
Extracting Surveillance Graphs from Robot Maps

Andreas Kolling and Stefano Carpin

Abstract— GRAPH-CLEAR is a recently introduced theo-
retical framework to model surveillance tasks accomplished by
multiple robots patrolling complex indoor environments. In this
paper we provide a first step to close the loop between its graph-
based theoretical formulation and practical scenarios. We show
how it is possible to algorithmically extract suitable so-called
surveillance graphs from occupancy grid maps. We also identify
local graph modification operators, called contractions, that
alter the graph being extracted so that the original surveillance
problem can be solved using less robots. The algorithm we
present is based on the Generalized Voronoi Diagram, a
structure that can be simply computed using watershed like
algorithms. Our algorithm is evaluated by processing maps
produced by mobile robots exploring indoor environments. It
turns out that the proposed algorithm is fast, robust to noise,
and opportunistically modifies the graph so that less expensive
strategies can be computed.

I. INTRODUCTION

We recently introduced a theoretical framework called
GRAPH-CLEAR to model surveillance tasks performed by
teams of robots [1][2]. One of its peculiar aspects resides
in a conceptual mechanism that allows to model and study
different search and clear strategies abstracting from the un-
derlying robotic platforms used. GRAPH-CLEAR in partic-
ular aims to model surveillance tasks where multiple robots
with limited sensing capabilities cooperate to detect intruders
in complex environments. The name GRAPH-CLEAR stems
from the fact that environments to be cleared are modeled
as surveillance graphs, i.e. a special graph class that will
be later defined. Theoretical properties of GRAPH-CLEAR,
as well as solving algorithms have been extensively studied
in an earlier stage of this research, and will be summarized
in the remaining part of the paper. In this manuscript we
present the first steps towards the practical deployment
of robot teams that clear complex environments using the
formalism we formerly investigated. In particular we address
the problem of automatic extraction of surveillance graphs
from occupancy grid maps. Informally speaking, this task
entails allocating graph vertices on rooms and graph edges
on corridors or connections between rooms. The reader
will realize that this step is similar to creating topological
maps from occupancy grid maps. However, our task is more
complex and our contribution more articulated. In order to
enable the GRAPH-CLEAR framework it is also necessary to
determine certain weights associated with edges and vertices.
These weights measure the effort, i.e. the number of robots,
needed to enforce relevant properties on the graph, like for
example preventing intruders from passing through a door,
or from hiding in a room. The method to assign weights

School of Engineering, University of California,Merced, CA, USA

presented in this paper is parametric with regard to the
sensing capabilities of the robots used to implement the
clearing strategies, and has therefore general applicability.
In addition, while extracting graphs from occupancy grid
maps we have identified certain opportunistic operations that
modify the graph so that the algorithm generating clearing
strategies produces solutions requiring less robots. While
most ideas herein generalize to varying implementations of
the basic GRAPH-CLEAR actions, i.e. blocking edges and
clearing vertices, we will present experimental results for
particular implementations of these actions on two realistic
robot maps, one collected for a P3AT at UCMerced and one
generated from the Radish online robotics data repository
[3] called ”sdr site b”. The remaining part of the paper is
organized as follows. Section II shortly revises related work
in the area of robot aided surveillance systems, and pursuit
evasion games. GRAPH-CLEAR and its solving algorithm
are informally presented in section III. Section IV illustrates
how graphs are created starting from occupancy grids, and
how these graphs can be modified in order to yield better
solving strategies. Strategies to block edges and clear vertices
are presented in section V. Finally, experimental results are
shown in section VI, and conclusions are drawn in section
VII.

II. RELATED WORK

Surveillance tasks have been studied in a great number
of variations. One version with strong theoretical results are
visibility-based pursuit-evasion games, first investigated by
Suzuki and Yamashita for detecting targets with an unlimited
range beam sensor in [4]. Subsequently many variants of this
problem were studied, most notably the variant of a robot
with an unlimited range omnidirectional gap sensor [5] which
can detect intruders robustly and in manifold environments.
An entirely different approach was taken by Parker who
investigated the surveillance of multiple moving targets in
simple planar environments by large robot teams in [6]. Also
in open planar environments we find a capturing strategy
presented in [7] in which robots form a so called trapping
chain to ensure that the target once detected by any robot in
the chain will subsequently be caught. Probabilistic detection
guarantees are given for traversing an environment with
such chains for varying conditions. A probabilistic approach
which works in cluttered environments is presented in [8].

The GRAPH-CLEAR problem was formalized in [2]
in which we presented algorithms to compute strategies
for GRAPH-CLEAR on trees and heuristics to apply tree
strategies to graphs. Improved algorithms were presented in
[1]. GRAPH-CLEAR is an extension of edge-search another



variant of graph searching first presented in [9]. Another
related contribution to edge-search is [10] in which weights
on edges and vertices for edge-search were considered. In
colloquial terms the major distinction between edge-search
and graph-clear is that instead of edges vertices are cleared.

Extracting topological maps, usually represented as
graphs, from environments has been widely studied. Fore-
most, Voronoi-based or fuzzy topology based approaches
have found their usage in robotics. In particular, Voronoi
Diagrams have been used extensively. In [11] a rigorous
formalization of the Generalized Voronoi Diagram (GVD)
and the Generalized Voronoi Graph (GVD) are given, which
are valuable when extending our results to higher dimen-
sions. Since we are in a robotics context we shall mean the
GVD whenever we refer to a Voronoi Diagram. In robotics
the construction from sensor data also received considerable
attention such as in [12] and [13]. Voronoi Diagrams were
used in path planning [14] and have also proven to be useful
in localization [15]. While we can benefit from the previous
research on constructing the diagrams the application of
Voronoi Diagrams for constructing surveillance graphs and
improving these is, however, novel.

III. GRAPH-CLEAR

This section introduces the basic terminology and ideas
behind the GRAPH-CLEAR problem in colloquial terms. A
rigorous and formal introduction can be found in [1][2] and
the reader is referred to those papers for more details about
the results stated in this section. The problem is defined
on a weighted graph with weights on edges and vertices,
which we term Surveillance Graph (SG). Intuitively, edges
correspond to narrow connections between wide and open
regions which in turn correspond to vertices. Rooms or
corridors/doors are said to be contaminated if they may hide
one or more intruders, and are said to be clear otherwise.
Robots can block edges between vertices thereby prevent-
ing contamination from spreading. Otherwise contamination
spreads from all contaminated elements through all edges
without a block. Vertices can be cleared by the robots which
corresponds to detecting all intruders present within the
region associated with the vertex. Clearing vertices is hence
the basic action to remove contamination from a SG. The
costs in terms of the number of robots for these actions
are the associated weights on edges and vertices. If e is an
edge, its blocking cost will be indicated as w(e), whereas
the clearing cost of a vertex v will be indicated as w(v).
An ordered sequence of blocking and clearing operations
that turn all vertices and egdes from contaminated to clear
makes up a strategy for a SG. Note that multiple actions
can be applied simultaneously. The largest number of robots
a strategy uses at any one time is its cost. Our goal is to
determine strategies of minimal cost. The decision variant of
the general GRAPH-CLEAR problem is NP-complete. There
are, however, efficient methods to find strategies for trees
and heuristics to reduce the SG to a tree. All algorithms that
compute strategies on trees are based on labels attached to the
edges of the SG. Labels have a direction, i.e. two per edge,

and represent the number of robots needed to clear the part of
the tree the team enters when moving along the edge in the
respective direction. The label λvx(e) for an edge e between
vertices vx and vy and in the direction of vy is computed
as follows. If vy is a leaf, then λvx

(e) = w(vy) + w(e),
otherwise we denote all neighbors of vy different from vx

by v2, . . . , vm where m is the degree of vy . We denote the
edge from vy to vi by ei and w.l.o.g. assume the neighbors
are ordered w.r.t. λvy

(ei) − w(ei) in decreasing order. For
each neighbor we define a cost:

c(vi) := λvy (ei) +
∑

2≤l<i

w(el), (1)

Using the cost for each neighbor we define the label on e
when coming from vx as:

λvx(e) = max{s(vy), max
i=2,...,m

{c(vi)}}. (2)

where s(v) := w(v)+
∑

e∈Edges(v) w(e) is the safe clearing
cost for a vertex, i.e. a clearing action on the vertex and
blocking actions on all edges connected to vertex being
cleared. Fig. 1 illustrates the label computation. The labels
can be computed recursively starting from the leaves of the
tree, i.e. vertices of degree one.

vx

v2

vy

vm

e
λvx(e)

λvy(e2)

λvy(em)

e2

em

Fig. 1. An illustration of the computation of the label λvx (e) from vx

towards vy . This involves the labels λvy on edges e2, . . . , em, where m =
degree(vy), and the edge and vertex weights. The direction of a label is
further indicated by the arrow.

One of the main problems that remains to be solved in
order to use GRAPH-CLEAR for a realistic surveillance
scenario is to construct a SG from a given environment,
which is the main focus of this paper.

IV. FROM MAPS TO SURVEILLANCE GRAPHS

Our proposed approach is based on a Voronoi Diagram for
the given environment. Voronoi Diagrams can readily be con-
structed from sensor data, occupancy grid maps or vectorized
maps. For our purposes we will assume a two dimensional
grid map. Once a Voronoi Diagram is given we construct a
SG which leads to strategies with low costs. Before we tackle
this problem let us first discuss how blocking on edges and
clearing on vertices can be implemented.



1) Blocking: The requirement from GRAPH-CLEAR is
that a block detects intruders as they attempt to pass through
the edge. This can be fulfilled by continuously covering
the area corresponding to the edge with sensors. In practice
no sensor can give a 100% guarantee that an intruder will
be detected and one may wish to cover the area with
multiple sensors, or if speed constraints apply to intruders
then one might just need one robot patrolling fast enough
along the edge while not covering it all at once. The actual
choice of implementation can differ widely depending on the
application. Our basic assumption is that any implementation
will benefit from edges placed at narrow section of the
environment.

2) Vertex clear: For implementations of vertex clearing
the choices are even more manifold. In open uncluttered
regions one could use the sweep-pursuit-capture strategy
presented in [7]. In cluttered but not too large regions
the approach from [8] could be applied. For vertices in
which the sensor range is larger than the diameter of the
region one could use the approach from [5]. These methods
are shortly presented in section II. A good choice for an
implementation of the clearing action is heavily dependent
on the type of robot used and the shape of region that
the vertex represents. That being said, however, one of the
advantages of GRAPH-CLEAR is not only that it can scale
local clearing methods to very large environments, but that
it allows us to use simple clearing methods for the vertices
which could be implemented by very simple robots. In
section VI we will demonstrate the graph construction with
a very simple bounding box sweeping. Our approach for the
graph construction is in two stages. The initial construction
places edges at every possibly beneficial position, i.e. every
narrow section of the environment. Already in a simple case
such as in fig. 2 one can see that not every narrow part
should receive an edge, depending on the type of vertex
clearing and edge block implementation and the type of
robot. Hence the construction proceeds with contracting (i.e.
merging) vertices from the initial construction when an edge
between two vertices is not beneficial. The next two sections
present this two-staged construction.

a) b)

Fig. 2. Illustrating the advantage of narrow connections between open
regions. For robots with a limited sensing range the environment in part
a) can be cleared with 3 robots, while the one on part b) requires 4. The
reader should note that the surface is the same.

A. Initial Graph Construction

Given a map, we first compute the Voronoi Diagram.
Similar to [14], in which the graph was used for fast path
planning, we use the minima of the local clearance function

defined on the edges of the Voronoi Diagram to create the
SG. The local clearance function on the edges of the Voronoi
Diagram is simply the distance from the point on the edge to
the nearest obstacle point. A minima is considered any point
for which ∃ε > 0 s.t. within its ε-neighborhood there are
no other points with strictly smaller clearance and ∀δ > 0
there is at least one point within its δ-neighborhood with
strictly larger clearance. In colloquial terms, one very close
neighbor should be larger and within any small neighborhood
none of the neighbors should be smaller. Here we differ
from the construction in [14] which considers all points for
which all points within an ε-neighborhood are not smaller,
which would also include entire plateaus and also those of
maxima. With our definition, if a minimum value is achieved
on a compact subset of the edge we select the two end
points of the set. Fig. 3 shows a Voronoi edge and two
minima on it. It is worth to note that minima cannot lie

minima

clearance function defined on the Voronoi edge

0

1

0 1

environment with Voronoi edge

0 1

Fig. 3. A simple environment with a Voronoi edge in the center as a
dotted line and the clearance function in the graph on top. The minima on
the Voronoi edge are marked by grey circles.

on vertices of the Voronoi Diagram, so by only considering
edges we do not miss any minimum. For each minimum
we consider the lines from the minimum to the two nearest
obstacle points, which since we are on a Voronoi edge lie
in two different obstacles. These lines will be represented
by an edge in the SG, i.e. we are partitioning free space
into regions based on these lines and each region becomes
a vertex in the SG. In most cases this construction yields
a valid partitioning and hence a valid graph. Fig. 4 shows
such a construction. Once the edges and vertices of the SG
are constructed we use the implementation of the edge block
and the vertex clearing actions to compute the weights for
the SG. This concludes the initial construction. The resulting
surveillance graph will be the starting point to find a graph
with better strategies. In most environments the presented
construction will introduce many more edges than would
be beneficial, as seen in fig. 2 in which an edge between
the two regions is only of advantage when it is sufficiently
narrow. Since this depends on the implementations of the
actions and the type of robot we will have to introduce a
method that considers this when improving the surveillance
graph. Gladly, we can use a general approach that merely
calls the weight computation of the implementations. After
presenting this in the next section we will demonstrate it



Obstacle 1

Obstacle 2

O
bs

ta
cle

 3

Obstacle 4

O
bs

ta
cle

 5

Fig. 4. A Voronoi Diagram and its minima. The Voronoi Diagram is marked
with grey dashed lines, the minima with grey circles and the lines to the
closest obstacle points with thin black lines. Obstacle boundaries are thick
black lines. Corners in corridors tend to produce minima, unless a narrow
part proceeds it as seen in the upper left corner of the figure.

with two realistic examples.

B. Improving the graph

The initial construction does not guarantee the existence
of good strategies for the GRAPH-CLEAR problem. Hence,
the next step is to contract vertices wherever this may lead to
a better strategy. This will also remove spurious minima that
may be introduced by noise in the map or approximations of
the Voronoi Diagram, as seen in fig. 5. The simplest type of

Fig. 5. An example in which a discrete approximation of the Voronoi
Diagram in a grid map leads to introduction of unwanted edges. The black
line in the center is the Voronoi Diagram edge and minima are marked by
grey lines

contraction is between a leaf vertex l and its sole neighbor v.
Let e be the edge connecting them and v′ be l and v merged.
Contracting l and v cannot make the strategies for the SG
worse if w(v′)−w(v) ≤ w(e). It is easy to verify from the
equations from [2] that under these conditions none of the
labels in the graph can get larger. Furthermore, from [1] it
follows that if e is not in the tail of another a label on an
edge coming from the neighbors v2, . . . , vm of v, then this
labels necessarily improves due to the removal of the edge.
The tail of a label in colloquial terms is the set of edges
whose ending vertices are cleared before clearing the one
with the highest cost c(ei), a concept formalized in [1]. The
second contraction is for vertices of degree two. Let c be
such a vertex, vy, v

′
y its neighbors and e, e′ the respective

edges. If w(e) ≥ w(e′) and w(vc
y) ≤ w(vy) +w(e)−w(e′)

then a contraction of vy and c into a single vertex vc
y is of

advantage. Fig. 6 shows this contraction. If either of these
two conditions is satisfied then a contraction is guaranteed
not to lead to worse strategies on the SG, regardless of
the value of the labels on the edges. Analyzing general
contractions is beyond the scope of this paper and involves
a careful and formal consideration of the recursive nature
of the label computation, occurrences of the maxima in

c

v2

vy

vm

e

e2

em

v'2

v'y

v'm

e'2

e'm

e'

v2

vcy

vm

e2

em

v'2

v'y

v'm

e'2

e'm

e'

a) b)

Fig. 6. A contraction of a vertex with degree two and its neighbor. Part
a) shows the initial graph and part b) the graph after the contraction.

batches and the role of the tails as it is done in [1]. We
will, however, demonstrate the potency of already the simple
types of contractions in our experimental section.

V. IMPLEMENTING BLOCKING AND CLEARING ACTIONS

As previously indicated, blocking and clearing actions
of a strategy for the SG can be implemented in manifold
variations depending on the particular needs of the applica-
tion. The GRAPH-CLEAR abstractions can be of benefit in
any environment in which occlusions can help the pursuers
to restrict contamination from spreading. The requirements
for the implementation is merely that the computation of
the weights on vertices and edges is possible and that the
action can be executed. In particular when using vertex
clearing strategies that have strict assumptions such as the
region of the vertex being simply connected this has to be
considered when building the graph. In this case one needs
to detect vertices in which this is not given and subdivide
them into further vertices. Issues with particular types of
sensors, their range and error rates are all aspects that
come into play when designing the implementation details.
Once the implementation gives satisfactory guarantees for
the detection of intruders, then GRAPH-CLEAR can be
applied. An interesting property of GRAPH-CLEAR solution
strategies is that all paths from the cleared vertices of the
graph to those that are contaminated have always at least
one block. In fact, if a probabilistic guarantee of e.g. 95%
to detect an intruder trying to pass through a blocked edge
can be given and a close to certain probability that one will
be detected during a vertex clearing, then the final cleared
graph will contain no intruder with 95% certainty. While it
is beyond the scope of this paper to introduce a probabilistic
variant of GRAPH-CLEAR there is already quite something
one can achieve w.r.t. the implementation of the actions and
there are some immediate relationships between a detection
probability for a vertex sweep or edge block and the entire
graph.

VI. EXPERIMENTAL RESULTS

To demonstrate some the presented ideas in an application
we constructed a robot grid map of part of the UC Merced
Science and Engineering building with a Pioneer P3AT
mobile platform equipped with a SICK PLS200 laser range
finder. The map is built using the GMapping software [16].
Figure 7 shows this map, which we will further denote
as UCM map. As a second map we used the sdr site b
data set from the Radish online robotics data repository



[3]. This latter set will be denoted as SDR map, and the
correspondingly generated map is seen in figure 8.

To both maps a low-pass filter was preliminary applied
to remove noise and get smoother boundaries. Both maps
have a complicated structure, many occlusions, circles and
noisy artifacts. The resolution of the grid map for the UCM
map is 690x790 pixels while the SDR map is 645x573. The
free space in the UCM map and SDR is approx. 35.8%
and approx. 46.4% respectively, which corresponds to 4422

pixels for the UCM map and 4142 pixels for the SDR map.
In the SDR map there are two small pockets at the bottom of
the map which were included in the open space calculation
but are not accessible and hence not part of the graph
construction. Since the maps are both grid maps a simple
wave propagation algorithm to compute an approximation of
the Voronoi Diagram has been used. The algorithm implicitly
assumes that points on a straight line belong to the same
obstacle and a diagonal marks a new obstacle. Diagonal col-
lisions are permitted, complicating implementation slightly.
Since our focus is on the graph construction we will spare
the remaining details of the Voronoi Diagram construction
noting that good algorithms have been developed in the vast
body of literature on the topic.

Based on the crude approximation of the Voronoi Diagram
we construct the SG graph by detecting the minima on the
Voronoi Diagram edges. We mark every point on the Voronoi
Diagram as a minima which has several neighbors in at least
one direction being larger and no other point on the Voronoi
edge within 3 steps in any direction being smaller. To avoid
too many minima on the initial graph we set a minimum
distance between initial minima to 10 steps on the diagram.
The selection of minima can be application dependent, e.g.
for some applications it may be desirable to have minima that
are guaranteed to be further apart. Whilst very close edges
are likely to be merged in the contraction stage it is still
more convenient not to clutter the initial graph with many
spurious edges when those are easy to avoid. The resulting
graphs for the two maps are displayed in figures 7 and 8.

Once the SG graph is constructed we compute the weights
on edges by computing the distance d between the two
closest obstacle points of the minimum. The weight on the
edge becomes w(e) = ceil

(
d
r

)
whereby r is the maximum

the sensor can cover between any two points. For example,
for an omnidirectional sensor this will be the diameter of its
disk, while and for a 45 degree laser range scanner it will
be the maximum range of one beam. For vertices we assume
a simple bounding box clearing method, i.e. we compute a
rectangular bounding box around region of the vertex. Let s
be the length of the shorter side of the bounding box, then
the vertex weight becomes w(v) = ceil

(
s
r

)
where r is as

before. We assume only horizontal and vertical lines for the
bounding box. This simple vertex clearing implementation
should lead to less contractions in the given environments as
it penalizes merging vertices that lead to complicated regions
in which such a bounding box is a poor clearing method.

Once the initial graph is given we compute GRAPH-
CLEAR strategies on it. First we convert the graph into a

tree by computing the Minimum Spanning Tree (MST) w.r.t.
to the inverse of the edge weight to yield those edges in
the MST with the highest weight. Edges that are not in the
MST will be blocked continuously to reduce the graph to
a tree. In [2] details of this method are presented and it is
shown that not all of the non-MST edges have to be blocked
simultaneously, i.e. the total cost of clearing the environment
can be further reduced. We then used the currently best
known variant of the hybrid strategy algorithm from [1] on
the tree. The partitioning problem for the hybrid algorithm
mentioned in [1] was solved with brute force, albeit not
hindering computational performance as the solutions were
computed in the order of milliseconds. Labels in all direc-
tions were computed and the vertex with the best cost was
chosen as the starting vertex. Finally, we start the contraction
process which proceeds in loops, contracting all vertices
satisfying the criteria from section IV-B at each iteration
until no more such contractions are found. The resulting
graph can be seen in fig. 7 and 8. On this graph we compute
new GRAPH-CLEAR strategies. The graph construction has
been carried out for varying sensing range. A summary of
the results is found in table I, where r denotes the sensing
range, n0 the initial number of vertices, n the number of
vertices in the final graph. The number of robots needed to
execute the computed strategies are ag0 for the initial graph
and ag for the final graph. The number of non-MST edges,
each corresponding to a cycle in the graph, as well as their
total weight, is also given as b and bc respectively. In the
graphs analyzed in [2] it turned out that to successfully apply
the strategy from the tree to the graph we required about
0.5 · bc additional robots to what the tree strategy requires.
Furthermore, we included the total area one can cover with
the robots assuming they have an omnidirectional sensor.
As c1 we denote the area all robots needed to executed the
tree strategy could cover as a percentage of the total area
of the free space of the given map. For c2 we also include
all robots needed to block all non-MST edges continuously.
These percentages would be reduced if we assumed a 180
degree sensor as we only need sensor coverage to maintain
sweep lines, i.e. in theory even a single beam would already
suffice, albeit in practice a 180 degree or omnidirectional
sensor can give repeated observations of the same target
which is more robust considering the erroneous nature of the
sensors and the need to integrate the observations to obtain
robust target detections.

VII. DISCUSSION AND CONCLUSION

The experiments demonstrate a successful construction of
a SG for two complicated environments. The number of
robots needed is significantly reduced for the contracted vari-
ant of the graph. Furthermore, we can see that we can detect
all intruders in the environment for just a minor fraction
of the total area of the environment. More importantly, the
approach scales well to large teams with each robot having
only limited capabilities. The number of robots needed
increases linearly w.r.t. to the sensing range. Another minor
observation is that the number of non-MST edges in the SDR



Map r n0 n ag0 ag b bc c1 c2
UCM 5 108 40 68 58 3 15 0.6% 0.7%
UCM 10 108 25 37 28 3 9 1.1% 1.5%
UCM 20 108 22 18 14 3 6 2.3% 3.2%
UCM 40 108 13 10 8 3 3 5.1% 7.1%
UCM 60 108 19 9 6 3 3 8.7% 13.0%
UCM 100 108 13 6 4 3 3 16.1% 28.1%
SDR 5 172 79 42 36 8 31 0.4% 0.8%
SDR 10 172 72 22 19 7 17 0.9% 1.6%
SDR 20 172 60 12 9 7 10 1.7% 3.5%
SDR 40 172 42 7 6 8 8 4.4% 10.3%
SDR 60 172 32 6 5 6 6 8.3% 18.1%
SDR 100 172 14 6 4 6 6 18.3% 45.8%

TABLE I
SUMMARY OF THE EXPERIMENTAL RESULTS.

Fig. 7. The map created by the P3AT at UC Merced with initial graph
construction on the left. The thick black lines are boundaries between free
and occupied space. The small black points are vertices placed in their
corresponding region which are separated by thin lines. On the right is the
final graph resulting from contractions.

map varies, which is a result of the different contractions
applied to the initial graph due to the different weights. Some
of the cycles are then contained within a vertex and hence
do not appear in the SG. We have hence demonstrate the
applicability of GRAPH-CLEAR and provided a valuable
method for the construction of Surveillance Graphs from
maps which already works well in practice, despite leaving
open many more directions for further improvements such
as the Voronoi-based vertex clearing implementation which
more accurately reflects the clearing costs of a vertex with
limited range sensors. Furthermore, we showed that already
simple criteria for contractions lead to significant improve-
ments of the strategies. Also, the construction process is
robust against errors in the approximation of the Voronoi
Diagram as we did not use a state of the art algorithm for
this purpose. Yet, contractions are by no means exhaustive
and ideally a comprehensive theory of these contractions
should be put into place. For all practical purposes, however,
current contraction methods seem to suffice.There are open
questions w.r.t. to an extension to a probabilistic variant, an
incremental construction of SGs and strategies based on an
incremental construction of a Voronoi Diagram and local
optimization techniques. Such techniques could entail using
a vertex sweep that finishes at an edge s.t. the edge does
not have to be blocked during the process. The final steps

Fig. 8. The sdr site b from Radish [3] with initial graph construction.
The thick black lines are boundaries between free and occupied space.
The small black points are vertices placed in their corresponding region
which are separated by thin lines. On the right is final graph resulting from
contractions.

towards a demonstration with real robots is to implement
and demonstrate GRAPH-CLEAR strategies on a specific
robotic platform. With the results presented here such a
demonstration is now within reach.

REFERENCES

[1] A. Kolling and S. Carpin, “Multi-robot surveillance: an improved
algorithm for the graph-clear problem,” in Proc. IEEE Int. Conf. on
Robotics and Automation, 2008, pp. 2360–2365.

[2] ——, “The graph-clear problem: definition, theoretical properties and
its connections to multirobot aided surveillance,” in Proc. of IEEE/RSJ
Intl. Conf. On Intelligent Robots and Systems, 2007, pp. 1003–1008.

[3] Radish: The robotics data set repository. [Online]. Available:
http://radish.sourceforge.net/

[4] I. Suzuki and M. Yamashita, “Searching for a mobile intruder in a
polygonal region,” SIAM Journal on Computing, vol. 21, no. 5, pp.
863–888, 1992.

[5] S. Sachs, S. Rajko, and S. M. LaValle, “Visibility-based pursuit-
evasion in an unknown planar environment,” Int. Journal of Robotics
Research, vol. 23, no. 1, pp. 3–26, Jan. 2004.

[6] L. E. Parker, “Distributed algorithms for multi-robot observation of
multiple moving targets,” Autonomous Robots, vol. 12, pp. 231–255,
2002.

[7] S. D. Bopardikar, F. Bullo, and J. P. Hespanha, “Cooperative pursuit
with sensing limitations,” in American Control Conference, New York,
July 2007, pp. 5394–5399.

[8] M. Moors, T. Röhling, and D. Schulz, “A probabilistic approach to
coordinated multi-robot indoor surveillance,” in Proc IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2005, pp. 3447–3452.

[9] T. Parsons, “Pursuit-evasion in a graph,” in Theory and Application of
Graphs, Y. Alavi and D. R. Lick, Eds. Springer Berlin / Heidelberg,
1976, vol. 642, pp. 426–441.

[10] L. Barriere, P. Flocchini, P. Fraigniaud, and N. Santoro, “Capture of an
intruder by mobile agents,” in SPAA ’02: Proceedings of the fourteenth
annual ACM symposium on Parallel algorithms and architectures.
New York, NY, USA: ACM Press, 2002, pp. 200–209.

[11] H. Choset and J. Burdick, “Sensor based planning, part I: The
generalized voronoi graph,” in Proc. IEEE Int. Conf. on Robotics and
Automation, vol. 2, 1995, pp. 1649 – 1655.

[12] H. Choset, “Incremental construction of the generalized voronoi dia-
gram, the generalized voronoi graph, and the hierarchical generalized
voronoi graph,” in Proc. of the First CGC Workshop on Computational
Geometry, October 1997.

[13] R. Mahkovic and T. Slivnik, “Constructing the generalized local
voronoi diagram from laser range scanner data,” IEEE Transactions
on Man and Cybernetics, Part A, vol. 30, no. 6, pp. 710–719, 2000.

[14] S. Thrun, “Learning metric-topological maps for indoor mobile robot
navigation,” Artificial Intelligence, vol. 99, no. 1, pp. 21–71, 1998.

[15] L. E. Moreno and D. Blanco, “Localization by voronoi diagrams
correlation,” in Proc. IEEE Int. Conf. on Robotics and Automation,
vol. 4, 2001, pp. 4232–4237.

[16] G. Grisetti, C. Stachniss, and W. Burgard, “Gmapping - openslam.org.”
[Online]. Available: http://www.openslam.org/gmapping.html


