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Abstract— We present a moving horizon approach for esti-
mating the state of a nonlinear dynamic system possibly subject
to inequality constraints. The method takes advantage of a
recent algorithm proposed in the literature based on interior
point methods. The approach exploits the same decomposition
used for unconstrained Kalman-Bucy smoothers. Hence, the
number of operations required by the algorithm scales linearly
with the length of the horizon, making possible its use for online
applications. We apply this method to the robot localization
problem, showing that it is able to produce much more accurate
results than the iterated Kalman filter with few additional
computational effort.

I. INTRODUCTION

Kalman filters (KF) are widely used to estimate states of
dynamic stochastic systems in many different fields such
as biomedicine, economy and robotics (see [13], [22] for
detailed expositions of its properties). When the system
under study is nonlinear, the simplest implementation is
the extended or iterated Kalman filter (IKF) [9]. However,
the estimates obtained by IKF may be quite distant from
the minimum variance ones. In addition, this filter may
be much sensitive to unknown initial conditions and local
minima. Particle filters (PF) are an important alternative
where optimization is replaced by propagation of a posterior
density in sampled form and Monte Carlo integration [21],
[24], [25], [11]. A problem is that these techniques call for
delicate tuning of proposal densities to improve their conver-
gence rates. In addition, robust statistical convergence criteria
are still missing. We also notice that in many applications
additional knowledge on the system state can be available,
e.g. in the form of inequality constraints. Including this infor-
mation may be important to improve the estimation process.
However, while linear and nonlinear equality constraints on
the state vector can be easily handled e.g. by augmenting the
measurement model, see e.g. [7], [10], [20], [26], imposing
affine or nonlinear inequality constraints is more difficult.
This can further complicate the implementation of IKF and
PF [4], [17], [20].

To deal with the above issues, in this paper we propose
a new moving horizon approach [6], [16], [17], i.e. a filter
where a moving window of previous measurements is pro-
cessed. The approach can also efficiently handle inequality
constraints on the state. In particular, we will use a recently
proposed optimization algorithm that relies upon interior
point methods [3]. The key feature of this method is that
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it takes advantage of the same decomposition used for
unconstrained Kalman smoothers [2], [18]. In this way, the
required operations scale linearly with the horizon length,
making it feasible to simultaneously optimize with respect
to the state value at all time indices in the moving window.
This leads to a filter which is much less sensitive to unknown
initial conditions and local minima.

In order to demonstrate the effectiveness of our technique,
the estimator is applied to a robot localization problem. Due
to its practical importance, this is one of the most widely
studied topics in mobile robotics. Our focus is on mobile
robots moving in planar environments where the goal is to
estimate the position in the plane and the yaw orientation
of the robot. More precisely, in the simulations presented in
this paper the robot moves in an environment conditioned
with landmarks located at known locations, and is equipped
with a sensor identifying the landmarks and estimating their
distance. The goal is to estimate the triple (x, y, θ), indicated
as pose in the following. In this setting the inequality
constraints can represent the known region where the robot
is moving. The reader is referred to the book by Thrun et al.
[23] for a thorough description of the most commonly used
probabilistic techniques used to solve this problem. Most of
the published literature in the field resorts to IKF for position
tracking (where the initial pose of the robot is known) [12]
and PF for global localization problems [11], [14], [21], [24],
[25]. In this latter problem, the initial pose is unknown and
it is crucial to track non Gaussian distributions. Remarkably,
the moving horizon approach proposed in this paper will
prove to be robust also for solving this kind of estimation
tasks, with only a moderate additional computational effort
in comparison to IKF.

The paper is organized as follows. Section II formally
defines the problem and presents the theory supporting the
presented moving horizon approach. Algorithmic details are
presented in section III. The experimental setup and results
are presented in Section IV. Finally, conclusions are offered
in Section V.

II. STATEMENT OF THE PROBLEM

A. The moving horizon version of the inequality constrained
Kalman smoothing problem

We are given the noisy output measurements zk ∈ Rm

coming from the following dynamic system

xk = gk(xk−1) + wk , zk = hk(xk) + vk (1)



where xk ∈ Rn. The noise vectors wk ∈ Rn and vk ∈ Rm

are all mutually independent and

wk ∼ N(0, Qk) , vk ∼ N(0, Rk) (2)

where Qk ∈ Rn×n and Rk ∈ Rm×m are known autocovari-
ance matrices. We also indicate with fk : Rn → R` those
known functions that model the constraints given by

fk(xk) ≤ 0 for k = 1, . . . , N (3)

Let

Sk(xk, xk−1) =
1
2
[zk − hk(xk)]TR−1

k [zk − hk(xk)]

+
1
2
[xk − gk(xk−1)]TQ−1

k [xk − gk(xk−1)]

denote the residual sum of squares at time index k. In the
spirit of moving horizon methods, let K be the moving index
and M the length of the horizon. In addition, define

xK = {xq, . . . , xK} zK = {zq, . . . , zK}
q = max{1,K −M + 1}

Letting

SK(xK) =
K∑

k=q

Sk(xk, xk−1)

the corresponding moving horizon problem is

minimize SK(xK) w.r.t. xK

s.t. fk(xk) ≤ 0, k = q, q + 1, . . . ,K.
(4)

In the above equations, xq−1 is treated as a known parameter
and the initial conditions are given by the following special
inizialitations

gq(xq−1) = xq−1, wq ∼ N(0, Vq)

that model the state vector xq as Gaussian with mean xq−1

and autocovariance Vq . Notice that no matter how large N
is, problem (4) is bounded in size by M .
The following result is easily obtained.

Theorem 1: Assume that xq ∼ N(xq−1, Vq) where xq−1

and Vq are known quantities. Then, the maximum a posteriori
estimate of the process xK , conditional on zK and the
constraints (3) acting at instants k = q, q + 1, . . . ,K, is the
solution of the problem 4.
In the scenario of robot localization, the constraints specified
in (3) may e.g. represent the region where the robot is
moving. Notice that another interpretation of our model
is that the event f(xk) ≤ 0 accounts for the physical
constraints of the environment by making the distribution
of xk conditional on xk−1 a truncated Gaussian.

III. THE NUMERICAL ALGORITHM

A. The Quadratic Programming Sub-problem

The algorithm presented in [3] is now briefly recalled and
easily adapted to our framework. In particular, we will show
that for any moving horizon index K, obtaining the estimate
of xK requires only O(Mn3) operations. In particular, each

moving horizon problem is solved by introducing affine ap-
proximations that are first-order accurate for a state sequence
yK = {yq, . . . , yK} near a fixed state sequence xK . Define
the affine approximations f̃k, g̃k, and h̃k by

f̃k(xk; yk) = fk(xk) + f
(1)
k (xk)(yk − xk)

g̃k(xk; yk) = gk(xk) + g
(1)
k (xk)(yk − xk)

h̃k(xk; yk) = hk(xk) + h
(1)
k (xk)(yk − xk)

Then, the residual sum of squares function associated with
the K-th moving horizon problem and with the above affine
approximations is denoted by

S̃K(xK ; yK) =
K∑

k=q

S̃k(xk, xk−1; yk, yk−1) (5)

where

S̃k(xk, xk−1; yk, yk−1) =
(1/2)[yk − g̃k(xk−1; yk−1)]TQ−1

k [yk − g̃k(xk−1; yk−1)]
+(1/2)[zk − h̃k(xk; yk)]TR−1

k [zk − h̃k(xk; yk)]

Following [3], the nonlinear problem (4) is solved by
solving quadratic programming (QP) subproblems given by:

minimize S̃K(xK ; yK) w.r.t. yK

subject to f̃k(xk; yk) ≤ 0, k = q, q + 1, . . . ,K
(6)

Define Ak ∈ Rn×n and Ck ∈ Rn×n by

Ak = −M−1
k g

(1)
k (xk−1)

Ck =

{
M−1

k + h
(1)
k (xk)TR−1

k h
(1)
k (xk)

+g(1)
k+1(xk)TM−1

k+1g
(1)
k+1(xk)

}
Mk =

{
Vk if k = q
Qk otherwise

(7)

Then, the matrix CK ∈ RnM×nM given by

CK =


Cq AT

q+1 0
Aq+1 Cq+1 AT

q+2 0

0
. . . . . . . . .
0 AK CK

 (8)

is just the Hessian of the objective S̃K in (6) with respect to
yK , see also [3] for details. Now, define the vector ak ∈ Rn

by

ak = M−1
k [xk − gk(xk−1)]− h(1)

k (xk)TR−1
k [zk − hk(xk)]

−g(1)
k+1(xk)TM−1

k+1[xk+1 − gk+1(xk)]

Let aK ∈ RnM be the column vector representing
{aq, . . . , aK}. Then, notice that aK represents the gradient of
S̃K(xK , yK) with respect to yK at yk = xk, k = q, . . . ,K.
Now, let

BK =


f

(1)
q (xq) 0

0
. . . 0
0 f

(1)
K (xK)

 (9)



and notice that the affine approximation to the constraints (3)
for the K-th moving horizon problem is given by bK +
BKyK ≤ 0. Thus, the QP subproblem (6) becomes

minimize 1
2 (yK)TCKyK + (dK)TyK w.r.t. yK ∈ RnM

subject to bK +BKyK ≤ 0
(10)

where dK = aK − CKxK . The QP subproblem (10) can
now be solved using the interior point approach presented in
[3] with O(Mn3) operations. Here, we just recall that the
interior point approaches apply a damped Newton’s method
to a relaxation of the Karush-Kuhn-Tucker (KKT) conditions.
In our case, the relaxed subproblem (that contains a log
barrier) is given by:

minimize (1/2)(yK)TCKyK + (dK)TyK

−µ
∑`M

i=1 log(si) w.r.t
(yK , s) ∈ RnM ×R`M

+ s.t. s+ bK +BKyK = 0
(11)

where µ is the relaxation parameter and s is the vector
containing the slack variables.

B. The Nonlinear Algorithm for solving the moving horizon
problems

The termination criteria for the K-th nonlinear moving
horizon problem where a sequence of M states have to be
estimated rely upon the KKT conditions for problem (4).
Given the current value for K, we use p to denote the
iteration counter of our optimization scheme. Let xK(p) ∈
RnM where xK(p) contains the blocks xK

k (p) ∈ Rn, k =
q, . . . ,K while uK(p) ∈ R`M

+ is the Lagrange multiplier
vector containing the blocks uK

k (p) ∈ R`, k = q, . . . ,K.
Then, for each K, the algorithm terminates at a primal vector
xK(p) and Lagrange multiplier vector uK(p) ∈ R`M

+ such
that for k = q, . . . ,K

fk(xK
k (p)) ≤ ε , ‖uK

k (p) · fk(xK
k (p))‖∞ ≤ ε and

‖(uK
k (p))Tf (1)

k (xK
k (p)) + ∂xK

k (p)S
K(xK(p))‖∞ ≤ ε

(12)
where ε is a termination tolerance. Given a vector w ∈ Rm,
max(0, w) ∈ Rm denotes the vector with i-th component
equal to max(0, wi). Given a xK ∈ RnM , the `1 distance
from the constraint function values {fk(xK

k )}Kk=q to the
constraint set is

φ(xK) =
K∑

k=q

∑̀
i=1

max([fk(xK
k )]i, 0)

with its approximation given by

φ̃(xK ; yK) =
K∑

k=q

∑̀
i=1

max([f̃k(xK
k ; yK

k )]i, 0)

We are now in a position to describe the algorithm that
solves in an online-manner the sequence of nonlinear moving
horizons problems (4). Needless to say, the unconstrained
version becomes just a special case of the scheme described
below.

Algorithm 2: Moving Horizon Version of the Inequality
Constrained Nonlinear Smoother

1) Initialization: Set K = 0
2) Set K = K + 1, q = max{1,K −M + 1}, xq−1 to

its estimate and Vq to a numerical approximation of its
posterior autocovariance1. In addition, set the iteration
counter p = 0 and the initial penalty parameter α0 = 0.

3) Affine approximation: Substitute xK(p) for xK in
equations (8), (9) and let a(p), b(p), B(p), C(p), and
d(p) be the corresponding values for aK , bK , BK ,
CK , and dK in QP (10).

4) Solve this QP using Algorithm 4 described in [3] with
inputs δ = ε × 10−2 and let y(p) and u(p) be the
resulting solution.

5) If the convergence criteria (12) are satisfied, return
x(p), u(p) as the solution for the K-th moving horizon
problem and go to Step 2.

6) If αp > 0, set α̂p = αp; otherwise, α̂p = ‖u(p)‖∞.
Define the value

ζp = (y(p)− x(p))TC(p)(y(p)− x(p))
+ (a(p))T(y(p)− x(p))

If ζp ≤ α̂pφ(x(p)), set αp+1 = α̂p; otherwise, αp+1 =
max[ζp/φ(x(p)) , 2α̂p].

7) Compute the line search step size λp as follows:

ηp = (a(p))T(y(p)− x(p))
+αp+1[φ̃(x(p); y(p))− φ(x(p))]

Hp(λ) = SK [x(p) + λ(y(p)− x(p))]
+αp+1φ[x(p) + λ(y(p)− x(p))]

λp = max{ 2−r | r ∈ Z+ and
Hp(2−r)−Hp(0) ≤ 2−rηp/10 }

8) Set xp+1 = x(p)+λp(y(p)−x(p)), then set p = p+1
and go to step 3.

The following convergence results is taken from [3], see
also [5].

Theorem 3: Suppose ε = 0, for each K all the quadratic
subproblems in step 3 have feasible solutions, the corre-
sponding sequence {y(p)} is bounded, and every cluster
point of {x(p)} satisfies the Mangasarian-Fromowitz Con-
straint Qualification. Then the sequence {x(p)} is bounded
and each of its cluster points is a KKT point for problem (4),
i.e. satisfies convergence criteria (12) for some vector of
Lagrange multipliers.

IV. EXPERIMENTAL RESULTS

In this section we offer an extensive set of simula-
tion results aimed to outline the properties of the pro-
posed algorithm (MH – moving horizon), and we also
contrast it with the iterative Kalman filter. The chosen
benchmark problem is a classical localization problem in
a given map with landmarks located at known positions.
All the code and data needed to replicate the results
presented in this section are available for download at
http://robotics.ucmerced.edu.

1In the numerical implementation, this autocovariance has been obtained
by the last affine approximation providing the solution of the nonlinear
problem (4) without constraints.



A. System model

We consider a differential drive robot moving on a flat
terrain populated with m landmarks placed at known lo-
cations. Let the location of the i-th landmark be (pi

x, p
i
y).

As usual, the pose of the robot is indicated as (x, y, ϑ) ∈
R3, and we hypothesize two inputs control the system,
namely the translational speed uv and the rotational speed
uw. Consistently with the formerly depicted framework, we
model the system with discrete time equations describing
how the state evolves over time. When uw is different from
0, the following relationships2 hold (see [23], chapter 5):

xk = xk−1 −
uv

uw
sin θk−1 +

uv

uw
sin(θk−1 + uw)

yk = yk−1 +
uv

uw
cos θk−1 −

uv

uw
cos(θk−1 + uw)

θk = θk−1 + uw

When uw is equal to 0 the robot simply moves forward,
so these relationships simplify in a straightforward way with
θk remaining equal to θk−1, and xk, yk changing according
to the heading. Following the hypotheses presented while
introducing the problem, we assume that state evolution
is affected by Gaussian noise wk ∼ N(0, Qk). Qk is a
known 3 × 3 diagonal covariance matrix whose values on
the diagonal are not all necessarily equal. It is furthermore
assumed that Qk is the same for each k, though this is not
necessary. The robot is supposed to be equipped with a single
sensor returning the distance from the landmarks, provided
that they are closer than a known constant threshold T . That
is, at step k the sensor returns a vector zk ∈ Rm where the
i-th entry is either

di
k =

√
(xk − pi

x)2 + (yk − pi
y)2

if di
k < T , or 0 otherwise. In all examples presented in this

section, T = 7m. Entries larger than 0, i.e. entries corre-
sponding to actual readings, are corrupted by Gaussian noise
vk ∼ N(0, Rk). Rk is assumed to be an m × m diagonal
matrix with identical values on the main diagonal, although
it is possible to consider situations where the values are
not the same. This extension will not be considered on this
paper, but the price to pay is just a slightly more articulated
implementation. The reader should note that the sensor does
not return any information about the heading of the robot,
whereas the sensor values are exclusively dependent from the
x, y components. This aspect will be important to consider
while evaluating the impact of the proposed technique, and
also when comparing it with the IKF. Also, we implicitly
assumed that the landmark correspondence problem does not
occur, i.e. at every time step the sensor knows the identity of
the landmarks being seen. This hypothesis is realistic if the

2In this section xk indicates the x component of the pose at time k,
while in Section II xk indicated the whole state. This slight abuse of
notation is accepted to give an immediate physical meaning to the individual
components of the state.

landmarks are properly designed (see e.g. [8]), and when
this is not the case the problem can be addressed using a
maximum likelihood approach, as evidenced in [23].

In this section we will consider the three classical prob-
lems contemplated in localization literature, i.e.
• tracking: the robot starts from a known location;
• global localization: the robot starts from an unknown

location;
• kidnapped robot: the localization algorithm starts with

a strong confidence about the position of the robot, but
such position is wrong.

Global localization and the kidnapped robot are considered
even if they are problematic for the IKF estimator in order to
outline that the proposed method can handle those as well.
Moreover, we considered different scenarios with varying
degrees of noise.

B. Sensitivity to horizon length

The first experiment aims to verify the impact of the
moving horizon length on the localization error. Figure 1
displays the root mean square error (RMSE) error obtained
in 100 runs with the moving horizon length varying from
2 to 10. The three subplots display the errors for the x, y,
and ϑ components of the state. The specific problem was the
kidnapped robot problem.
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Fig. 1. Error trend for the x, y, ϑ components for different values of the
moving horizon length.

Similar trends were obtained when considering the track-
ing and global localization problems. The chart shows that
only modest improvements are obtained by increasing the
size of the horizon. Consequently, in order to keep processing
times at the minimum, in all subsequent tests presented in
this section we used an horizon of length 2.

C. Comparison with the IKF for the unconstrained case

In this subsection we contrast the performance of the
proposed estimator with an iterated Kalman filter performing
10 iterations at each estimation step. Both estimators are



IKF MH
x y ϑ x y ϑ

Tracking

Case 1 0.0874 0.0865 0.1331 0.0552 0.0554 0.1394
Case 2 0.1013 0.1023 0.1393 0.0680 0.0688 0.1443
Case 3 0.1385 0.1384 0.3998 0.0771 0.0783 0.4012
Case 4 0.1515 0.1516 0.4060 0.0998 0.1021 0.4062

Global

Case 1 0.2399 0.1171 0.2901 0.0579 0.0573 0.2208
Case 2 0.2542 0.1517 0.3450 0.0717 0.0725 0.2445
Case 3 0.2538 0.1544 0.4881 0.0774 0.0786 0.4572
Case 4 0.2639 0.1667 0.5010 0.1005 0.1029 0.4704

Kidnapped

Case 1 0.3667 0.1654 0.4832 0.2321 0.2090 0.4624
Case 2 0.4797 0.2094 0.5090 0.2677 0.2471 0.4963
Case 3 0.2613 0.1563 0.5509 0.1601 0.1503 0.6014
Case 4 0.2836 0.1728 0.6389 0.1944 0.1817 0.6077

TABLE I
COMPARISON BETWEEN THE PERFORMANCE OF IKF AND THE PROPOSED ESTIMATOR (MH — MOVING HORIZON). EACH ROW DISPLAYS THE RMSE

AVERAGED OVER 100 INDEPENDENT TRIALS. ERRORS FOR ϑ ARE EXPRESSED IN RADIANS.

fed with exactly the same data, and a priori information
about the matrices Qk and Rk. For each of the three estima-
tion problems considered, i.e. tracking, global localization
and kidnapped robot problem, we consider four different
situations characterized by different matrices Qk and Rk

(see the four cases in Table I for every scenario). Table I
shows the overall results. Again, we display RMSE obtained
averaging 100 runs. For cases where the estimator starts with
an erroneous value for x0, the same wrong value is used for
both estimators. In order to get an idea about the relative
importance of the plotted numbers the reader is referred
to figure 2 for the dimensions about the environment. It is
immediate to observe that for the x and y components of the
state MH largely outperforms IKF in every instance of the
tracking and global localization problems. The situation is
less drastic in the the kidnapped case, where IKF prevails
in 3 out of 8 cases. However, one should keep in mind
that MH has been run with the shortest possible horizon
length, i.e. 2. By increasing this parameter a more accurate
estimate is expected, whereas for the problems at hand we
observed that with 10 iterations the IKF seems to converge
to a point where adding more iterations would not help. For
the ϑ component of the state the situation is less crisp. That
is to say that there is no clear winner. This is somehow
expected, since the chosen sensor bears no information about
the orientation of the robot. This problem equally affects both
estimators. In such scenario IKF mostly relies on prediction,
while MH may get stuck in local minima during its search
for the minimum. In the next stage of this research we
will experiment with a different sensor model returning not
only the distance from the landmarks, but also the relative
orientation, i.e. a range-bearing sensor. This information
would then be used to infer the orientation. Based on the
preliminary results seen for the x and y components, we
expect MH to again outperform IKF also for this state
variable.

D. Pose estimation with constraints
The last experiments aim to show the utility of the

proposed estimation algorithm when constraints need to be
satisfied while estimating the state. In many scenarios dealing
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Fig. 2. The experimental environment used in all experiments described
in this section. Distances are expressed in meters, red crosses indicate
landmarks locations, and blue segments delimit the convex hull.

with robots moving on the plane, it may be known upfront
that the robot is bound to remain within the convex hull
defined by the position of the landmarks. This is for example
the case when the robot is moving indoor, and it is known
that some landmarks are located on the walls surrounding
the working area. Discarding or using this valuable a priori
information may make a difference in the estimation process.
For example, this information can be exploited in order
to filter away pose estimates placing the robot outside the
area of interest. Figure 2 illustrates the environment used
throughout the tests presented in this section, with the blue
segments bounding the working area.

In the last batch of experiments we generated 100 robot
paths that often get close to the boundaries of the area. Next,
we used both MH and IKF to track the robot pose. Figure 3
shows a zoomed version of the prototypical results produced
by IKF (green) and MH (red). The figure also shows the
ground truth (black) and the boundaries (blue). The data
has been generated in a situation where significant noise
affects the evolution of the state, as it can be guessed from
the jagged black path. The figure clearly shows that while



0.5 1 1.5 2 2.5

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

9

Fig. 3. A detail of a situation where the IKF estimate exits from the
boundaries while MH respects the constraints.

IKF estimates a trajectory that exists the boundary of the
environment, MH enforces the constraint, to the point that
for a certain number of time steps its estimated trajectory
coincides exactly with the imposed boundaries (see the part
where the red path perfectly overlaps with the blue segment).
Throughout the 100 runs, MH produced estimates that never
left the boundaries. IKF, instead, being uninformed of the
constraints, repeatedly violated them. To be precise, with
each run being 400 steps long, on average IKF violated
the constraints 15.32 times, with individual runs violating
up to 68 times the constraints. To put these numbers into
the right context, one should consider that in each run the
trajectory stays close to the boundaries less than half of the
time (i.e. less than 200 steps). In fact, almost every time the
state trajectory approached the boundary, IKF generated an
estimate violating them. MH, instead, seamlessly enforced
these constraints.

V. CONCLUSIONS

When nonlinear dynamic systems are considered, esti-
mates obtained by IKF may be quite distant from the optimal
ones. An alternative is the use of particle filters. However,
these techniques require delicate tuning of proposal densities
in order to improve their convergence rates, and detection of
convergence is often uncertain. These design problems can
be further complicated when inequality constraints have to
be included in the model to improve the state estimate.
In this paper, we have shown that moving horizon approaches
represent an interesting alternative. In particular, we have
cast in this scenario a recently proposed algorithm able
also to efficiently handle inequality constraints on the state.
The key feature of this approach is that it exploits the
same decomposition used for unconstrained Kalman-Bucy
smoothers. Thus, the required operations scale linearly with
the horizon length. Results show that when the horizon
length is set just to 2 or 3, the quality of the estimates
improves significantly and with few additional computational
effort in comparison with IKF. In particular, the moving

horizon makes the filter much less sensitive to unknown
initial conditions and local minima.
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