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Abstract— This paper presents an experimental validation
of an online estimation algorithm we recently investigated
theoretically. One of the peculiar characteristics of the approach
we propose is the ability to perform an online estimation of the
variance parameters that regulate the dynamics of the nonlinear
dynamical model used. The approach exploits and extends
classical iterated Kalman filtering equations by propagating
an approximation of the marginal posterior of the unknown
variances over time. The method has been previously used to
model and solve a localization task for multiple robots equipped
only with a sensor returning mutual distances. In this paper
we present a first experimental validation of the algorithm that
complements and confirms our initial promising theoretical
findings. Our current implementation relies on a sensor re-
turning distance estimates based on a simple image processing
algorithm. Such sensor is inherently and intentionally noisy,
and in this study we show that our technique is capable
of appropriately estimating the variance describing the noise
affecting this sensor. We conclude proving experimentally that
the procedure we present ensures a performance comparable
to similar algorithms that require significantly more a priori
information.

I. INTRODUCTION

Tomorrow’s society will see the deployment of more and
more networked robots interacting among themselves and
with low cost devices dispersed in the environment. The area
of multi-robot systems steadily grew in the last fifteen years,
and multi-robot solutions appear to be the winning choice for
many different tasks [1]. More recently, a vigorous evolution
in sensor networks have opened the doors to more intriguing
scenarios where robots no longer just interact with other
robots, but exchange information also with sensors scattered
in the environment. These sensors may have been a priori
deployed, or even positioned by the robot themselves while
operating. The interaction between research in multi-robot
systems and sensor networks appears to be one of the most
exciting ones for the near future. These considerations are
the basis for the research generating the results presented
in this manuscript. In particular, we aim to develop multi-
robot systems capable of completing complex tasks while
operating in unstructured environments not offering features
appropriate to solve the localization task. In this case, it
is appealing to envision that robots will instead deploy a
suitable supporting sensor network while operating, or that
robots themselves will constitute the localization infrastruc-
ture. The reader should note that in this line of research
we do not assume the availability of sensorial payload
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suitable to solve the full pose estimation based on SLAM
algorithms producing two dimensional or three dimensional
maps. Eventually, our goal is to use distance sensors based
on time of flight like those being anticipated in [2]. When
these sensors will be available, they will be deployed in
the environment at run time, and treated as consumable
components. Therefore, it would be not viable to invest
significant time before hand to derive an accurate statistical
model describing their performance. It is rather much more
appealing to infer this statistical description online, while
the robot uses these sensors. Starting from this scenario, we
have recently developed an estimation algorithm compatible
with these assumptions [3]. Its main strength is in the ability
to estimate online the parameters characterizing the variance
of the transition and measurement noise. We have already
shown that such method can be used to solve a multi-robot
localization problem where robots are only equipped with
sensors returning mutual distances. We assumed that at every
point in time some of the robots move whilst the others stand
still in order to serve as fixed landmarks for the moving
ones. A thorough theoretical investigation has shown that
the method is capable of reliably estimating the covariance
matrices of transition or measurement noise (but not both
at the same time). Results based on extensive simulations
also suggested that the algorithm behaves favorably when
compared to the extended Kalman filter (EKF) and the
iterative Kalman filter (IKF), even though it requires much
less a priori information. In this paper we provide the first
experimental validation of the proposed technique. Accord-
ingly to our future plan involving deployable landmarks, we
here exclusively focus on estimating the covariance of the
measurement noise. In particular, we have implemented a
vision based sensor that returns distance to visual landmarks
based on a simple image processing algorithm. Our aim is to
prove that the technique we have theoretically investigated is
viable also from a practical point of view when implemented
on real world systems. As detailed in the subsequent sections,
it turns out that this is the case. The remaining of the paper
is organized as follows. Related literature is presented in
section II. The estimation problem and algorithm is shortly
summarized in section III. Our original general purpose
formulation is therein reworked in order to take into account
the specific scenario considered. The experimental setup is
described in section IV. Finally, conclusions and future work
are proposed in section V.



II. RELATED WORK

Localization is one of the most widely studied topics in
mobile robotics. Since in our experimental setup we focus
on mobile robots moving in planar environments, we restrict
our discussion to techniques aimed to determine the position
in the plane and the yaw orientation of the robot. In other
words we look at algorithms that estimate the triple (x, y, θ),
indicated as pose in the following. The recent book by Thrun
et al. [4] offering an up to date description of the most
commonly used probabilistic techniques adopted to solve this
problem reveals that most of the published literature in the
field resorts to some implementation of the Bayes filter.

In multi-robot localization, relevant for our experimental
setup, the aim is to localize n robots moving in a shared
environment and equipped with some sensors to detect
not only the environment but also their mutual positions.
While this problem can be solved by running n independent
instances of the formerly described methods, or a single
filter estimating the 3n components of the composed state,
research has been done towards the development of cooper-
ative localization. The term was introduced by Rekleitis et
al. that first considered two robots using visual sensors to
reduce odometry errors [5], and later on considered more
than two robots and different sensors [6]. Howard et al.
also considered the cooperative localization problem, using
a maximum likelihood estimator instead [7]. Roumeliotis
and Bekey [8] proposed to split the overall EKF1 into n
smaller communicating filters allocated on the n robots in
the team. More recently, Mourikis and Roumeliotis [9], [10]
investigated the intrinsic limitations of these approaches. In
particular they relate the localization accuracy to available
resources, like the amount of exchanged information, sensing
frequency, and so on. When the environment offers no
features, two strategies can be used in order to install a
suitable infrastructure. When more robots are available, some
of them could serve as artificial detectable features. This
idea was pioneered by Kurazume, Hirose et al. [11], and
by Grabowski and Khosla [12]. In these papers some robots
in the team stay stationary and serve as landmarks, while the
remaining ones move and use these artificial landmarks to
localize themselves. From time to time, roles are swapped,
and then the whole team can move. The above idea, however
requires more than one robot and implies a suboptimal use
of resources, because some of the robots need just to stay
stationary. To overcome these limitations Kleiner et al. [13]
recently illustrated a system where robots disperse RFID
tags in the environment that are later on used as detectable
landmarks. Similar studies were performed by Batalin and
Sukhatme, who presented various papers where single or
multiple robots interact with sensor networks positioned
during their operation [14]. Other examples of interactions
between robots and sensor networks were reported in [15],
where multiple robots move towards areas with low sensor
density in order to increase sensor localization accuracy.

1Extended Kalman Filter is de facto almost always preferred to Kalman
Filter due to the nonlinearities in robot motion and sensing.

III. NOTATION, PROBLEM DEFINITION, AND THE
ESTIMATION ALGORITHM

A. Notation and model

We here summarize the estimation algorithm we have
formerly investigated theoretically in [3]. The reader is
referred to details therein for a more complete and general
description, as well as a formulation not restricted to robot
localization. Let us first define the proper notation for setting
up a Kalman filter based framework. Let p be the dimension
of a parameter space, n the dimension of the state space,
m the dimension of the measurement space, and q the
dimension of the control space. χ ∈ Rp is a parameter vector,
x0 ∈ Rn is the initial value of state vector, and zk ∈ Rm is
the measurement vector. Finally, let hk : Rn → Rm be the
expected value of zk given xk, and gk : Rn × Rq → Rn
the expected value of xk given xk−1 and input uk. Let
Rk : Rp → Rm×m be the autocovariance of zk given xk
and Qk ∈ Rn×n be the autocovariance of xk given xk−1 and
uk. We assume that the autocovariance matrices Rk depend
on a vector χ ∈ Rp whose components may be unknown2.
The strength of the algorithm we propose relies in its ability
to determine these dependences online, while estimating the
state x. Let N (µ,Σ) indicate a Gaussian random vector with
mean µ and covariance matrix Σ. Finally, if W ∈ Rs×s
is a symmetric positive definite matrix, and v ∈ Rs, let
vTWv = ‖v,W‖2. Assume there are N robots in the system.
We here suppose that each robot is a differential drive system,
i.e. the state of a single robot is xi = [xi yi θi]T where xi

and yi are the coordinates of a fixed point, for example the
middle point in the wheels axle, and θi is the robot heading.
Moreover, robot i can receive input ui = (vi, ωi), where vi

is the translational velocity and ωi is the rotational velocity.
Based on these assumptions, it follows that n = 3N and
q = 2N . At time k the system is in state xk, receives input
uk+1, and transitions into state

xk = gk(xk−1, uk) + νk.

Being more specific we write gk = [(g1
k)T . . . (gNk )T ]T ,

where each gik indicates how the state of robot i evolves
when control uik is applied. The transition function gi for
robot i can be written as follows (see e.g. [4] for an analytical
derivation of the following relationships):

xik = xik−1 + (− vi
k

ωi
k

sin θik−1 + vi
k

ωi
k

sin(θik−1 + ωik∆t))

yik = yik−1 + ( v
i
k

ωi
k

cos θik−1 −
vi

k

ωi
k

cos(θik−1 + ωik∆t))
θik = θik−1 + ωik∆t

An obviously simplified relationship holds when ωik =
0, i.e. when the robot moves forward without turning. The
transition noise is Gaussian, i.e. νk ∈ N (0, Qk) where Qk
is a block diagonal matrix with N blocks whose i-th block
is defined as follows:

2in general it is also possible to assume that matrices Qk depend on χ,
but this is not relevant for the scope of the current paper. The reader is
referred to our formerly cited publication for this extension.
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The various αjs are constants determined off line and are
the same for all robots. For the sensor model we assume
that each robot is equipped only with a device returning
the distance to other robots. Indicating with zk the reading
returned at time k, let us indicate with zi,jk the distance
between robot i and robot j. zk has dimension m = N(N −
1) because it contains the mutual distances between all robots
in the system. The entry in zk returning the distance between
robot i and robot j is

zi,jk =

√(
xik − x

j
k

)2

+
(
yik − y

j
k

)2

+ ζi,jk (1)

where ζi,jk are the components of an m dimensional random
vector ζk ∈ N (0, Rk(χ)), i.e. matrix Rk may depend on the
unknown parameters in χ.

B. Problem definition

Our problem consists of estimating on-line both xk for
each robot, and the (possibly) unknown components of χ
starting from output data {zk}. Equation 1 outlines that we
assume that robots are equipped only with sensors returning
mutual distances. Notice also that by not assuming that
robots are equipped with proprioceptive sensors a more
challenging scenario is set for the algorithm we are propos-
ing. If additional sensors are available, such information
can be easily integrated yielding a simpler problem where
more experimental evidence is provided. In our original
formulation we assumed that each robot in the system
could behave in two mutually exclusive ways: landmark or
moving. When a robot acts as landmark, its translational and
rotational velocities are 0, and it experiences no transition
noise, i.e. νk = 0. Otherwise, when a node acts as moving,
the covariance of the random vector νk is given by the matrix
Qk, defined above.
It is assumed known whether a node is moving or a landmark.
As far as Rk is concerned, no particular structure is stated
here. Notice that if both robot i and robot j act as landmarks,
whose positions are assumed known, then matrices Rk do not
depend on unknown components of χ, and the measurements
of their distance become irrelevant and can be removed from
the model. In addition, depending on the particular problem
under study, not all the measurements {zk} listed above
could be available, as also specified later on.

C. Estimation algorithm
Building upon the Kalman filter framework, the estimation

algorithm is based on two standard steps: prediction and
correction based on measurement. The reader will note that
the latter introduces significant novelties.

1) Prediction: In the following we use the notation χ̂k−1

to indicate the estimate of χ at instant (k− 1) while Σ̂χ,k−1

denotes the covariance matrix of the associated error. The
estimate of xk−1 obtained exploiting measurements collected
up to instant (k − 1) is instead denoted as x̂k−1|k−1 with
error covariance given by Σ̂k−1|k−1. It is worth stressing
that both x̂k−1|k−1 and Σ̂k−1|k−1 are quantities which are
not interpreted as dependent on χ in this phase of the
algorithm. Linearized dynamics of the system around the
current estimate are used to perform the time-update. Let

Gk =
∂gk(xk−1, uk)

∂xk−1
(x̂k−1|k−1, uk)

then

g(xk−1, uk) ≈ gk(x̂k−1|k−1, uk)+ (2)
+Gk · (xk−1 − x̂k−1|k−1) + νk

From equation 2, it follows that xk can be approximated as a
Gaussian with mean and covariance given by the following

x̂k|k−1 = gk(x̂k−1|k−1, uk)

Σ̂k|k−1 = GkΣ̂k−1|k−1G
T
k +Qk

2) Correction based on measurement: We now need a
better estimate for xk and χ, as well as the corresponding
covariance matrices of the error affecting these estimates,
starting from zk. It is easy to show that assuming that xk is
Gaussian with mean x̂k|k−1 and covariance Σ̂k|k−1(χ), then
for known χ and zk, the maximum a posteriori estimate of
xk minimizes the following objective function:

l(xk, zk|χ) =
1
2

log det(2πRk(χ))

+
1
2

log det(2πΣ̂k|k−1(χ)) +
1
2
‖zk − h(xk), Rk(χ)−1‖2

+
1
2
‖xk − x̂k|k−1, Σ̂k|k−1(χ)−1‖2

where l(xk, zk|θ) is the minus log of the joint density of
xk and zk conditioned on χ. Recalling that the iterated
Kalman filter (IKF) update is a Gauss-Newton method, one
can use IKF to minimize the l(·) objective function. Thus,
the minimizer of l(.) can be achieved by defining inductively
the sequences ix and iΣ as follows. Let 0x := x̂k|k−1 and
0Σ := Σ̂k|k−1(χ), then

i+1x = x̂k|k−1 +Ki

(
zk − h(ix)−Hi

(
x̂k|k−1 −i x

))
i+1Σ = (I −KiHi)Σ̂k|k−1(χ)

where

Hi =
∂h(x)
∂x

(ix)

Ki = Σ̂k|k−1(χ)HT
i

(
HiΣ̂k|k−1(χ)HT

i +Rk(χ)
)−1



After computing a sufficient number of iterations to reach
convergence, values of ix and iΣ provide the updated
estimate x̂k|k(χ) and the covariance matrix of the error
Σ̂k|k(χ). However, both these quantities depend on χ. Thus,
the question now arises as how to estimate the unknown
components of χ. Let π(xk, zk|χ) denote the joint density
for xk and zk conditioned on χ, i.e.

π(xk, zk|χ) = exp (−l(xk, zk|χ))

Let instead π(zk|χ) be the marginal likelihood of χ, i.e.

π(zk|χ) =
∫
π(xk, zk|χ)dxk (3)

This integral is useful since it allows to remove biases in
parameter estimation.Let πk−1(χ) denote the current ”prior”
for χ, i.e. a Gaussian with mean χ̂k−1 and covariance
Σ̂χ,k−1. Then, our target estimate for χ is

χ̂ = argminχ − log [π(zk|χ)πk−1(χ)]

subject to nonnegative constraints for the components of χ.
The problem now is that, due to the nonlinear nature of
function h, evaluation of π(zk|χ) for a given χ requires
solution of an integral in equation 3 which in general is
analytically intractable. It is shown now how computations
performed by IKF provide an approximation for such an
integral. To this aim, consider the affine approximation of
l(xk, zk|χ) for xk near y which is defined by

l̃(xk, y, z|χ) =
1
2

log det(2πRk(χ))

+
1
2

log det(2πΣ̂k|k−1(χ))

+
1
2
‖zk − h(y)− h′(y)(xk − y), Rk(χ)−1‖2

+
1
2
‖xk − x̂k|k−1, Σ̂k|k−1(χ)−1‖2

The determinant of the Hessian of l̃ with respect to xk is
easily obtained and reads as follows

det
[
∂2

xk
l̃(xk, y, zk|χ)

]
= (4)

det
[
(h′(y))TR−1

k (χ)h′(y) + Σ̂−1
k|k−1(χ)

]
The information matrix (expected Hessian) approximation

for the marginal likelihood π(zk|χ) is denoted by π̃(zk|χ)
and given by

det
{
∂2

xk
l̃(xk, x̂k|k(χ), zk|θ)/(2π)

}−1/2

(5)

exp
{
−l(x̂k|k(χ), zk|χ)

}
In view of equations 4 and 5, one can notice that such
an approximation requires x̂k|k(χ) and h′(x̂k|k(χ)) which
represent quantities returned by IKF. Said in other words,
for every χ value, IKF can be used to evaluate an objective
function whose optimization provides the estimate of χ.
Thus, we are now in a position to define the estimate of

χ, obtained after seeing data up to instant k, as the solution
to the problem

χ̂k = argminχ − log [π̃(zk|χ)πk−1(χ)] (6)

while Σ̂χ,k is given by

Σ̂χ,k =
(
−∂2

χ log [(π̃(zk|χ̂k)πk−1(χ̂k)]
)−1

(7)

and can be calculated numerically. This completes the
update for parameter χ. Finally, the overall measurement
update is completed by setting estimate of xk to x̂k|k(χ̂k)
with associated covariance matrix of the error given by
Σ̂k|k(χ̂k).

IV. EXPERIMENTAL RESULTS

In order to evaluate numerically the potential of the
proposed technique, we have deployed a system aimed to
estimate online the dependency between matrix Rk and vec-
tor χ, i.e. a system capable of estimating online the variance
of the noise affecting the sensor returning mutual distances
between robots. To keep the experimental setup easy, we
consider a simplified scenario where just one robot is moving
and all the others are acting as landmarks. In this way we
can isolate and study a single problem, namely the online
estimation without the risk of taking into account additional
sources of uncertainty. The moving robot used is the P3AT
mobile platform. Due to temporary space constraints, and to
the impossibility to deploy a large team of robots, landmark
robots are replaced by stationary artifacts, as clarified in the
following subsection.

A. Visual guided distance measurement

Distance computation is provided by a single camera
mounted on the robot. The camera has a resolution of
320×240 pixels, and is mounted on a Phidgets HS322 servo,
so that it can rotate 180 degrees (see figure 1). In order

Fig. 1. The robot used for the experimental validation. Two iRobot Create
platforms acting as static landmarks can be seen. Visual landmarks can be
observed on the poles mounted on the stationary robots.

to extract distance estimation, carefully engineered markers
are used. Each marker is about 18 centimeters high and



consists of five stripes where each stripe is either red, green
or blue as shown in figure 1. While the robot navigates,
captured images are processed to identify the region of
interest by means of a probabilistic color detection technique
applied in HSV color space where parameters of the color
probability density functions are tuned experimentally. A
template matching algorithm is then performed on marker
candidates to eliminate false positive readings. Additionally,
in order to increase the robustness in marker detection a
confidence measure based on the color distributions along the
marker is introduced. Only the marker candidates providing
a confidence measure above a preset threshold is accepted as
valid markers. Once the marker is detected, the color code
is decoded for the ID of the maker and its relative distance
from the camera is calculated from the size of the marker
in image space. The distance calculation ignoring the minor
effects of distortion is realized by the following equation.

d =
H · f
h

(8)

where d is the distance between the camera and the marker,
H is the height of the real marker, f is the focal length in
pixel units and h is the height of marker in image plane.

As experimentally studied this method entails a growing
estimation error while the distance between the marker and
camera gets bigger. This problem is inherently caused by
the increasing quantization error due to the mapping of real
world into the finite number of pixels in image plane. Exper-
imental data collected by using this straightforward model
under different lighting conditions and distances showed a
linear trend in the estimation error. Therefore the returned
distance is not the one produced by equation 8 but rather

z = (1− p1) · d+ p0

where the coefficients p1 and p0 have been obtained through
a linear interpolation of the error profile. The resulting error
between the estimation and the ground truth data shows a
Gaussian distribution as presented in figure 2. We are fully
aware that this distance estimation method is not accurate
and can be greatly improved, but this is not the scope of
this research. Our goal is instead to verify whether the error
dynamics exhibited by this sensor can be determined online
by the estimation algorithm we propose.

B. Comparisons of different localization algorithms

As we assume that only one robot acts as moving robot,
and all the others act as landmarks, we are in fact dealing
with a well studied instance of the localization problem.
Therefore two widely used approaches, namely EKF and
IKF, provide solid reference points to measure the value
of our algorithm. The main difference to be considered
while interpreting the results we provide, is in the different
amount of a priori information required by these algorithms.
In particular EKF, IKF and the algorithm we propose re-
quire full knowledge of the matrices Qk characterizing the
transition noise νk. Throughout the experimental trials we
will illustrate, the same Qk was used for all estimation
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Fig. 2. Distribution of the distance measurement errors for 200 independent
measures taken for the distances in the range of 0.25m to 4.5m under
different conditions

algorithms. However, while IKF and EKF require also full
knowledge of the matrix Rk characterizing measurement
noise, our approach starts without knowing Rk and recovers
the true value online by performing the noise covariance
estimation at each cycle for the first 10 time steps and then
every 10 cycle while also estimating the state at the same
time. Each estimation step takes 0.56s in average on a AMD
Sempron 1.8 GHz with 512MB RAM running SuSE 10.1.
In this implementation 8 update iterations are carried out
in IKF and in the IKF step of the proposed method. All
these algorithms have been implemented in C++ and process
the same data collected by the robot while moving among
the landmarks. Figures 3 and 4 contrast the three estimation
algorithms during the prototypical test run. Figure 3 shows
the trajectory estimated by the three approaches, while figure
4 illustrates the estimated robot heading. The above figures
clearly show that the estimator we are proposing produces
results comparable to IKF and EKF but requiring much less
information. Finally, we illustrate how during the localization
process the variance of the noise characterizing the sensor
being used is estimated online. As we have only one sensor,
the online estimation process reduces to estimate the covari-
ance of the error described in figure 2. We determined offline
that such error distribution can be described by a Gaussian
with 0 mean and variance 0.00538. This specific value was
provided to IKF and EKF but not to our estimator. Figure
5 shows the trend of the estimated value during the run.
The algorithm is intentionally started with 1,000,000 times
of the true value and after few iterations it converges down
and settles towards a value of 0.00553. Similar trends were
observed throughout the trials we performed.

V. CONCLUSIONS

In this paper we have presented an algorithm that performs
the online estimation of unknown variance parameters char-
acterizing measurement noise. The methodology we have
presented has broader applicability and can be used also to
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estimate the transition noise covariance in a similar fashion,
although this aspect has not been addressed in this paper.
We have experimentally demonstrated the validity of the
method we proposed by using an error prone distance sensor
based on a simple image processing algorithm. The algorithm
produces estimates comparable to the well known IKF and
EKF algorithms, but requires much less a priori information.
The long term goal we are working to, is the development
of rescue robots capable of performing localization tasks by
just using forthcoming sensors that return distance measures
based on time of flight. Our vision is to deploy multi-robot
systems that install a suitable localization infrastructure while
operating, thus relieving the necessity to solve the whole
SLAM problem. Moreover, such infrastructure could also
be used to support the operation of human first responders
entering the disaster scenario after robots deployed these
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Fig. 5. Trend of the covariance estimation

sensors.
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