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Abstract— We present a recently developed algorithm for
merging multiple occupancy grid maps computed by multiple
robots independently exploring a shared indoor environment.
The algorithm exploits the well known Hough transform in
a novel way in order to produce a set of ranked roto-
translations aimed to overlap the partial maps provided as
input. In this paper, after having briefly summarized such
method, we investigate the impact on the performance of
different variations of the Hough transform. In particular, we
are interested in determining the repercussions in terms of
accuracy and computational time when only a subset of points is
used to compute the transformation. Results are analyzed while
merging maps produced by two robots exploring an indoor
environment, and also using public available data sets. It turns
out that the proposed method is robust and positively influenced
by the use of more refined approaches to compute the Hough
transform.

I. INTRODUCTION

Many reasons stimulate research in multi-robots systems.
Among them we find the possibility to build systems that are
more robust, efficient, cost-effective, and usable than single
robots [1]. These benefits come however at their own cost,
as the development of multi-robot systems offers challenges
and problems not found when implementing solutions based
on a single robot. One of the many difficulties concerns
sensor fusion. Multi-robot systems are distributed systems
collecting information distributed both spatially and in time,
and a successful coordination between robots often relies on
correctly fusing together these different data sources.

In this paper we address one instance of this problem,
namely the integration of planar occupancy grid maps built
by robots exploring different parts of the same environment.
When multiple robots are used to explore an unknown area
two different approaches can be envisioned. A first alterna-
tive consists in treating the various robots as the components
of a unique system collecting information at different loca-
tions and performing data fusion instantaneously. Two major
drawbacks affect this method. First the overall dimensionality
of the space increases, and secondly it is necessary to assume
robots can constantly communicate with each other. As an
alternative, one can assume each robot operates individually,
and information is exchanged and integrated only during
occasional meetings between robots.

This later approach is embraced in this paper, and we
further develop a former line of research we developed in
the past, as detailed in section II. In particular, we recently
developed a new method [2] that combines multiple maps by
exploiting the Hough spectrum concept, i.e. a cross product
of the well known Hough transform. The method is novel in
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many aspects, and presents various advantages with respect
to formerly developed algorithms:

1) it produces a set of ranked hypothesis rather than
a single one, thus enabling to deal with ambiguous
scenarios without committing too early to a single as-
sumption when more data are needed to disambiguate
the situation;

2) the algorithm is fast and capable of merging maps
in far less time than our formerly developed iterative
approaches;

3) differently from other solutions proposed in the past,
the algorithm never requires that robots determine their
mutual positions in the partial maps they build and
merge.

Since our goal is to perform map fusion frequently, it is ex-
tremely important to obtain reliable results in short time, and
with this respect a vanilla Hough transform implementation
leaves room to plenty of improvements. In this manuscript
we experimentally evaluate some algorithmic improvements
to Hough transform computation and we verify their impact
on the technique we propose. In order to set the right
framework for our contribution, it is necessary to outline that
since we use the Hough transform to detect straight lines,
we will assume the maps to be merged present many linear
features. This is compatible with the hypothesis that robots
are exploring indoor environments.

The paper is organized as follow. After having detailed
about related work in section II, our novel method and pos-
sible improvements are presented in section III. Experimental
results are detailed in section IV and conclusions are drawn
in section V.

II. RELATED WORK

Autonomous mapping is one of the topics attracting the
greatest amount of interest from robotics researchers, and the
amount of related literature is huge. We refer the reader to the
recent book by Thrun et al. [3] for a comprehensive survey
on the topic. Research in map merging is instead much more
limited, and this will be the thread of this section. Among
the few papers in the area we find our previous contributions
[4][5], where map merging was attacked as an optimization
problem. An iterative search in the space of possible rigid
transformations was performed with the goal of maximizing
a target overlapping function. The iterative nature of this
approach makes it unsuitable for online systems, where maps
have to be frequently merged during the mission, rather than
after the mission. Howard et al. studied the online problem
in [6], and developed and algorithm where robots exchange
and merge maps when they meet. Their system implies that



robots localize each other in their respective maps before
merging. If reciprocal localization requires visual line of
sight, this method is inapplicable in situations where robots
exchange information without seeing each other. A similar
technique was developed by Fox and colleagues in [7].
Contrarily to the previous contribution, robots do not meet
randomly during the mission, but their meetings are planned
in order to increase the overall quality of the map being
produced. In this approach robots also mutually localize
each other in their maps, but this is done by exchanging
sensor data. Similar techniques, i.e. systems were mutual
localization is needed, were also proposed in [8][9][10]. A
radically different algorithm was presented by Huang and
Beevers [11]. Their idea differs in that it assumes that maps
are represented as topological maps rather than by occupancy
grid maps. Starting from this representation, they look for the
common subgraphs between the maps being merged in order
to identify possible merging hypothesis. The main problem
of this interesting approach is in the inherent complexity of
the problem of detecting common subgraphs.

Techniques similar to map merging have been developed
in machine vision and are known as image registration,
alignment or stitching. The reader is referred to [12] for a
recent survey on the topic.

III. MERGING MAPS VIA HOUGH TRANSFORM

In the following a grid map M is represented by a matrix
with r rows and c columns. Each cell M(i, j) may contain
three values, indicating whether the cell is traversable,
occupied, or if its status is unknown. SLAM algorithms
commonly produce beliefs for these three values for each
grid cell, so our model is compatible with the state of the
art. Given two maps, M1 and M2, the goal of map merging
is to find a rigid transformation T overlapping them. The
transformation T is the combination of a rotation ψ, followed
by a translation along the x and y axis of magnitude ∆x and
∆y, respectively. To make explicit the dependence of the
transformation T on these three parameters, we will write
T (∆x,∆y, ψ). Moreover, we write TM for the map obtained
from map M after applying transformation T 1. From now
onwards, whenever we consider two maps being merged,
we will tacitly assume they have the same number of rows
and columns. This assumption simplifies the algorithmic
description and can be easily accommodated during the im-
plementation stage by properly padding the maps if needed.
Given two maps, multiple transformations overlapping them
can be determined, therefore a metric to decide which one
is better is needed. In order to rank different transformations
we use the the acceptance index we formerly introduced
[4][5]. The acceptance index considers the agreement and
disagreement between two maps. The former is the number
of cells in M1 and M2 that are both free or both occupied,
while the latter is the number of cells such that M1 is free

1This notation has a convenient matrix intepretation that is here omitted
for lack of space. While such interpretation is rather straightforward, the
reader is referred to our cited former papers for more details concerning
this aspect.

and M2 is occupied or vice-versa. Indicating the former as
agr and the latter as dis, the acceptance index is defined as
follows:

ω(M1,M2) =

{
0 if agr = 0

agr(M1,M2)
agr(M1,M2)+dis(M1,M2)

if agr 6= 0
(1)

The reader should note that ω(M,M) = 1, and that the
definition does not consider cell elements in M1 or M2

whose state is unknown. Given two possible transformations
T1 and T2, we prefer T1 if ω(M1, T1M2) > ω(M1, T2M2).
One instance of the map merging problem therefore consists
of two maps, M1 and M2, and the goal is to determine
a transformation T that maximizes ω(M1, TM2). The map
merging problem can therefore be seen as an optimization
problem where the transformation achieving the best accep-
tance index is sought. In the method we propose in this paper
the optimal transformation is serached in two steps, i.e. first
the rotation ψ is determined, and then the displacements ∆x
and ∆y are computed.

A. The Hough spectrum and its applications ot map merging
Censi et al. [13] introduced the concept of Hough spectrum

for the problem of scan matching. Their idea is the building
block for the step estimating the rotation ψ. Hough transform
is a well known method to detect lines in binary images [14].
The method exploits the fact that lines can be represented
through the polar representation. This means that a line in the
x-y plane can be described as the locus of points satisfying
the relationship

ρ = x cos θ + y sin θ (2)

where ρ is the distance of the line from the origin, and θ is
the angle between the x axis and the normal from the line
to the origin. For implementation efficiency, line detection
is performed using the Discretized Hough transform (DHT).
In DHT a subset of the ρ-θ plane is divided into a grid of
accumulators with nθ columns and nρ rows. All accumula-
tors are initially set to 0. If the binary image consits of m
points, the sinusoid defined by equation 2 is computed for
each of the m points, and the accumulators intersected by
the associated curve are incremented. After this step, maxima
are found where multiple sinusoids intersect. Each maximum
is associated with a specific ρ, θ couple, thus identifying a
line in the image. DHT can be applied to detect lines in an
occupancy grid map M by converting it into a binary image.
All occupied cells are set to black, while traversable and
unknown cells are set to white. Once the Hough transform
has been computed, the Hough spectrum is defined as the
vector with nθ elements obtained by adding columnwise the
squared values of the Hough transform. To be more specific,
if the result of DHT is stored in a matrix H, with nθ columns
and nρ rows, then its Hough spectrum is defined by the
following relationship:

HS(k) =
nρ∑
i=1

H(i, k)2 1 ≤ k ≤ nθ



Informally speaking, the Hough spectrum provides indica-
tions about directions more common among the lines in the
image. Cross correlation between two Hough spectra reveals
how one of the two signals should be translated in order to
maximize the overlap between the two. Since Hough spectra
carry information about orientations, the translation identified
by the cross correlation indicates the rotation needed to align
the two maps. Figure 1 shows two Hough spectra and their
cross correlation. It is possible to observe that Hough spectra,
as well cross correlation, exhibit a 180 degrees periodicity.
Therefore cross correlation between Hough spectra has to
be performed using a circular approach, with the final ex-
treme of the spectrum wrapping back towards the beginning.
Multiple local maxima can be observed in the third panel of

Fig. 1. The top two panels show two Hough spectra computed from
two maps, while the bottom shows their cross correlation. The 180 degrees
periodicity can be appreciated in these Hough spectra examples.

figure 1. Each of them corresponds to a potential rotation ψi
aligning the two maps. The algorithm we are describing can
be track each of them.

B. Displacement computation

Let ψi be one local maxima extracted from the cross
correlation between the Hough spectra of M1 and M2, and
let M ′

2 be the map obtained from M2 after rotation ψi, i.e.
M ′

2 = T (0, 0, ψi)M2. Translations ∆i
x and ∆i

y associated
with ψi can be determined by means of a bidimensional
correlation between M1 and M ′

2. This approach is however
computationally expensive and can be avoided exploiting
correlations once again. The X-spectrum and Y-spectrum of
a binary image M obtained from an occupancy grid map are
two vectors with c and r components respectively defined as
follows:

SMx (j) =
r∑
i=1

M(i, j) 1 ≤ j ≤ c (3)

SMy (i) =
c∑
j=0

M(i, j) 1 ≤ i ≤ r (4)

These vectors are the projections along the x and y axis of
the two images. Given the X and Y -spectra of two aligned
images, ∆x and ∆y can be also easily computed through
cross correlation. This step is illustrated in figure 2, where an
occupancy grid map is displayed together with its associated
X-spectrum. It is possible to observe four distinctive peaks
in the spectrum, two on the left and two on the right. The first
two are associated with the walls surrounding the wide hall
on the left of the map, while the other two are generated
by the vertical corridor situated on the right of the map.
Additional peaks are found in correspondence with other
features in the map. This signature eases the determination of
the needed translations by mean of cross correlation between
spectra. A similar technique was used in [15].

Fig. 2. The top panel shows one map built during the experiments described
in section IV. The bottom panel shows the X-spectrum of the map. As
described in the paper, the image was preliminary aligned with the axis in
order to fully exploit the X-spectrum. Spectrum values were normalized in
the range 0-1.

The approach may be brittle if the maps do not provide
distinctive projections along the x and y axis. However, since
the focus of this research is about merging maps of building
interiors, we can exploit the fact that walls in buildings are
not randomly arranged, but they are most often aligned with
two orthogonal directions. The potential brittleness of the
approach based on the X and Y spectrum can therefore be
easily overcome by aligning one of the two maps with the
axis before starting the overall merging algorithm. This step
is straightforward to achieve because the required rotation
can be revealed by its Hough spectrum. Therefore from now



on we assume that one of the two maps has been preliminary
aligned with the axis.

C. Algorithmic sketch

The idea illustrated in the former two subsections can
be easily turned into the algorithm illustrated in 1. The
algorithm processes two occupancy grid maps, M1 and
M2 and produces a set of transformation hypothesis. It is
assumed that the number of hypothesis n is one of the
paramters accepted by the algorithm.

Algorithm 1 Details
1: ComputeHypothesis(M1,M2, n)
2: HS1 ←HoughSpectrum(M1)
3: HS2 ←HoughSpectrum(M2)
4: C ← CrossCorrelation(HS1,HS2)
5: ψ1 . . . ψn ←LocalMaxima(C, n)
6: XM1

1 ← XSpectrum(M1)
7: YM1

1 ← Y Spectrum(M1)
8: for i← 1 to n do
9: M ′

2 ← T (0, 0, ψi)M2

10: XM
′
2

2 ← XSpectrum(M ′
2)

11: YM
′
2

2 ← Y Spectrum(M ′
2)

12: ∆i
x ← arg max CrossCorrelation(XM1

1 ,XM
′
2

2 )
13: ∆i

y ← arg max CrossCorrelation(YM1
1 ,YM

′
2

2 )
14: Ti ← ∆i

x,∆
i
y, ψi

15: ωi ← (M1, TM
′
2)

16: return T1 . . . Tn , ω1, . . . ωn

The algorithm returns a set of n transformations
T1, . . . , Tn, together with the corresponding ω value. By
inspecting the range of returned ω values it is possible to
determine whether multiple hypothesis should be tracked or
not.

D. Improvements

As clarified in the introduction, the approach we present
in this paper is aimed to support a system where robots
exchange and merge their maps during the mission, rather
than after the mission, as opposed to our previous contri-
butions. This assumption requires therefore that maps are
quickly merged on the fly, without imposing to the robots
excessively long idle times during the merging stage. Care
should therefore be devoted to achieve the utmost speed in
the process without sacrificing the quality of the result. The
complexity of computing the DHT of a binary image with
m black pixels is O(m ·nθ), while the cost of computing the
Hough spectrum is O(nθ ·nρ). As the size of the grid used to
compute DHT is usually moderate, it turns out that the first
of the two terms is the one dominating the complexity. This
fact was already observed by Kyriati and colleagues who
proposed the probabilistic Hough transform in [16]. Starting
from the observation that most lines can be detected even
without considering all points in the images being processed,
they verified that the resulting Hough transform only slightly
deteriorates when just a random subset of pixels is considered

during its computation. Not surprisingly, there is a tradeoff
between the size of the random subset and the degeneration
of the Hough transform, and the optimal value is application
dependent. An alternative to this approach consists in picking
the subset of points in a deterministic way rather than by
random sampling. For example, we may consider only points
m1, m1+k, m1+2k, and so on. This latter approach will be
indicated as incremental approach in the following, because
its behavior is completely characterized by the increment k.
These two alternatives may significantly speedup the basic
method and will be compared in the next section.
A similar idea can be applied to reduce the cost to compute
the X and Y spectra. An efficient implementation2 would
cost O(m), and in order to improve the speed one may
avoid considering all points but rather consider only a
subset chosen either randomly or in a deterministic way, as
described above.

IV. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the algorithm
presented in this paper we developed an experimental frame-
work based on maps generated from data sets available on
public repositories and also collected by the robots available
in our research lab. As the gist of our contribution is in
merging occupancy grid maps rather than producing maps
from scratch, we have used the GMapping algorithm by
Grisetti et al. [17], whose implementation is available on the
OpenSlam web-site [18]. All the computations took place
on a computer equipped with an Intel dual core processor
running at 2.14 GHz with 2 Gb of RAM. The machine runs
Linux and the code is written in C++. Indoor maps were
generated using two Pioneer P3AT robots equipped with a
SICK PLS200 range scanner (see figure 3). Since the main
goal of these experiments was to produce maps interesting
from a merging point of view, robots were remotely driven
rather than operating autonomously. In this way we were
able to map complicated office environments that would
otherwise be hard to navigate by a purely autonomous robot.
For what concerns maps created from public available data

Fig. 3. The two P3AT used robots right before the starting of the experiment
described in subsection IV-A.

2such implementation would not use the formulas provided in equations
3 and 4, but would rather consider just the non traversable cells in the grid
map, i.e. the m black pixels in the associated black and white image.



T1 T2 T3 T4

ω 0.958 0.902 0.900 0.898

TABLE I
THE FOUR ω VALUES ASSOCIATED WITH THE TRANSFORMATIONS

PRODUCED WHILE MERGING THE TWO MAPS DISPLAYED IN FIGURE 4.

repositories, we used the ap hill set available in [19]. Such
data set has been used also to test other map merging
algorithms and is therefore a good benchmark for cross
validation and comparisons.

A. Merging maps of large environments

The first set of experiments aims to verify the usefulness
of the proposed algorithm when merging large maps built by
two robots exploring the Science and Engineering building at
UC Merced. Figure 4 shows the results of a typical run. The
two robots started at the location marked with the letter S
in the leftmost panel of figure 4, and they explored different
parts of the building. To give a reference about the size of
the environment, the reader should consider that the length
of the long horizontal corridor displayed in the maps is
about 67m. Table I shows the ω values associated with the
transformations produced by the algorithms (with n = 4).
Similar results were observed throughout the tests performed.

B. Impact of sampling

In order to evaluate the impact of the improvements
described in subsection III-D we considered the ap hill data
set available in the radish robotics data repository. Such set
includes data collected by 4 robots independently exploring
an indoor environment. The four partial maps are displayed
in figure 5. The impact of randomized or deterministic
sampling while computing the Hough transform or the X
and Y spectra has been evaluated as follows. We considered
every value of k between 1 and 20, and different percentages
of points. For each of them we run 100 experiments. In each
of them two of the four maps are randomly selected, and a
random rotation and translation is applied to the first. The
algorithm then computes the best transformation (i.e. the one
with the highest associated ω value) merging the two. To
ensure a fair comparison, the random number generator is
always restarted with the same seed, so that in each batch
the same set of problems is solved. Figure 6 shows the trend
of the computational time and acceptance index for different
percentages of considered points. It can be observed that
while the percentage of points decreases from 50 down to 5
the average computational time roughly halves (from 360ms
to 180ms). At the same time the quality of the result is
virtually not affected, as average the ω value varies only
marginally and the variation is limited. The reader should
observe that both maps have a 530 rows and columns. A
different behavior is observed for the deterministic sampling,
as illustrated in figure 7 for different values of k. While the
time decreases according to the expectations, much higher
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Fig. 6. Impact of random sampling on the Hough transform in term
of computational time and result accuracy. The bottom panel displays the
average ω value, and the associated error bars extend up to the lowest and
highest values recorded.

variations for the ω value are observed. The randomized
approach therefore turns out to be much more robust.
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Fig. 7. Impact of deterministic sampling on the Hough transform in term
of computational time and result accuracy. The bottom panel displays the
average ω value, and the associated error bars extend up to the lowest and
highest values recorded.

V. CONCLUSIONS

In this paper we have presented a novel algorithm form
merging multiple occupancy grid maps produced by a multi-
robot system exploring an indoor environment. The algo-
rithm offers some features not present in related work. More
specifically, it never requires that robots localize each other
in their respective maps; it does not imply that robots know
their relative localization when they start the mission; finally,
it produces a set of weighted transformations yielding the
desired merging.

The algorithm we described builds upon discrete Hough
transform, and the related concept of Hough spectrum.
Experimental validation was performed using maps produced
from public data repositories and by two mobile robots



Fig. 4. The left and central panels show the two maps built individually by the two robots. The right one illustrates the map obtained by merging the top
ones. The location indicated with the S letter is the position where the two robots depicted in figure 3 started their mission.

Fig. 5. The four partial maps used to evaluate the impact of different sampling strategies. At each iteration two of the maps are randomly chosen, the
first one is randomly rotated and translated, and the best transformation combining them back together is determined by the algorithm.

mapping the engineering building at UC Merced. We have
investigated various ways to increase the speed of the discrete
Hough transform and experimentally verified that there is a
reasonable tradeoff between speed and accuracy of results
when subset of points are picked randomly. Deterministic
sampling, instead, appears to be less robust. Maps obtained
from public available data repositories can be consistently
merged in less than 200 ms. Although the results we de-
scribed are only referred to the case of merging two maps,
the idea can be applied to merge an arbitrary number of
partial maps by repeatedly applying the algorithm to combine
partial results. The technique we propose has two limitations
that can be however overcome. First, in order to merge two
maps, it is necessary that the two share at least a common
part. If this is not the case, the two cannot be fused together.
It is important to observe that when this does not happen the
algorithm still produces a result, but the associated low ω
value indicates that the result is to be discarded. Secondly,
very long runs may produce maps that are locally consistent,
but may be bent and distorted globally. In situations like that
a single rigid transformation is not sufficient, and one should
rather consider non-rigid transformations allowing different
local adjustment. To the best of our knowledge, none of
the algorithms for map merging proposed so far properly
deals with this problem. A further challenging extension
that may be considered in the future concerns merging three
dimensional occupancy grids.
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