
Towards Quantitative Comparisons of Robot Algorithms: Experiences
with SLAM in Simulation and Real World Systems

Benjamin Balaguer, Stefano Carpin
School of Engineering

University of California, Merced, USA
E-mail: {scarpin,bbalaguer}@ucmerced.edu

Stephen Balakirsky
National Institute of Standards and Technology

E-mail: stephen@nist.gov

Abstract— Autonomous robotics has been plagued by the lack
of quantitative comparisons between different solutions for the
same problem. The situation arose due to a lack of theoretical
background, recognized benchmarks, and the existence of a
culture that is not oriented towards the free sharing of ready-
to-use code for scientific research. In this paper we leverage
a recent paradigm shift, and contrast different algorithms
for Simultaneous Localization And Mapping (SLAM) readily
available to the scientific community. In particular, we have run
the same algorithms in two different settings. The first one is
based on a P3AT robot operating inside a large building hosting
office space and research labs. The second scenario is a virtual
replication of the identical floor plan, implemented inside the
USARSim simulation environment. In other words, the simu-
lated scenario features the exact models of the environment and
robot. The experimental setup offers a matrix where weaknesses
and strengths of different SLAM algorithms can be contrasted
in real and virtual environments, also outlining the degree to
which the simulated results can be extrapolated to measure or
predict real world systems performance. We conclude that the
availability of open source algorithm implementations, data sets,
and simulation environments is the key to promote accelerated
research in autonomous robotics. In particular, it appears that
available SLAM implementations are robust and easy to use for
environments like those used in our experiments, and therefore
research efforts should be accordingly re-modulated.

I. INTRODUCTION

One of the cornerstones of the scientific method is re-
peatability. Experimental tests confirming or disproving a
certain theory should be carried out by different researchers
and lead to the same conclusions, within the defined error
bounds, provided that the operative conditions are the same.
Robotics has not yet enjoyed such a rigorous approach, a
fact that can be explained by a multitude of reasons. Robots
are complicated systems composed of many interacting units,
each of them characterized by its own behaviors and errors.
Robots’ observed behaviors do not only depend on the soft-
ware and hardware, but also on the surrounding environment.
Evidently, even if two researchers buy the same robot and
perform the same experiment with the same software, they
are likely to observe very different findings. Another problem
that has not helped in making the situation better, but that
finds roots in the same issues, is the lack of a widely
shared base of reusable code that is maintained and exploited
by different research groups. While it is true that certain
middle-ware softwares are enjoining significant popularity
[1] [2], they are basically interfaces to gain portable access

methods to different sensors and actuators. Code exchange
for algorithms solving general purpose tasks is still a fairly
rare occurrence. All of the above has contributed to a
situation where quantitative comparisons between different
approaches is still missing. As a consequence, it is still too
often observed that when a new project is started, certain
tasks are coded again from scratch, rather than relying
on existing libraries. The situation described clearly is a
detriment to the development of more capable robots.
Fortunately, in recent years a shift has been observed, and
the direction seem to be changing. Among these events we
list the following:

• the commercial success of certain robotic platforms has
created a situation where many research labs use the
same robots

• the establishment of on-line repositories of sensor data,
like the Robotics Data Set Repository [3], allow differ-
ent groups to execute different algorithms on exactly the
same data set, thus outlining strengths and weaknesses

• the open-source approach is starting to become more
accepted in the robotics community, with the creation
of repositories of code for similar purpose [4]

In this paper we propose to start a systematic investigation
and comparison of different algorithms for the well known
simultaneous localization and mapping problem (SLAM). In
particular, we present a juxtaposition between real world
validation and experimental runs within the high fidelity US-
ARSim simulator [5]. The use of a simulator is particularly
appealing for quantitative comparisons of SLAM algorithms
because it allows the generation of huge data sets without
investing too many resources. Moreover, the simulator is
highly configurable and allows one to specify different noise
levels for the various sensors, thus permitting a careful
evaluation of robustness with respect to noise sources.
The paper is organized as follows. In section II we provide
an overview of the USARSim software, while in section III
we illustrate and contrast three SLAM algorithms. Section
IV reports on the experimental setup that was implemented
and the results that were produced. Finally, conclusions are
offered in section V.



II. THE USARSIM FRAMEWORK

The current version of Urban Search and Rescue Sim-
ulation (USARSim) [6] is based on the UnrealEngine2 1

game engine that was released by Epic Games as part of
Unreal Tournament 2004. The engine may be inexpensively
obtained by purchasing the Unreal Tournament 2004 game.
The USARSim extensions may then be freely downloaded
from [7]. The engine handles most of the basic mechanics of
simulation and includes modules for handling input, output
(3D rendering, 2D drawing, and sound), networking, physics,
and dynamics. USARSim uses these features to provide
controllable camera views and the ability to operate multiple
robots. In addition to the simulation, a sophisticated graphical
development environment and a variety of specialized tools
are provided with the purchase of Unreal Tournament.

The USARSim framework builds on the Unreal game
engine and consists of:

• standards that dictate how agent/game engine interac-
tion is to occur,

• modifications to the game engine that permit this inter-
action

• an Application Programmer’s Interface (API) that de-
fines how to utilize these modifications to control an
embodied agent in the environment

• 3-D immersive test environments
• models of several commercial and laboratory robots and

effectors
• models of commonly used robotic sensors

While there exists quite a few robotic simulators, US-
ARSim was chosen for many different reasons, the most
important of which being its accuracy. Indeed, a lot of time
and research is spent every year improving the robotic plat-
forms, authenticating the sensors, building additional robots,
sensors, and environments, and validating the physics engine.
More specifically, [8] [9] [10] [11] [12] provide details about
USARSim validation both quantitatively and qualitatively.
Additionally, USARSim provides the same robotic interface
as the real P3AT, allowing researchers to run two robots, one
in USARSim and one in the real world, with a single input
(e.g. a joystick).

A simple but effective command-and-message interface is
used to interact with the USARSim robots: string commands
are sent to the robot and string messages are sent by
the robot. The USARSim interaction standards consist of
items such as robot coordinate frame definitions and unit
declarations while the API specifies the command vocabulary
for robot/sensor control and feedback. Both of these items
have become the de facto standard interfaces for use in
the RoboCup Rescue Virtual Competition which utilizes
USARSim to provide an annual Urban Search and Rescue
competition. In 2007 this competition had participation from
teams representing 5 countries.

1Certain commercial software and tools are identified in this paper in
order to explain our research. Such identification does not imply recommen-
dation or endorsement by the authors, nor does it imply that the software
tools identified are necessarily the best available for the purpose

Both laboratory and commercial vehicles with differ-
ent mobile platforms (skid-steered, Ackerman-steered, omni
drive, legged, humanoid, nautical, and aerial) are incorpo-
rated within USARSim. Additionally, a set of robotic arms
and plan-tilt mechanisms can effortlessly be mounted and
utilized on any robot. Figure 1 shows a small collection of
some of the robots that USARSim has to offer. The list of
available sensors and effectors is also quite extensive and
includes range scanners, sonars, cameras, grippers, RFID
tags, and INS sensors.

Fig. 1. A subset of available robots in the current version of USARSim.

Highly realistic environments are also provided with the
USARSim release, ranging from simple planar mazes to
multi-level collapsed structures. The environments encom-
pass challenging robotic problems that cover many ar-
eas of research including mapping, planning, mobility, co-
operation, communication, image-processing, and victim de-
tection. Furthermore, the environments accommodate all the
USARSim robotic platforms by providing indoor buildings,
urban roads and highways, lakes and rivers, and large flying
spaces. Example indoor and outdoor environments may be
seen in Figure 2. In addition, an editor delivered for free with
the game engine and the ability to import models simplifies
the creation of worlds.

It is worthwhile to note that USARSim does not supply a
robot controller. In other words, USARSim simply provides
a well-defined interface to communicate with the robots and
it is the researcher’s responsibility to appropriately use the
interface to achieve desired results. Researchers do not have
to write a controller from scratch, however, since several
open source controllers may be freely downloaded. These in-
clude the community developed Mobility Open Architecture
Simulation and Tools (MOAST) controller [13], the player
middle-ware [1], and any of the winning controllers from
previous RoboCup competitions. Winning controllers, from
RoboCup 2006, may be found on the robocuprescue wiki
[14]. A description of the winning algorithms may be found
in [15].



Fig. 2. Examples of indoor (top) and outdoor (bottom) environments used
during the 2007 RoboCup Virtual Rescue Competition.

III. SLAM ALGORITHMS

In this section we briefly describe the three algorithms
that were compared. We selected three of the seven packages
currently available on the OpenSlam website. The selection
was mainly driven by the desire to compare algorithms with
similar characteristics in terms of requested input data, rather
than by the desire to perform a comprehensive comparison.

A. GMapping

The GMapping algorithm produces a grid map and takes a
particle filter approach [16] [17]. In particular, each particle
is associated with a possible map. The main challenge for
the algorithm, therefore, is to reduce the number of particles,
because of the significant overhead associated with each
particle. The algorithm uses a so-called Rao-Blackwellizzed
filter and its major contribution is in the definition proposal
distributions and resampling techniques that allow one to de-
crease the number of particles without incurring in problems
related to undersampling.

The GMapping implementation available on OpenSlam is
coded in C++ and processes data logs encoded using the
Carmen log format [18]. Basically, the algorithm requires
time-stamped odometry (pose, translational and rotational
velocities) and time-stamped readings from the SICK laser.

B. GridSlam

GridSlam also uses a Rao-Blackwellizzed filter, and is
particularly aimed to mapping environments with loops, a
problem known to be challenging [19]. GridSlam also tries
to decrease the number of particles used in the filter, but
takes a different approach from GMapping. In GridSlam, a

model of the residual error from scan registration is learned
on the fly and used to contract the number of particles.

The GridSlam implementation is also coded in C++ and,
similarly to GMapping, processes data provided in the Car-
men log format.

C. DPSlam

DPSlam also uses a particle filter to estimate the robot’s
pose and maps [20]. However, unlike the former approaches
that aim to carry along a restricted set of candidate maps,
DPSlam exploits a peculiar map representation that allows
one to track a huge set of candidates (thousands, according
to the authors).

DPSlam is also implemented in C++ and requires the same
data as the former algorithms (i.e. odometry and laser scans)
although not encoded in the Carmen log format.

IV. EXPERIMENTAL SETUP AND RESULTS

The experimental setup aims to not only compare differ-
ent SLAM algorithms, but also assess the fidelity of the
simulation engine. In fact, if we are able to show that
results extracted in the simulation environment can be safely
extrapolated to real wold scenarios, we have then installed
a very powerful tool to generate a massive amount of test
data with minimal effort. The methodology developed to
conduct this twofold evaluation will be described shortly.
For real world validation, we use a P3AT platform. The
robot is equipped with odometry sensors and a SICK PLS
range finder. A wireless-capable laptop is mounted on the
robot, and the robot is controlled using the Player middleware
[1]. The robot used in simulation is the corresponding P3AT
model available in USARSim. The simulated robot is also
controlled using Player. Data collection for the real robot
took place in the hallway of the School of Engineering of
UC Merced. For the simulated experiments, we developed
a model of the same building, using the original blue
prints provided by the architects. Figure 3 shows matching
screenshots, in simulation and the real world, of the robots
collecting data.

Fig. 3. Corresponding screenshots of the P3AT in simulation (left) and in
the real world (right), as they are performing a data collection.

In order to keep a close alignment between the real world
and its simulation, we avoided entering offices or research



labs, especially for experiments aiming at assessing the
simulation accuracy. The reason for this constraint stem from
the lack of detailed footprints of lab and office furniture. Data
collection was performed in parallel. A control application
gets input from a user via a joystick and then sends the
same commands, i.e. rotation and translation speeds, to the
two robots. The user does not directly see any of the robots,
but rather controls them by observing the output coming
from the SICK sensor equipped on the real robot. The
described approach requires careful tuning of the robot model
in simulation in order to match the performance of the real
platform.
We preliminary compared the performance of the various
algorithms while processing data coming from the real robot
and from the simulation. Figures 4 and 5 show the output of
the GMapping algorithm for data collected by the real robot
and the simulator, respectively. Figures 6 and 7 show the

Fig. 4. A map produced by the GMapping algorithm on a data set collected
by the real P3AT robot during daytime with people walking by the robot.

Fig. 5. A map produced by the GMapping algorithm on a data set produced
by a simulated P3AT robot.

same results for the GridSlam algorithm. Finally, figures

Fig. 6. A map produced by the GridSlam algorithm on a data set produced
by the real P3AT robot.

Fig. 7. A map produced by the GridSlam algorithm on a data set produced
by a simulated P3AT robot.

8 and 9 show the same results produced by the DPSlam
algorithm.

It is important to stress that, in this set of tests, we did
not strive to find the best fine tuning for the algorithms, but
rather to assess the similarity between results produced in
simulation and with the real robot. A few observations can
be made from the figures:

• There is a good correspondence between maps produced
in simulation and in reality by the GMapping algorithm.
In both cases the produced map and the tracked path
basically agree with ground truth.

• For the considered dataset, the DPSlam algorithm seems
to fail both for real and simulated data. This does not
mean that DPSlam is not working properly in general,
but rather that both specific set of simulated and real



Fig. 8. A map produced by the DPSlam algorithm on a data set produced
by the real P3AT robot.

Fig. 9. A map produced by the DPSlam algorithm on a data set produced
by a simulated P3AT robot.

data exhibit some characteristic hard to deal with for
this algorithm. Successive runs show good performance.

• GridSlam algorithm exhibits an intermediate behavior.
The map produced with real world data shows an in-
consistency on the lower left corner and an incorrectly-
handled opening in the horizontal corridors (the opening
is much wider in figure 6). The map produced with
data coming from the simulator does not show these
problems, though there is a problem with the vertical
corridor since it appears to be wider than it is in reality
(its width should be the same as the horizontal corridor).

The above results illustrate that there is a reasonable
correspondence between results produced with simulated and
real world data. Such correspondence is fairly strong for
GMapping and DPSlam (in terms of success or failure) but
less evident for GridSlam.
The next set of tests aims to measure the robustness of
the three algorithms with respect to signal noise. Previously
illustrated runs were obtained under the following simulated
conditions. Readings from the SICK laser were affected by
an additive noise with intensity 0.1% while the odometry was
affected by Gaussian noise with 0 mean and 0.1 covariance.

It is understood that Gaussian noise is highly suboptimal
when it comes to reproduce data coming from odometry, a
fact that needs to be better addressed within the USARSim
framework. We then executed the three SLAM algorithms
on a data set produced by a simulated robot whose SICK
laser was affected by an additive noise of intensity 5%. This
means that every value di returned by the sensor is altered
accordingly to the following formula

d′i = di(1 + 0.05x)

where x is a random variable with uniform distribution
over the interval [−1, 1]. Produced maps are illustrated in
figures 10, 11 and 12.

Fig. 10. A map produced by the GMapping algorithm on a data set
produced by a simulated P3AT robot.

Fig. 11. A map produced by the GridSlam algorithm on a data set produced
by a simulated P3AT robot.

The final set of tests was produced in a similar setting, with
an additive noise of 10%. Resulting maps are illustrated in
figures 13, 14 and 15.



Fig. 12. A map produced by the DPSlam algorithm on a data set produced
by a simulated P3AT robot.

Fig. 13. A map produced by the GMapping algorithm on a data set
produced by a simulated P3AT robot.

V. CONCLUSIONS

Some general conclusions can be drawn. First, the use
of the USARSim framework in order to compare differ-
ent SLAM algorithms appears appropriate. Indeed, results
obtained in simulation nicely translates to real robots. The
performance of the simulated SICK laser is comparable to the
real one, and an additive noise of 0.1% seems a reasonable
choice. It appears necessary to develop a better model for
odometry noise in order to accommodate the incremental
nature of this disturbance. The three algorithms seem to be
equally and reasonably robust to noise in the SICK laser.
A level of 5% noise that visually appears much larger than
anything observed in real world systems can still be dealt
with by the algorithms. Both GMapping and DPSlam suffer
from a lack of accuracy when noise is increased to 10%, but
this is a level that is hardly ever observed in reality.

Comparing the different algorithms, GMapping emerged
to be the more stable one in terms of performance, seldom

Fig. 14. A map produced by the GridSlam algorithm on a data set produced
by a simulated P3AT robot.

Fig. 15. A map produced by the DPSlam algorithm on a data set produced
by a simulated P3AT robot.

incurring in severe problems of map consistency. Along a
different line for comparisons, DPSlam required the most
time when processing batch data logs offline and, as ac-
knowledged by the authors, is very demanding in terms
of memory. It is important to note that we have not fine-
tuned the algorithms, resulting in a possibly unsatisfactory
set of parameters. Different sets of parameters could have
easily produced different results. However, if the robotics
community aims to a wide sharing of open source algorithms,
the availability of easy to use and tune algorithms is a must.

An aspect that still seems to be underconsidered is the
availability of well defined metrics for mapping algorithms
to, for example, quantitatively measure the correlation be-
tween a produced map and the corresponding ground truth.
Visual inspection still seems to be the most widely used
means of performing such evaluation, but a more rigurous
approach is needed. Tools coming from the field of computer
vision, related to image similarity, could be useful but have



yet to enjoy significant popularity.

REFERENCES

[1] “Player/stage project,” http://playerstage.sourceforge.net, 2007.
[2] “Orca robotics,” http://orca-robotics.sourceforge.net, 2007.
[3] Radish, “The robotics data set repository,”

http://radish.sourceforge.net, 2007.
[4] “Openslam,” http://www.openslam.org, 2007.
[5] S. Carpin, M. Lewis, J. Wang, S. Balarkirsky, and C. Scrapper, “Us-

arsim: a robot simulator for research and education,” in Proceedings
of the IEEE International Conference on Robotics and Automation,
2007, pp. 1400–1405.

[6] S. Balakirsky, C. Scrapper, S. Carpin, and M. Lewis, “Usarsim:
providing a framework for multi-robot performance evaluation,” in
Proceedings of the Performance Metrics for Intelligent Systems Work-
shop, 2006.

[7] “Usarsim project,” http://sourceforge.net/projects/usarsim, 2007.
[8] S. Carpin, T. Stoyanov, Y. Nevatia, M. Lewis, and J. Wang, “Quan-

titative assessments of usarsim accuracy,” in Proceedings of the
Performance Metrics for Intelligent Systems Workshop, 2006.

[9] S. Carpin, J. Wang, M. Lewis, A. Birk, and A. Jacoff, “High fidelity
tools for rescue robotics: results and perspectives,” in Robocup 2005:
Robot Soccer World Cup IX, ser. LNCS, 2006, pp. 301–311.

[10] A. Birk, S. Carpin, W. Chonnaparamutt, V. Jucikas, H. Bastani,
I. Delchev, I. Krivulev, S. Lee, S. Markov, and A. Pfeil, “The iub
2005 rescue robot team,” in Robocup 2005: Robot Soccer World Cup
IX, ser. LNCS. Springer, 2006.

[11] J. Wang, M. Lewis, M. Koes, and S. Carpin, “Validating usarsim for
use in hri research,” in Proceedings of the 49th meeting of the Human
Factors and Ergonomics Society, 2005, pp. 457–461.

[12] M. Zaratti, M. Fratarcangeli, and L. Iocchi, “A 3d simulator of multiple
legged robots based on USARSim,” in Robocup 2006: Robot Soccer
World Cup X, 2007.

[13] “MOAST project,” http://sourceforge.net/projects/moast, 2007.
[14] “Robocup rescue wiki,” http://www.robocuprescue.org/wiki, 2007.
[15] S. Balakirsky, S. Carpin, A. Kleiner, M. Lewis, A. Visser, J. Wang, and

V. Ziparo, “Towards heterogeneous robot teams for disaster mitigation:
Results and performance metrics from robocup rescue,” Journal of
Field Robotics, To appear.

[16] S. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals
and selective resampling,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2005, pp. 2432 – 2437.

[17] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping iwht Rao-Blackwellized particle filters,” IEEE Transac-
tions on Robotics, vol. 23, no. 1, pp. 36–46, 2007.

[18] “Carmen,” http://carmen.sourceforge.net.
[19] D. Haehnel, D. Fox, W. Burgard, and S. Thrun, “A highly efficient

fastslam algorithm for generating cyclic maps of large-scale ennvi-
ronments from raw laser range measurements,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2003, pp. 206–211.

[20] A. Eliazar and R. Parr, “DP-SLAM: fast, robust simultaneous localiza-
tion and mapping wuthout predetermined landmark,” in International
Joint Conference on Artificial Intelligence, 2003.


