices are
used to scale the weight of the clusters. Then just as we did
with non-weighted k-means, we compute m+1 clusters and
denote the largest cluster as the core set of vertices.

C. Balanced Weights Heuristic (BWH)

By examining Eq. (2) we note some principles governing
the nature of the objective function. The variables tc and
tk are found in every term and furthermore in general
minimizing one of the variables means increasing the other
since a smaller tc can only be achieved by removing a
vertex from the core and thus adding said vertex into the
periphery. The same is true for decreasing the largest tour
on the periphery - it can only be achieved, in general, by
removing a vertex from the periphery and adding it to the
core set or adding it to another partition whose tk value will
increase. This suggests that the optimal is found when the
terms {A0 tc+t0

m , A0 (tc+t1)
m , ..., A1(tc + tk), ..., A

k(tc + tk)}
are roughly similar in value. Note here that the maximum of
the first k terms is simply A0 tc+maxk(tk)

m . Given that A0 is
the largest valued vertex in the core and each subsequent Ak

is obtained from the largest valued vertex for each robot’s
independent workload, a simple heuristic for partitioning the
set of vertices into core and periphery is obtained by adding
a vertex into the core when its corresponding value satisfies
the inequality:

vj >
maxi∈V (vi)

m
.

In this way, we can keep high-valued vertices in the core
and, at the same time, push out into the periphery vertices
with values similar to or less than the first coefficient in the
objective function, A0

m . This heuristic aiming at balancing the
terms in the objective function is dubbed balanced weights
heuristic (BWH).

D. Local Search Heuristic (LSH)

Starting from the balanced weights heuristic, we can
develop an improved version called local search heuristic
(LSH). Since the core is shared between k robots it follows
that generally, we would like cores that include more vertices
with respect to subsets in the periphery. Starting from the
core proposed by BWH, the local search heuristic iteratively
tries to improve the current selection of the core by evalu-
ating random additions to it. In this way, our local search
method tries to build solutions that are at least as good as

those provided by the BWH approach. At each iteration for
each vertex i in the periphery set, with probability p, it is
removed from the periphery set and introduced into the core
set (p = 0.6 in our experiements). We can then evaluate this
new candidate core set by computing its objective value from
Eq. 2. If the new core is better than the previous one it is
saved otherwise, it is passed over. An outline of the local
search heuristic is given in Algorithm 1.

Algorithm 1: Local Heuristic Search
Data: B search budget p vertex add probability

1 C ← Balanced Weight Heuristic;
2 o← objective value for C (from equation 2);
3 for i← 0 to B do
4 D ← C;
5 P ← V − C;
6 for n in P do
7 with probability p, D = D ∪ n;
8 solve TSP and mTSP sub problems;
9 s← objective value for D (from equation 2);

10 if s < o then
11 o← s C ← D
12 return C, o

VI. EVALUATION

In this section, we perform two types of evaluations. First,
we assess the relative merit of the heuristics we introduced
in section V. Second, we evaluate if the novel formulation
we proposed in this paper is advantageous when compared
with the coordinated patrolling and disjoint partition methods
formerly proposed in the literature. To compare with the
disjoint partition method, we use the k-Max Cut algorithm
we formerly proposed in [8]. This approach partitions the
graph into k subsets and subsequently assigns each robot
a sub-graph to patrol. For each sub-graph, a TSP tour is
calculated and serves as the robot’s path through the area.

We performed evaluations on graph sizes ranging from
10 vertices to 60 vertices, with 10 instances for each graph
size. Vertex locations are generated by randomly sampling
points in a 50×50 square and edge weights are given by the
Euclidean distance between the vertex coordinates. Finally,
vertices values are sampled from the range 1 to 100 using a
uniform distribution. To solve the TSP and mTSP problems
we used the routing module provided by the Google OR-
Tools library [11], while for k-means we use scikit-learn [17].

To get an idea of how far from the optimal solution our
methods are, we first performed a set of experiments on
graphs of small size comparing the solutions provided by
the different heuristics and the exact solution. Figures 2a
and 2b show the competitive ratio of the various heuristics
for graph instances of size 10 and 15. The competitive ratio
is defined as the ratio between the objective value returned by
the heuristic method and the optimal value (with 1 therefore
being the best one can aim for). Both the charts for 2 and
3 robots show similar trends, namely that BWH and LSH
almost always perform better than the other methods, and
have a competitive ratio close to 1. Furthermore, local search

0 10 20
Graph Test Cases

1

2

3
C

om
p

et
it

iv
e

R
at

io

10 15

2 robots, n = [10, 15]

(a)

0 10 20
Graph Test Cases

1

2

3

C
om

p
et

it
iv

e
R

at
io

10 15

3 robots, n = [10, 15]

(b)

0 10 20 30 40 50
Graph Test Cases

0

10

20

30

O
bj

ec
ti

ve
V

al
ue

20 30 40 50 60

2 robots, n = [20, 30, 40, 50, 60]

(c)

0 10 20 30 40 50
Graph Test Cases

0

10

20

30

O
bj

ec
ti

ve
V

al
ue

20 30 40 50 60

5 robots, n = [20, 30, 40, 50, 60]

(d)

0 10 20 30 40 50
Graph Test Cases

0

10

20

30

O
bj

ec
ti

ve
V

al
ue

20 30 40 50 60

10 robots, n = [20, 30, 40, 50, 60]

(e)

0 10 20 30 40
Graph Test Cases

0

10

20

30

O
bj

ec
ti

ve
V

al
ue

30 40 50 60

15 robots, n = [30, 40, 50, 60]

(f)

Fig. 2: Comparison between the different heuristics for different graph sizes and number of robots. In all figures, the following
color coding is used: red for k-means; green for weighted k-means; purple for k-max cut; blue for the balanced weights
heuristic; and orange for the local search heuristic.

can improve BWH as evidenced in Figure 2b. Important
to note in both Figures 2a and 2b is that the k-Max Cut
sometimes does even better and has a competitive ratio of
less than 1. This apparent contradiction can be explained
by the fact that some graph instances naturally cluster into
distinct sub-graphs. This arrangement is advantageous to the
k-Max Cut method since it will keep the independent robot
tours small, while it is also detrimental to the heuristics
and the exact method since selecting a core set of vertices
will incur a large travel cost when moving between the
two natural sub-graph clusters. The next set of experiments
compares the objective values of the returned solutions for
each of the various heuristics for larger graphs. Note that
as the number of vertices exceeds 15 the exact solution
becomes too costly to compute and we therefore compare
the objective values between the different solutions rather
than the competitive ratio. Figure 2c, 2d, 2e, and 2f show
the values found for 2, 5, 10, and 15 robots and graph sizes
varying from 20 to 60 vertices. As can be seen, the two
heuristics proposed in this paper almost invariably are the
most effective, and in particular they outperform the method
based on disjoint partitions. The experiments described thus
far show that the method we propose outperforms the dis-
joint partitions approach. However, one could wonder if it
also outperforms the coordinated method with all robots
patrolling all vertices. An analysis of the results produced
shows that the answer is affirmative, especially in the case
of constrained resources (e.g., a small number of robots and
a large number of vertices). Figure 3 shows two examples,
with the left graph showing the solution produced by the
optimal method and the right one produced by LSH. In the

figure, the size of the vertices is proportional to the vi values
and it outlines how important vertices are included in the core
(plotted in blue). In both instances, better patrolling strategies
are obtained by assigning each robot to a subset of vertices
in the periphery (paths plotted in different colors) rather
than including everything in the core as in the coordinated
method. These two samples are representative of the entire
dataset.

Entry

Exit

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Entry

Exit

0
1

2

3
4

5

6

78

9

10

11

1213

14
15

16

17

18
19

Fig. 3: Left: optimal solution for 3 robots and 15 vertices.
Right: LSH solution for 3 robots and 20 vertices.

VII. CONCLUSIONS

We proposed a new strategy to solve the MRP problem
bridging between the formerly proposed approaches based on
uncoordinated patrolling and disjoint partitions. The key idea
is that robots jointly patrol the “important” part of the graph
(which we dub core), and independently patrol less important
parts of it. Owing to the intrinsic computational complexity
of optimal methods, we introduced four heuristics, one of
which (LSH) emerges as the best. Our experiments show
that for small problem sizes we obtain a competitive ratio
of almost one, and for larger problem sizes it handily beats
the disjoint partitions method. Our test cases also show that
in most instances our method generates patrolling strategies
better than those produced by the coordinated and disjoint
partitions methods.

REFERENCES

[1] P. Afshani, M. de Berg, K. Buchin, J. Gao, M. Löffler, A. Nayyeri,
B. Raichel, R. Sarkar, H. Wang, and H.-T. Yang. Approximation
algorithms for multi-robot patrol-scheduling with min-max latency. In
International Workshop on the Algorithmic Foundations of Robotics,
pages 107–123. Springer, 2020.

[2] S. Alamdari, E. Fata, and S.L. Smith. Persistent monitoring in
discrete environments: Minimizing the maximum weighted latency
between observations. The International Journal of Robotics Research,
33(1):138–154, 2014.

[3] Ahmad Bilal Asghar, Stephen L Smith, and Shreyas Sundaram. Multi-
robot routing for persistent monitoring with latency constraints. In
2019 American Control Conference (ACC), pages 2620–2625. IEEE,
2019.

[4] N. Basilico. Recent trends in robotic patrolling. Current Robotics
Reports, pages 1–12, 2022.

[5] N. Basilico and S. Carpin. Balancing unpredictability and coverage in
adversarial patrolling settings. In Proceedings of the 2018 Workshop
on Algorithmic Foundations or Robotics, pages 762–777, 2020.

[6] N. Basilico, N. Gatti, and F. Amigoni. Patrolling security games:
Definition and algorithms for solving large instances with single
patroller and single intruder. ARTIF INTELL, 184:78–123, 2012.

[7] Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling
problem. In Proc. IAT, pages 302–308, 2004.

[8] C. Diaz Alvarenga, N. Basilico, and S. Carpin. Multirobot patrolling
against adaptive opponents with limited information. In Proceedings
of the IEEE International Conference on Robotics and Automation,
pages 2486–2492, 2020.

[9] X. Duan and F. Bullo. Markov chain–based stochastic strategies
for robotic surveillance. Annual Review of Control, Robotics, and
Autonomous Systems, 4:243–264, 2021.

[10] Y. Elmaliach, N. Agmon, and G.A. Kaminka. Multi-robot area patrol
under frequency constraints. Annals of Mathematics and Artificial
Intelligence, 57(3-4):293–320, 2009.

[11] Vincent Furnon and Laurent Perron. Or-tools routing library.
[12] S.K.K. Hari, S. Rathinam, S. Darbha, K. Kalyanam, S.G. Manyam,

and D. Casbeer. The generalized persistent monitoring problem. In
Proceedings of the American Control Conference, pages 2783–2788,
2019.

[13] K. Kerdprasop, N. Kerdprasop, and P. Sattayatham. Weighted k-means
for density-biased clustering. In Proceedings of the International
Conference on Data Warehousing and Knowledge Discovery, pages
488–497, 2005.

[14] R. Necula, M. Breaban, and M. Raschip. Tackling the bi-criteria facet
of multiple traveling salesman problem with ant colony systems. In
Proceedings of the International Conference on Tools with Artificial
Intelligence, pages 873–880, 2015.

[15] Y. Oshart, N. Agmon, and S. Kraus. Non-uniform policies for
multi-robot asymmetric perimeter patrol in adversarial domains. In
Proceedings of the International Symposium on Multi-Robot and
Multi-Agent Systems, pages 136–138, 2019.

[16] J.M. Palacios-Gasós, D. Tardioli, E. Montijano, and C. Sagüés. Eq-
uitable persistent coverage of non-convex environments with graph-
based planning. The International Journal of Robotics Research,
38(14):1674–1694, 2019.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830, 2011.

[18] D. Portugal, C. Pippin, R.P. Rocha, and H. Christensen. Finding
optimal routes for multi-robot patrolling in generic graphs. In
Proceedings of the IEEE/RSJ International Conference on Robots and
Systems, pages 363–369, 2014.

[19] D. Portugal and R. Rocha. A survey on multi-robot patrolling algo-
rithms. In Luis M. Camarinha-Matos, editor, Technological Innovation
for Sustainability, pages 139–146, 2011.

[20] F. Rubio, F. Valero, and C. Llopis-Albert. A review of mo-
bile robots: Concepts, methods, theoretical framework, and ap-
plications. International Journal of Advanced Robotic Systems,
16(2):1729881419839596, 2019.

