
Distributed Multi-robot Online Sampling with Budget Constraints

Azin Shamshirgaran1 Sandeep Manjanna2 Stefano Carpin1

Abstract— In multi-robot informative path planning the
problem is to find a route for each robot in a team to visit a set
of locations that can provide the most useful data to reconstruct
an unknown scalar field. In the budgeted version, each robot is
subject to a travel budget limiting the distance it can travel. Our
interest in this problem is motivated by applications in precision
agriculture, where robots are used to collect measurements
to estimate domain-relevant scalar parameters such as soil
moisture or nitrates concentrations. In this paper, we propose
an online, distributed multi-robot sampling algorithm based on
Monte Carlo Tree Search (MCTS) where each robot iteratively
selects the next sampling location through communication with
other robots and considering its remaining budget.

We evaluate our proposed method for varying team sizes and
in different environments, and we compare our solution with
four different baseline methods. Our experiments show that
our solution outperforms the baselines when the budget is tight
by collecting measurements leading to smaller reconstruction
errors.

I. INTRODUCTION

There is an increasing number of applications for au-
tonomous robots in agriculture [7], [22], and while the most
obvious interest may be in fruit harvesting [4], there is
also sustained demand for robots supporting data collection
at scale, especially for measuring and/or estimating scalar
parameters such as soil moisture and nitrate concentration
that cannot be easily determined through remote sensing with
satellites and drones (see Fig. 1).

Robots are expected to play a vital role in the implemen-
tation of farm monitoring systems in support of precision
agriculture. Precision agriculture is defined as “the matching
of agronomic inputs and practices to localized conditions
within a field and the improvement of the accuracy of
their application” [6]. Key to this vision is the ability to
perform scalable data collection on demand. In this context,
the capability of deploying a coordinated team of robots to
collect data is instrumental, as a team of robots can collect
more data per time unit, and also offers increased robustness
to individual failures.

For this approach to be efficient, it is necessary for robots
to coordinate their efforts to avoid unnecessary duplicate
work or negative interferences. As part of the measurement

1A. Shamshirgaran and S. Carpin are with the Department of Computer
Science and Engineering, University of California, Merced, CA, USA. A.
Shamshirgaran is supported by USDA-NIFA under award # 2021-67022-
33452 (National Robotics Initiative). S. Carpin is partially supported by the
IoT4Ag Engineering Research Center funded by the National Science Foun-
dation (NSF) under NSF Cooperative Agreement Number EEC-1941529.
Any opinions, findings, conclusions, or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect the view
of the U.S. Department of Agriculture or the National Science Foundation.

2S. Manjanna is at Plaksha University, Mohali, India.

Fig. 1: Our robot has been retrofit with a soil moisture sensor that
can be inserted in the soil to collect data at preassigned locations,
or at locations decided by the robot on-the-fly (the soil moisture
probe is visible on the left).

collection task, sample locations can be provided in advance
chosen by experts, or randomly, or selected along the way
in response to collected data. Central to our work is the
necessity to perform task allocation being aware of the
distance a robot can travel before its battery is depleted. From
a practical standpoint, a robot running out of energy in the
middle of its data collection mission is a major problem, as it
will be necessary to manually recover it. Our task allocation
strategy, therefore, focuses both on avoiding duplicate work
and on managing energy constraints.

Communication among robots is another key dimension
to be considered in multi-robot scenarios [1] where in some
works all robots can share limited amounts of data with one
another irrespective of the distance [3], whereas in other
approaches more data is exchanged, but only when robots
are sufficiently close to each other [11].

In this work we present a distributed algorithm based
on communication between robots to avoid having multi-
ple robots collecting measurements at the same locations,
because according to our model multiple measurements at
the same site do not increase the quality of the estimate.
Additionally, the proposed algorithm manages exploration
and exploitation for each agent by considering the amount
of remaining energy to prevent the robots from running out
of power before a preassigned final recharging location is
reached. The main contributions of this paper are 1) a budget
aware, online distributed method for multi-robot coordination
based on Monte Carlo Tree Search (MCTS); 2) a strategy

to update sampling locations on the fly, to leverage date
acquired during the mission; 3) a thorough comparison with
other methods on different benchmark datasets to evaluate
the quality of the proposed method.

The remainder of this paper is organized as follows.
Selected related work is presented in Section II. The problem
formulation is given in Section III, while our proposed
method is presented in Section IV. Extensive simulation
results are discussed in Section V, and conclusions are
offered in Section VI.

II. RELATED WORK

In this section, we provide pointers to selected works rel-
evant to the problem we present in this manuscript. In multi-
robot sampling and monitoring, sectioning and Voronoi parti-
tioning are common approaches. In [9], the authors propose a
dynamic Voronoi approach, where robots repeatedly compute
Voronoi partitions and each robot performs sampling within
its partition. Although this method shares the exploration
task efficiently between robots, the iterative recomputation of
Voronoi regions may lead to many unnecessary motions that
are problematic in our application where robots are subject
to a limited travel budget.

In [21], we studied multirobot routing in a vineyard using
a formulation based on the team orienteering problem. In the
orienteering problem (OP) an agent is required to traverse a
graph in which each vertex has a predetermined reward and
each edge has a fixed cost. A path should be computed to
maximize the sum of collected rewards while ensuring that
the sum of the costs of traversed edges does not exceed a
preassigned budget. Team Orienteering Problem (TOP) is a
version of OP in which a team of robots works together to
collect rewards. The main limitation of this line of research
is that it assumes that rewards are predetermined in advance.
However, in many situations this is not realistic, as data
collected on the fly may lead to revised estimates about the
value of reaching a certain location.

Recently, MCTS has gained a great deal of attention
for multi-robot informative path planning. In [2], [8], the
authors proposed a method combining Gaussian processes
(GP) and MCTS to solve the problem of environmental mon-
itoring. In [11], [12], a decentralized approach is proposed
using a policy gradient method for multirobot environmental
monitoring and sampling. To encourage robots to spread
away from other robots, each robot has a reward function
dependent on its distance from the others. Furthermore, the
method considers a communication range between robots to
exchange locations and the history of previous locations with
co-working robots. In [13], a distributed adaptive sampling
method for multi-agent scenarios was proposed which is ro-
bust to the failure of robots and communication. To estimate
the optimal policy, deep neural networks and policy gradient
methods are used. These works, however, do not explicitly
incorporate limits on the distance traveled by robots.

In [15], we presented an offline path planning method
based on Q-learning to solve the sampling problem for
a single robot in a stochastic environment subject to a

preassigned constraint on the distance it can travel. In [3],
we instead considered the problem of reconstructing a spatial
field using multiple robots, Gaussian processes, and MCTS.
As part of this work, robots communicate with one another
and send their current location and observations to other
robots and explore the spatial properties of GPs to attempt
to spread the robots in the environment. In this paper, we
extend this line of research by adding the ability to select
new sampling locations as well as considering other robots’
actions during planning.

III. BACKGROUND AND PROBLEM FORMULATION

A. Informative Path Planning

We start defining the multi-robot informative path planning
(IPP) problem we study in the following. Let U ⊂ ℜ2 be the
environment of interest. By visiting a set of locations and
collecting samples, our goal is to estimate a scalar function
h : U → R which represents a parameter of interest (e.g.,
soil moisture). We assume there are κ robots in the team,
each indicated as Ri with i ∈ [1, 2, 3, ..., κ]. The location of
each robot (x, y-position) is defined by sRi

s = (sRi
x , sRi

y). All
robots start from pre-assigned start positions sRi

init (e.g., the
points where the robots are deployed), and must terminate
their mission at assigned final locations sRi

f (e.g., where
their batteries will either be swapped or recharged). Each
robot has a predetermined travel budget BRi limiting the
distance it can travel. This constraint models, for example,
the limited energy provided by the battery onboard the robot.
There are n sample locations of interest1 in U denoted by the
set V = {s1, s2, . . . , sn}. The number of locations and their
placement in U is such that no robot has a sufficient budget
to visit all of them. The goal of multi-robot informative path
planning (IPP) is to select a path for each robot Ri to visit a
subset of locations in V such that none of the robots exceeds
the travel budget and the quality of the collected information
is maximized. Although V is given in advance, to allow for
greater flexibility the set V can also be updated on the fly,
i.e., new sample locations can be determined by the robots as
the mission unfolds. When a robot reaches a location in V it
uses its onboard sensor to measure the parameter of interest,
and this value is then used to estimate the unknown function
h. More formally, assuming ρRi is a path taken by robot Ri
visiting a subset of sample locations of V , f(ρRi) is a generic
function measuring the quality of the estimate of h obtained
from measurements collected at the locations visited along
the path ρRi . Let C(ρRi) be the travel cost associated with
traversing ρRi for robot Ri. The multi-robot informative path
planning problem (IPP) can then be expressed as the problem
of solving the following constrained optimization problem
for each robot

ρRi
∗ = argmax

ρRi∈ψRi

f(ρRi) s.t.C(ρRi) ≤ BRi

1In agricultural applications these preassigned locations are often identi-
fied a-priori by domain experts based on past experience and/or data such
as yield, plant stress, and the like.

where ψRi is the set of all paths from sRi
init (start location)

to sRi

f (final location) of robot Ri. In our problem setting,
for given path ρRi , the cost C(ρRi) is not deterministic, but
rather a random variable whose realization is obtained only
at run time. This models the fact that the energy or time spent
to move between two locations is in general stochastic, and
we assume that the robot has a probability density function
describing such random variable. Hence, while robot Ri
moves along ρRi from location to location, it is necessary to
monitor the energy spent to ensure it does not exceed BRi .

B. Gaussian Process Regression

We model the spatial distribution of the scalar field h
being estimated using Gaussian Processes (GP). GPs are
extensively used in geostatistics [16], [18] to model environ-
mental parameters (in geostatistics this approach is known as
kriging.) We denote with xRi

g the scalar reading collected by
robot Ri when sampling location is sg ∈ V , and will denote
with χRi

g the random variable modeling xRi
g that follows a

Gaussian distribution with mean µg and variance σ2
g . Using

the data collected at the sample locations, a posterior of h can
be estimated using standard GP regression algorithms (the
reader is referred to [14] for a comprehensive introduction
to this topic, including GP regression algorithms.)

C. Monte Carlo tree search (MCTS)

MCTS is an online method for solving sequential, stochas-
tic decision making problems. MCTS builds a tree with a
root node representing the current state and edges connecting
states that can be reached by executing a single action. Nodes
subsequently added to the tree represent states that can be
reached through a sequence of actions originating at the
root. Each action is assigned a Q-value representing how
good the action is, which is an estimate of the value that
will be obtained through a complete execution starting with
that action. Once the tree has been constructed, an action is
selected from those available at the root. Upon execution of
the selected action, the tree is discarded and rebuilt with the
next state as its root. A basic version of MCTS consists of
the following four steps [5], [19]:

• Selection: Using the so-called tree policy, a path from
the root to a leaf node is selected.

• Expansion: From the selected leaf node, one or more
child nodes are added to the tree.

• Rollout: A complete episode is simulated from the
selected leaf node, or from one of its newly added
child nodes (if any). During this simulation, a simple,
suboptimal policy is used to decide the actions.

• Backup: Based on the return generated by the simulated
episode, the action values attached to the tree edges
traversed by the tree policy are updated, or initialized.

A critical component is the tree policy for action selection
(“selection” step in the list above). One popular criterion
for action selection is the UCB rule defined in Eq. (1) and
first introduced [10] Each candidate action a is assigned a
UCB(a) value defined as

UCB(a) = Qt(a) + c

√
ln t

Nt(a)
(1)

and eventually the action with the highest UCB value is
selected for execution. In Eq. (1), Qt(a) denotes the action
value estimate, Nt(a) is the number of times that action
a has been selected prior to time t, and c is a constant
controlling the exploration. Initially, Nt(a) is zero for all
actions2. Every time a is selected, t and Nt(a) increase,
and every time a is not selected, t increases but not Nt(a),
ensuring that all actions will eventually be selected, but
actions with lower value estimates or those that have already
been selected frequently will be selected less frequently.
This criterion balances exploration and exploitation, with the
balance determined by the parameter c.

IV. PROPOSED ALGORITHM

Starting from the problem formulation, we here describe
our proposed method. For each robot Ri, let ARi ⊆ V be
the set containing the locations visited by robot Ri. Initially
ARi = {sRi

init} and, by definition of ARi , throughout the
execution of the algorithm the current location of the robot
sRi
s is one of the elements of ARi . Each set ARi is iteratively

expanded by the execution of an action a representing a
possible next sampling location sg in V for robot Ri. The
execution of a implies that the robot will move to sg and
collect a sample at that location. Using MCTS, the goal
is to select a good sequence of sample locations, ARi , for
robot Ri while considering the travel budget, BRi , and other
robots’ decisions. The meaning of good depends on the
choice of objective function(s) and will be discussed shortly.

In our proposed method each robot Ri shares its visited
locations with other robots with the objective of avoiding
having multiple robots visiting the same locations. This will
lead to more distinct samples being collected and ultimately
to a better estimate for h. Our communication model as-
sumes that robots can exchange limited information (such
as locations) at long range. This is in line with the current
technology (e.g., LoRa [17]) used by robots in agricultural
applications and previous works [3], [11].

To select the next location visit, each robot uses a reward
function defined as follows. For each unvisited location sg ,
robot Ri defines a value rRi

g . A possible candidate could
be rRi

g = σ2
g where σ2

g is the variance of the posterior
estimate of h provided by GP regression based on the
samples collected up to that moment. With this choice, high
reward values would be assigned to locations with high
uncertainty [3]. In our case, we scale the predicted variance
by the distance between the robot’s current location and sg
location. The reward rRi

g associated with a potential sampling
location sg considered by robot Ri is therefore defined as

rRi
g =

σ2
g

d(sg, s
Ri
s)

(2)

2UCB(a) is assumed to be ∞ when Nt(a) = 0, thus forcing
exploration.

where σg is variance of the candidate location sg ∈ V , and
d(sg, s

Ri
s) is the distance between the current location of

robot Ri and sg . By introducing the distance into the reward
function we bias the algorithm to favor closer locations if the
predicted variance of two candidates is the same. The reason
for this preference is that we have a limited budget. The
selection of the next location is performed online, i.e., the
reward associated with each location is not predetermined,
but re-estimated iteratively based on the locations already
visited and data previously collected. The reward is then used
to calculate the expected return, or the action value estimate
Qt(a). In our work we deal with an episodic task, i.e., the
task always ends after a finite amount of time, either because
the robot reaches the final location, or because it runs out
of energy. In this case, it is typical to define Qt(sg) as a
function of reward sequence

Qt(sg) = rtg + λrt+1
g′ + ...+ λT−trTg′′ ; 0 ≤ λ ≤ 1 (3)

where λ is a factor discounting future rewards and T is the
time of the last action. g, g′, ..., g′′ are the selected sample
locations and rg is the reward associated with the sampling
location g. Algorithm 1 shows the planning algorithm inde-
pendently executed by each robot.

Algorithm 1 Online MCTS based planner for robot Ri with
resampling

1: Input: V , sRi
init, s

Ri

f , BRi

2: ARi ← {sRi
init}

3: sRi
s ← sRi

init

4: while BRi > 0 and sRi
s ̸= sRi

f do
5: candRi ← Ψ[sRi

s] \ ARi

6: candRi ← candRi \ ARj for all j ̸= i
7: T , sg ← MCTS(sRi

s , candRi)
8: Move to sg , collect reading xRi

g , and measure con-
sumed energy cgs

9: σ2
g ← update GP with new observation xRi

g

10: V ← Resampling based on new σ2
g

11: BRi ← BRi − cgs
12: ARi ← ARi ∪ {sg}
13: sRi

s ← sg
14: Brodacast(sRi

s)
15: end while
16: return BRi , ARi

The algorithm takes as input the set of V , the initial and
final locations sRi

init and sRi

f , and the budget BRi for the
each robot.

A children map Ψ[sg] contains the locations that can be
reached from each location sg . As we consider problem
instances with tens or hundreds of possible locations, consid-
ering all of them would lead to search trees with extremely
high branching factors. Therefore, to minimize planning
time, we limit the set of locations that are considered from
each location, and this set is returned by the function Ψ.
More specifically, we limit the branching factor to M (an
even number). For each location sg , M/2 elements in Ψ

are the nearest elements in V and M/2 − 1 are randomly
chosen from the remaining locations. Moreover the final
location, sRi

f is always added to Ψ. This selection balances
global exploration and local exploitation. The addition of sRi

f

to Ψ ensures that from any location robot Ri can always
consider moving to the final goal location. This is useful
when the travel budget is about to expire. candRi is the set
of candidate locations for the current location and is obtained
by removing already visited locations ARi from the set of
reachable locations returned by Ψ.

The current location of the robot, sRi
s , is considered as a

root node of the MCTS tree (line 7 in Alg. 1). The MCTS is
expanded for a fixed number of iterations. Each time, the path
and leaf are chosen using UCB, as per Eq. (1). When a leaf
is reached, a rollout is executed. During rollout, the planner
continues to select additional random locations until it either
reaches the final destination or runs out of energy. During the
MCTS expansion and rollout, every time a candidate location
is included in the tree, a generative model is used to estimate
how much energy would be consumed. This estimate is given
by the formula

cgs = αd(sRi
s , sg) + U(Λ) (4)

where d(sRi
s , sg) is the distance between the current location,

sRi
s and candidate location, sg , and U(Λ) is a random sample

from a uniform distribution over the interval [0,Λ].
After the tree T has been built and the next location, sRi

g ,
is selected, the budget for robot Ri is updated. Based on the
new sample reading, the GP is updated, and based on the
updated GP, it will generate a new set of random sample
locations with the normalized variance as probabilities asso-
ciated with each location. In the event that one of the robots
reaches its final destination or runs out of energy, other robots
will continue their sampling task.

V. RESULTS AND DISCUSSION

Methods: To assess the effectiveness of the proposed
method (dubbed RMCTS in the following), we compared it
with four different alternatives. The first is a non-coordinated
MCTS method (NCMCTS), the second is MCTS without
resampling (MCST), the third is the Orienteering method
(Or) [20] and the fourth is Multirobot Planning for Informed
Spatial Sampling (MRS) [11]. NCMCTS is the same as
our proposed method but without any data shared between
robots. MCTS is also the same as our proposed method,
but without the resampling step (line 10 in the algorithm).
The Or method builds a graph with all sample locations
and determines the path that collects the maximum reward
without exceeding the preassigned budget. In this case, it is
necessary to assign a value to each element of V in advance,
consistent with the fact that in orienteering one must know
the rewards of the vertices beforehand. To make the method
comparable with ours, we assigned equal rewards to all
vertices, as our method does not require prior knowledge of
the value of collecting a sample at a given location. This way,
Or will attempt to visit as many locations as possible. MRS
is a decentralized sampling approach where each robot in a

team performs an informed survey using a policy-gradient-
based sampling strategy. This method uses policy gradient
search to directly optimize the policy parameters θ based
on simulated experiences. In its original formulation, this
method does not consider budget constraints during training.
To account for it, during testing the next location proposed
by the algorithm is rejected if there is not enough budget left
to reach the designated location and then the robot moves to
the final location sRi

f . In this case, the algorithm selects sRi

f

and tries to reach the final location. The MRS algorithm and
its implementation are described in greater detail in [11].

Performance metrics: To assess the performance of the
various algorithms, we consider two metrics. The first is the
mean square error between ĥ (the estimate of h) and h itself.
In our implementation, GP regression is computed using
the scikit-learn Python library and its GP regression module
using Mattérn Kernel with length scale of 1 and smoothness
parameter of ν = 1.5. The choice of the kernel and of the
parameters was made after having experimentally evaluated
different alternatives and having assessed that these are the
best choices. The second metric is the remaining budget,
which is the amount of budget that has not been used when
the mission terminates.

A. Synthetic data-set

We start evaluating our proposed method on a bidimen-
sional grid of size 30×30 where the scalar field h is defined
as a mixture of Gaussian distributions. The set V consists
of 100 locations. Each robot starts from (0, 0) (upper left
corner), and the final location is located at (30, 30) (lower
right corner). We consider different numbers of robots (3
and 5) and different budgets (100 and 200). For each case,
displayed data are averages over 100 independent runs. In all
simulations, the MCTS, NCMCTS, and RMCTS algorithms
add 1000 nodes to the tree. For the function Ψ we set
M = 30. In Eq. (1) we set c = 3, in Eq. (3) we set λ = 1, and
in Eq. (4) we set α = 0.5 and Λ = 1 and we use Manhattan
distance. In RMCTS, the resampling process is applied every
other iteration and after each resampling, |V| = 30. The MRS
method seeks to collect samples at locations with high values
for the function h at earlier stages of the exploration. During
training, MRS runs 20 simulated trajectories to update and
learn the parameter of policy π, and in the test phase it uses
that learned policy to generate an explicit action plan.

Table I summarizes the metrics for MCTS, RMCTS,
NCMCTS, and MRS (summary of 100 runs). The table
displays the initial budget B, the number of robots in a team
NRi

, the average MSE error and average remaining budget
for each robot Bre. The numerical comparison confirms the
superiority of RMCTS across the board. As the budget and
number of robots increase, the performance of NCMCTS
becomes similar to MCTS. Indeed, with a greater number of
robots and a large budget, it is possible to visit numerous
locations even without coordination. However, this is not the
case when the number of robots is smaller or the budget is
tight, and in such cases coordination is key. As a result of
resampling, RMCTS achieves a lower MSE because based

on the updated GP it generates a better set of sample
locations to explore. MCTS and RMCTS do not need any
prior knowledge about the prior model of the environment
whereas MRS needs to know the prior model as a reward
map. Also, MRS requires pre-training, while MCTS and
RMCTS are online and can choose the next locations on
the fly. To give an order of magnitude, training time for one
robot in MRS is about 17 minutes, while RMCTS and MCTS
do not need training and planning time for both is below 15
seconds (cumulative time for all planning stages alternating
with execution).

Fig. 2(a) and 2(b) show sample paths for 3 robots with
B = 100. With MRS, robots focus on areas with high values
for the underlying function being reconstructed (warmer
colors), while in RMCTS, robots visit all areas. As the goal
is to reconstruct the underlying function h with low RMSE
error, to do that robots must visit both areas with high and
low values.

B NRi
method MSE Bre

100 3 MCTS 0.52 13.72
100 3 RMCTS 0.47 11.23
100 3 NCMCTS 1.27 14.1
100 3 MRS 1.39 12

100 5 MCTS 0.38 13.21
100 5 RMCTS 0.35 11.29
100 5 NCMCTS 0.81 15.04
100 5 MRS 1.19 6

200 3 MCTS 0.48 23.72
200 3 RMCTS 0.41 23.13
200 3 NCMCTS 0.54 27.11
200 3 MRS 1.13 34

200 5 MCTS 0.35 21.32
200 5 RMCTS 0.32 18.71
200 5 NCMCTS 0.49 20.41
200 5 MRS 0.65 20

TABLE I: Avg. Results for 100 runs for the synthetic data-set.

B. Experimental data-set

Next, we test all methods using a data-set for soil moisture
experimentally collected in a commercial vineyard located
in the California Central Valley. In this case, we use 100
sample locations that are distributed throughout the environ-
ment. The parameters are the same as Sec. V-A. Table II
summarizes the results for 100 runs of MCTS, RMCTS, Or,
and MRS methods for one robot. It can be seen that RMCTS
outperforms other methods with a tight budget, while MRS
achieves better MSE with a higher budget. The Or method
consumes almost all of the budget, but it should be noted
that for example in our implementation, the planning time
for Or (40.21) is more than five times greater than RMCTS
(7.52 s) and MCTS (6.18 s). The fact that the MSE is not
significantly better in the Or method even with a higher
budget is due to the fact that in orienteering, one aims at
collecting the maximum additive reward, and this can be

(a) RMCTS (b) MRS (c) RMCTS (d) MRS

(e) RMCTS (f) MRS (g) RMCTS (h) MRS

Fig. 2: Figures (a)-(b) show three-robots sampling paths with budget B = 100 in synthetic environment using RMCTS and MRS. Figures
(c)-(d) show three-robots sampling paths with budget B = 100 in vineyard environment using RMCTS and MRS. Figures (e)-(f) show
three-robots sampling paths with budget B = 200 in vineyard environment using RMCTS and MRS. Figures (g)-(h) show five-robots
sampling paths with budget B = 100 in vineyard environment using RMCTS and MRS.

achieved by visiting many nearby locations that will lead to
limited additional information to better estimate the scalar
field h.

Finally, table III summarizes results for 100 runs of
MCTS, RMCTS, and MRS methods for teams of three, five,
and ten robots. Similar to other cases, we also find that
RMCTS outperforms other methods when the budget is tight,
while MRS outperforms other methods when the budget is
higher. MRS performs better with higher budgets since it
considers the samples’ locations at each step rather than
our method, which considers samples at specific locations.
Figure 2 (c) and (d) show the sampling path for 3 robots
with B = 100 while figure (e) and (f) show the sampling
path for 3 robots with B = 200 and figure (g) and (h) show
the sampling path for 5 robots with B = 100. With RMCTS
the robots visit the most informative locations which leads
to a more accurate reconstruction of the spatial domain and
lower MSE.

B method MSE Bre

100 MCTS 3.16 18.45
100 RMCTS 2.99 15.06
100 Or 4.3 5.78
100 MRS 6.67 16

200 MCTS 2.99 16.83
200 RMCTS 2.17 12.03
200 Or 2.14 10.17
200 MRS 1.42 14

TABLE II: Avg. Results for 100 runs for the vineyard data-set.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an online distributed multi-
robot sampling algorithm based on the MCTS algorithm

B NRi
method MSE Bre

100 3 MCTS 2.83 12.87
100 3 RMCTS 2.50 10.62
100 3 MRS 6.67 17

100 5 MCTS 2.53 17.38
100 5 RMCTS 2.41 15.64
100 5 MRS 6.23 28

200 3 MCTS 2.46 20.66
200 3 RMCTS 2.37 12.27
200 3 MRS 1.08 13

200 5 MCTS 2.38 16.38
200 5 RMCTS 2.14 14.37
200 5 MRS 0.10 6

100 10 MCTS 2.17 27.35
100 10 RMCTS 1.84 25.11
100 10 MRS 0.23 12

TABLE III: Avg. Results for 100 runs for the vineyard data-set.

which is scalable to the size of the team. To minimize re-
visiting locations, robots share their past experiences (visited
sampling locations). A GP model of the scalar field being
estimated is updated every time a sample location is mea-
sured and is used in the process of generation of a new set of
random sample locations. In comparison to baseline methods,
our proposed approach is more accurate and makes better
use of the limited budget. Also, our proposed method does
not require prior knowledge of the environment distribution.
In the future, we intend to incorporate the estimation of
other robots’ plans into our method and to test the proposed
method on the field.

REFERENCES

[1] D. Bertsekas. Rollout, policy iteration, and distributed reinforcement
learning. Athena Scientific, 2021.

[2] G. Best, O. M Cliff, T. Patten, R. R. Mettu, and R. Fitch. Dec-
mcts: Decentralized planning for multi-robot active perception. The
International Journal of Robotics Research, 38(2-3):316–337, 2019.

[3] L. Booth and S. Carpin. Distributed estimation of scalar fields with
implicit coordination. In Distributed Autonomous Robotic Systems,
2022 (to appear).

[4] M. Campbell, A. Dechemi, and K. Karydis. An integrated actuation-
perception framework for robotic leaf retrieval: Detection, localization,
and cutting. In 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 9210–9216. IEEE, 2022.

[5] S. Carpin and T. C. Thayer. Solving stochastic orienteering problems
with chance constraints using monte carlo tree search. In 2022 IEEE
18th International Conference on Automation Science and Engineering
(CASE), pages 1170–1177. IEEE, 2022.

[6] H.J.S. Finch, A.M. Samuel, and G.P.F. Lane. Precision farming. In
Lockhart & Wiseman’s Crop Husbandry Including Grassland, pages
235 – 244. Woodhead Publishing, ninth edition edition, 2014.

[7] D. V. Gealy, S. McKinley, M. Gou, L. Miller, S. Vougioukas, J. Viers,
S. Carpin, and K. Goldberg. Co-robotic device for automated tuning
of emitters to enable precision irrigation. In Proceedings of the IEEE
Conference on Automation Science and Engineering, pages 922–927,
2016.

[8] D. Jang, J. Yoo, C. Y. Son, and H. J. Kim. Fully distributed informative
planning for environmental learning with multi-robot systems. arXiv
preprint arXiv:2112.14433, 2021.

[9] S. Kemna, J. G Rogers, C. Nieto-Granda, S. Young, and G. S.
Sukhatme. Multi-robot coordination through dynamic voronoi
partitioning for informative adaptive sampling in communication-
constrained environments. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pages 2124–2130. IEEE, 2017.

[10] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In
European conference on machine learning, pages 282–293. Springer,
2006.

[11] S. Manjanna, M. A. Hsieh, and G. Dudek. Scalable multirobot plan-
ning for informed spatial sampling. Autonomous Robots, 46(7):817–
829, 2022.

[12] S. Manjanna, H. van Hoof, and G. Dudek. Reinforcement learning with
non-uniform state representations for adaptive search. In 2018 IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR), pages 1–7. IEEE, 2018.

[13] L. Pan, S. Manjanna, and M. A. Hsieh. Marlas: Multi agent rein-
forcement learning for cooperated adaptive sampling. arXiv preprint
arXiv:2207.07751, 2022.

[14] C. E. Rasmussen. Gaussian processes in machine learning. In Summer
school on machine learning, pages 63–71. Springer, 2003.

[15] A. Shamshirgaran and S. Carpin. Reconstructing a spatial field with
an autonomous robot under a budget constraint. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 8963–8970. IEEE, 2022.

[16] M. L. Stein. Interpolation of spatial data: some theory for kriging.
Springer Science & Business Media, 1999.

[17] J. S. P. Sundaram, W. Du, and Zh. Zhiwei. A survey on lora
networking: Research problems, current solutions, and open issues.
IEEE Communications Surveys & Tutorials, 22(1):371–388, 2019.

[18] V. Suryan and P. Tokekar. Learning a spatial field in minimum time
with a team of robots. IEEE Transactions on Robotics, 36(5):1562–
1576, 2020.

[19] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[20] T. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin. Routing
algorithms for robot assisted precision irrigation. In Proceedings of
the IEEE International Conference on Robotics and Automation, pages
2221–2228, 2018.

[21] T. C Thayer, S. Vougioukas, K. Goldberg, and S. Carpin. Multi-robot
routing algorithms for robots operating in vineyards. In 2018 IEEE
14th International Conference on Automation Science and Engineering
(CASE), pages 14–21. IEEE, 2018.

[22] S. Vougioukas. Agricultural robotics. Annual review of control,
robotics, and autonomous systems, 2:339–364, 2019.

