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Abstract— Research on robotic manipulation has primarily
focused on grasping rigid objects using a single manipulator. It
is however evident that in order to be truly pervasive, service
robots will need to handle deformable objects, possibly with
two arms. In this paper we tackle the problem of using cooper-
ative manipulators to perform towel folding tasks. Differently
from other approaches, our method executes what we call a
momentum fold - a swinging motion that exploits the dynamics
of the object being manipulated. We propose a new learning
algorithm that combines imitation and reinforcement learning.
Human demonstrations are used to reduce the search space
of the reinforcement learning algorithm, which then quickly
converges to its final solution. The strengths of the algorithm
come from its efficient processing, fast learning capabilities,
absence of a deformable object model, and applicability to
other problems exhibiting temporally incoherent parameter
spaces. A wide range of experiments were performed on a
robotic platform, demonstrating the algorithm’s capability and
practicality.

I. INTRODUCTION

The popularity of service robotics has unveiled a multi-
tude of novel challenges that researchers need to undertake
before “a robot in every home” [5] can become a reality.
Research involving highly deformable object manipulation
with cooperative manipulators is however still in its infancy.
The inadequacy of deformable object models for robotic
applications [6], the absence of high-fidelity simulation tools
for deformable objects, and the lack of literature on the
subject are all factors delaying the development of robots
capable of performing a variety of tasks involving flexible
objects. Moreover, the ability to grasp, manipulate, and
interact with deformable objects are primordial behaviors for
robots to be part of our everyday lives, since most objects
we use daily are deformable. The types of object we are
interested in are highly deformable and we undertake the
specific problem of folding rectangular towels or napkins
using two manipulators working cooperatively.

We exploit machine learning techniques, a dynamic field
that is becoming more and more popular in robotics, to
discard the requisite for a deformable object model, one of
the major obstacles when working with deformable objects.
Even though reinforcement learning has been shown to
solve diverse tasks ranging from controlling a quadruped
robotic dog [20] to playing the ball-in-a-cup game [8],
flipping pancakes [10], weightlifting [15], and performing
archery [11], towel folding offers different research chal-
lenges: learning for two independent manipulators working
cooperatively; exploiting a temporally incoherent parameter
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space (i.e. two or more successful folds can take a different
amount of time to perform); dealing with an action-to-reward
function composed of many-to-one mappings (i.e. there are
many different ways to appropriately fold a towel). Due
to the wide range of possible manipulator movements that
yield correct folds, we combine human-to-robot imitation
learning with reinforcement learning to not only converge
faster to a solution, but also explore a wider range of the
parameter space and find the action most replicable on the
robot platform. The contributions of this manuscript are the
following:

o we present an algorithm that exploits human imitations

with reinforcement learning;

« the algorithm we present is capable of learning from

temporally incoherent examples;

« we present a model-free approach to deformable object

manipulation;

o the algorithm is shown to be running in real-time and

capable of online learning.

The rest of the paper is organized as follows. We start
by describing, in Section II, related works relevant to both
our folding application and machine learning. A formal
description of the problem we are addressing is given in
Section III, followed by our training data acquisition and
proposed approach in Section IV and V, respectively. In
Section VI, we present the experiments performed on our
robotic platform. We conclude the paper with final remarks
and future work in Section VIL.

II. RELATED WORK

The problem of using robotic manipulators to fold de-
formable objects has been studied before, although it has
frequently relied on imperfect deformable object models or
highly specialized robots. A review of deformable object
models is beyond the scope of this paper, as is deformable
one-dimensional object models, but interested readers can
examine [6] from the computer animation community. The
robotics community has devised its own deformable object
model where the object is decomposed into rigid links and
foldable creases, resulting in a well-understood kinematic
description. This simplified representation has been success-
fully applied to metal bending processes [7], carton folding
[12], paper craft [18], and towel folding [1]. Each afore-
mentioned application has drawbacks, however, in that they
do not generalize well [7], [1], or do not take into account
the actuating robot when choosing a folding sequence using
path planners like PRMs [18] or RRTs [12]. The kinematic
representation is only suitable for deformable objects that



Fig. 1.

retain their shape (e.g. metal) and cannot be used effectively
for highly deformable objects. More practical robot systems
have been designed for origami [2] and T-Shirt [3] folding.
These robots are engineered for their specific tasks, however,
and would be unsuitable for service robotics where one robot
is assigned highly heterogeneous goals. Kobori et al. have
developed an algorithm allowing an HRP-2 humanoid to
unfold clothes [9]. Their approach is model-based, in that
it extracts and tracks clothes’ regions and requires apriori
information regarding the clothes’ regions and their states.
One of the most promising work comes from Abeel et
al. who have demonstrated the folding of towels [13] and
clothes [21]. Their work depends on a parameterized shape
model [14] created by a human and, as such, does not
necessarily generalize to pieces of clothing that were not
already parameterized. Additionally, the folding sequences
are either pre-programmed or need to be manually entered.

Typical off-the-book gradient-based policy learning ap-
proaches to learning [19] have seen little practical use in the
robotics community, mainly due to the lack of adaptability
to high-dimensional control and the manual parameter-tuning
of the learning rate. Theodorou et al. realized these problems
and implemented a reinforcement learning algorithm called
Policy Improvements with Path Integrals (PI2) [20]. The
authors’ algorithm is capable of learning parameterized poli-
cies by using stochastic optimal control with path integrals.
P1I? does not require parameter tuning, although it requires
an initial seed behavior that might be difficult to obtain, and
works well with high-dimensional data, as exemplified by the
learning of how to jump as far as possible on a quadruped
robotic dog. Policy learning by Weighting Exploration with
Returns (POWER) [8] also solves the same problems seen in
gradient-based policy learning and is, arguably, one of the
leading algorithms when it comes to reinforcement learning
for manipulation. Indeed, within a very short time, it has been
applied to a great number of heterogeneous applications in-
cluding the ball-in-a-cup task [8], flipping pancakes [10], and
performing archery [11]. POWER is based on Expectation-
Maximization, exploits a weighted sampling technique for
exploration of the parameters space, and only requires an
example motion to bootstrap the algorithm.

Two different, yet successful, momentum folds demonstrated by a human to the robot.

In previous works, the line between imitation and re-
inforcement learning is often blurred. Our definition of
imitation learning, and the nomenclature used in this paper,
follows that of Schaal et al. as “a complex set of mechanisms
that map an observed movement of a teacher onto one’s own
movement apparatus” [16]. The distinct features between
the two are that reinforcement learning exploits a trial-
and-error methodology whereas imitation learning does not.
Consequently, imitation learning requires multiple sample
demonstrations in order to learn something. Related works on
imitation learning differ greatly from our approach since we
focus on imitation for the purpose of reinforcement learning.
Interested readers should see [16] for a good review of
imitation learning techniques in robotics.

III. PROBLEM DEFINITION

The problem we aim to solve is to fold a towel sym-
metrically, where one half of the towel is folded on top
of the other. Evidently, there are many ways that such a
task can be performed and we choose to follow what we
refer to as a momentum fold, where the force applied to
grasping points on the towel is used to give momentum to
the towel and lay half of it flat on the table (see Figure
1 and the accompanying video for examples of momentum
folds). We note that the momentum fold is used to make
sure that half of the towel lays flat on the table and, as such,
this is the motion we are trying to learn. Once that state is
achieved, we can straightforwardly apply motion planning to
finish the fold, as shown in [1]. While the majority of pre-
vious works utilizing reinforcement learning bootstrap their
algorithm using kinesthetic teaching (i.e. having a human
perform actions directly on a gravity-compensated robotic
manipulator and recording the parameters from the robot),
the fact that we are dealing with two manipulators renders
this method impractical, if not impossible. Consequently, a
human demonstrates an appropriate folding motion to the
robot, two examples of which are shown in Figure 1. We
assume that the towel can be picked by the robot and put
into a starting position similar to the one in the first frame
of Figure 1, a preliminary step previously solved in [4].



We designed and implemented a hybrid method that in-
corporates imitation and reinforcement learning. There are
two reasons for incorporating imitation learning. First, from
an algorithmic standpoint, exploiting knowledge acquired
from human imitations can drastically reduce the parameter
search space that the reinforcement learning algorithm has
to explore, as will be shown in subsequent sections. Indeed,
searching the parameter space based on previously-acquired
rewards is both time-consuming and unnecessary and we
harness the power of imitation learning to make the search
more efficient. Second, from a more practical perspective,
we cannot use kinesthetic teaching for folding applications.
Since we have to use a human demonstrator and not all
motions performed by a human will be replicable on a robot
due to mechanical constraints, it is beneficial to acquire
multiple demonstrations and to learn from them.

We conclude this section introducing the symbols we will
use in subsequent sections:

e O;: i-th observation. The trajectory followed by k
points on the towel during one fold motion. Each point,
sampled at a constant frequency, is in 3D Cartesian
space.

o 0;: i-th action sequence. The trajectory followed by the
pinch grasp of the robot, expressed in Cartesian space
and sampled at a constant frequency.

In essence, we are trying to learn the relationship between 6;
and O; in order to be able to reproduce desired observation
sequences leading to successful folds.

IV. TRAINING DATA FOR IMITATION LEARNING

We start by describing the procedure used to gather
training data for imitation learning, whose goal is to acquire
action-observation pairs that produce good folding motions.
We view the demonstrator as giving perfect examples of
how to accomplish the task and, as such, implicitly have
maximum rewards for any action-observation pairs produced
during the training data acquisition.

The demonstrator performs momentum folds, as exempli-
fied in Figure 1. We only gather positive examples due to
the fact that the action space for negative examples is too
large and unstructured. In order to facilitate the collection of
actions and observations, we use a motion capture system
with eight infrared cameras along with a towel comprised
of reflective markers that can be tracked by the system.
Specifically, we use k& = 28 markers uniformly spaced
around the towel’s four edges. The motion capture system
has a millimeter precision and records data up to 120 Hz.

Motion capture is prone to both false positives and nega-
tives. As is the case with many machine learning algorithms,
our method necessitates fixed-size vectors (i.e. it needs to
constantly track all 28 points at every time step). There-
fore, it is crucial that both false positives and negatives
are handled correctly. False positives often occur due to
changes in illumination, reflective objects or materials, and
movements that are too close to the infrared cameras. To
find and remove false positives, we exploit the fact that,
with a sampling rate of 120 Hz, points do not move a lot

between two successive frames. Therefore we compute the
nearest neighbors between time frames ¢ and ¢ — 1, as shown
in Figure 2(a). The Euclidean distance between the points
in frame ¢ and their respective nearest neighbors in frame
t — 1 are computed. Any points whose distance is above
a threshold £ (we set € to 1 centimeter) is labeled as a
false positive and removed from the data set at time ¢ (see
Figure 2(b)). This process assumes that the first frame at
time ¢ = 0 contains all markers, a fair assumption since
we can make sure all markers are correctly detected before
starting a folding motion. This simple false positives removal
method is efficient and successfully removes 100% of the
false positives in our data sets.
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Fig. 2. Figure 2(a) shows the data before rectification (X marks) and the
nearest neighbors computed based on the previous time frame (O marks).
Note the two false positives in the middle of the towel. Figure 2(b) shows
the resulting data points, after false positives have been removed.

False negatives take place when a marker on the towel
is not registered by the motion capture system. These events
mainly occur due to occlusions, are more frequent, and more
challenging to deal with since we need to recover where the
data points should be on the towel. We start by automatically
labeling each marker on the towel as being part of the upper,
lower, left, and right edges. This process can be implemented
by exploiting the towel’s rectangular shape at the first time
step and using nearest neighbor distances for each subsequent
time steps. We take advantage of the fact that all of the
points forming an edge roughly exist in a two-dimensional
plane and we reconstruct the false negatives in that plane. By
knowing where each point lies on the towel, we can deduce
which edges of the towel are missing markers, as shown in
Figure 3(a), indicating that false negatives have occurred. For
each data point on a towel’s edge containing false negatives,
we compute the best-fit plane using orthogonal distance
regression [17], an example of which is shown in Figure
3(b). We then project all of the points forming the edge onto
the plane using QR decomposition, consequently reducing
the dimensions of the reconstruction problem from 3 to 2.
In two-dimensional space, we find the best-fit 3rd-degree
polynomial using the Vandermonde matrix to establish a
least-squares problem. It is then possible to reconstruct the
missing data points, in two-dimensional space, using the
polynomial’s equation and the location of the current data
points, as demonstrated in Figure 3(c). We finally reconstruct
the false negatives by projecting the two-dimensional points
back into three dimensions, the final results of which can
be seen in Figure 3(d). While being more complicated than



the false positives and having the implicit assumption that
enough data points must be present for the polynomial
construction, the proposed method is very efficient (since
we are working with few data points in low dimensions)
and accurate. In fact, the reconstruction only failed 11.11%
of time, each due to a lack of data points resulting in a
poor polynomial function. Furthermore, observers could not
distinguish between data points that were acquired directly
through motion capture and those that were reconstructed.
With the aforementioned process, we are guaranteed to have
data for all of the 28 markers at 120 Hz.
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Fig. 3. Recovering false negatives. For Figures 3(a), 3(b), and 3(d), points
on the upper and lower edges are marked with O and points on the left
and right edges are marked with X. Figure 3(a) shows a time frame with
two false negatives on the towel’s lower edge. Figure 3(b) shows the best-fit
plane applied to the lower edge. Figure 3(c) illustrates the polynomial curve
fitting, which is built from the markers shown as X and used to recover the
false positives marked as O. Figure 3(d) reveals the reconstructed towel.

We are now faced with the problem of temporally inco-
herent motion sequences. This means that multiple equally
valid folding motions will take different execution times.
This issue is evidenced by the two examples in Figure
1, where one folding motion is finished before the other
one. While this is an additional issue that needs to be
addressed, it brings up the additional benefit of covering
a greater range of the action space while learning. More
formally, the i-th observation sequence, O;, is comprised of
the observation’s time and of the Cartesian coordinates for
the 28 markers at each time step of the motion. Similarly,
the ¢-th action sequence, 6;, contains the trajectories of
the two control points. Example folding motions each take
different times to execute (between, approximately, 3.5 and
5.5 seconds). Consequently, each observation sequence lies
in different dimensional-subspaces ranging from R357%0 to
R56100 " Similarly, each action sequence ranges from R?%40 to
R4620_ Working with fixed-sized feature vectors is primordial
for most learning techniques and, as such, we convert our
training data to fixed-sized vectors. Moreover we down-
sample training data from 120 Hz to 30 Hz to reduce the

complexity of the problem. The reduction from 120 Hz to 30
Hz was chosen because we have empirically determined that
the same amount of variance was captured, using Principal
Component Analysis (PCA), as shown in Figure 4. By using
30 Hz, along with an average folding length of approximately
5 seconds, we dictate the number of time frames in our
sequences (30 x 5 = 150). The number of time frames
(150), along with the data recorded for each observations
and actions, determines the size of our vectors, namely
0; € R1270 and A; € R0 We conclude this session
by mentioning that we collect 80 different folding sequences
for our training data, which, when oriented in a matrix as

rows, create our training data set where Of € R80x12750 gpd
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Fig. 4. The number of principal components that account for 90%, 95%,
99% of variance after down-sampling the data from 120 Hz to 15 Hz. The
bar graph shows that a substantially equivalent amount of information is
retained when down-sampling from 120 Hz to 30 Hz.

V. PROPOSED APPROACH
A. Reward Function

As for any reinforcement learning algorithm, it is nec-
essary to evaluate the algorithm’s exploration of the action
space and guide its search. We start by defining a reward
function used in both the imitation and reinforcement learn-
ing phases of the algorithm. The reward function R(O%, O°)
computes the reward for a new observation O¢ based on
all the observations O? acquired during training. Its pseudo-
code is shown in Algorithm 1. We note that O € R80*12750
whereas O° € R12750 and we use O; € O, in line 2 of the
algorithm, to indicate that we pick the i-th sample from O,
such that O; € R1270 In line 3 and 4 of the algorithm,
we extract the three-dimensional data points of the last
time frame for the training sample and current observation,
respectively. In line 5, we run the Iterative Closest Point
(ICP) algorithm to transpose both sets of data points and
compute the average error, in millimeters, between the points.
We repeat these steps for each sample in our training data
and retain the smallest average error. Our reward is then the
exponential function of the negative smallest average error
in decimeter.

The reward function finds the best match between the cur-
rent observation and any observations that has been recorded
during training. According to our previous hypotheses, the
reward function assumes that any motion in the training



Algorithm 1 Computation of R(O?, O°)

1: minAvgError < 1000
2: for all O; € O! do
3:  Training < LastFrame(O;)

4. Current + LastFrame(O°)

5. AvgError < ICP(Trainning, Current)
6: if AvgError < minAvgError then

7: minAvgError < AvgError

8: end if

9: end for

10: return exp(—minAvgError/100)

set gets the highest possible reward and, consequently, we
consider every training sample when calculating a reward.
An exponential function is used to generate rewards between
0 and 1, as required when using the POWER reinforcement
learning algorithm [8]. We note that, while the training mo-
tions look similar, they can yield rewards with variations of
up to 15% when compared amongst each other. Since we are
only trying to match 28 points in three-dimensional space,
ICP is very efficient and provides the additional benefit of
making the reward function translation and rotation invariant.
We conclude this subsection by mentioning an interesting
tradeoff to be considered with such a reward function. Instead
of using the last time step of the observations, one could run
ICP at every time step, or a uniformly sampled selection of
time steps. By only using the last time step, we are rewarding
the robot for reaching a good final towel configuration,
regardless of how it got there. By introducing more time
steps into the reward function, one could potentially influence
the robot’s behavior so that it more closely mimics human
behavior. Evidently, the addition of more time steps would
increase the time complexity of the reward function.

B. Imitation Learning

We use imitation learning as a two-layered hierarchical
approach to reduce the search space of the reinforcement
learning algorithm. In the initial exploratory layer we use
training data to let the robot attempt to execute a set of
diverse folding sequences. Next, in the expansion layer we
expand the search to motions similar to the best one that
was found during the exploratory layer. The idea behind
the two-layer imitation learning section is to explore the
action space based on human demonstrations, the best re-
sults of which will be used as seeds for the reinforcement
learning algorithm. Since we have acquired training data
using human demonstrations, the exploratory layer is crucial
in eliminating, based on our reward function, motions that
the robot cannot replicate successfully or that do not yield
good folding motions. Indeed, there is no guarantee that the
motions generated by a human will be reproducible by the
robot due to, among others, mechanical constraints and joint
or torque limits. In the unlikely case that none of the motions
are replicable by the robot, the reinforcement learning will
start from a very bad seed, requiring a lot of exploration and
converging very slowly.

As the name suggests, the aim of the exploratory layer is
to explore and find different motions in the trained action
space, 0. Since it would be too time consuming to execute
all the motions and there is some redundancy in the trained
action space, we apply Lloyd’s k-means clustering algorithm
where we optimize the following function, where C}, 8;, and
p; represent the j-th cluster, i-th training action, and j-th
cluster’s mean, respectively.

M
argcminz > 16— il

j=16,eC;

We use M = 10 clusters, implicitly trying to find the most
diverse set of 10 folding motions, although M can be modi-
fied to dictate how much initial exploration we want the robot
to perform. Evidently, M dictates a tradeoff between time
and amount of exploration, since more clusters will result in
more exploration of the action space, but will take longer
to perform. Each cluster C; is represented by its mean, p;.
When imitating the motions on the robot, we cannot use the
mean directly since it is simply a mathematical average and
might end up producing a bad folding motion. Consequently,
for each cluster C';, we find the Euclidean nearest neighbor
between 6; and p; where 0; € C;. In other words, we have
assured that the M different actions are part of our training
data. As a result, we have a set of M actions, §E*plore —
[elE'ar:pl(N'CQQEwplore o eprlore] with HZ_E'a;plore c Cz c et.
We let the robot execute each encoded trajectory, 6"7/"¢,
record its corresponding observation, OiE eplore and calculate
the motion’s reward using RZ*7'°™ = R(O*, OF"Pl°™*). We
note that the M actions are temporally incoherent and will
yield different execution time.

In the expansion layer, the action space is further explored,
starting with the best folding motion that the robot produced.
Formally, we find the best folding motion, egjfj"“f, based
on the collected rewards in the exploration layer, where
Best = argmax;(RF*P'°™). In this layer, we exploit
imitation learning to expand the search around 65"7/°"
We have already deduced that 6577/ provides the best
folding motion in the exploration layer and want to explore
the action-space around it. Consequently, we need to generate
new actions. With the action space being so large and with
a relatively small region encompassing valid fold motions,
randomly exploring the space or sampling directly from a
distribution will in all likelihood be inefficient. Instead, we
train a learning algorithm using our training observations, O?,
and actions, €, to learn the function f : O; — 6;. In other
words, given an observation sequence, O;, we want to find its
corresponding action, §;. Evidently, the data stored inside O;
is highly correlated and a lot of redundancy exists between
both the data points and the successive time frames. Keeping
this remark in mind, we apply PCA to our observation data,
O%, which leads to a new observation data set, Ot, projected
in a lower-dimensional subspace where O € R80%29 The
29 dimensions were chosen by maintaining 99% of the data’s
variance (see Figure 4). Learning is achieved by using ok
with Radial Basis Functions (RBF), since we empirically



determined that it yielded better accuracy and trained faster
than Neural Networks (NN), v Support Vector Regression (v-
SVR), and ¢ Support Vector Regression (c-SVR), as shown in
Figure 5. The accuracy measures were calculated by training
with 90% of the data and classifying the remaining 10%. We
note that using the dimensionally-reduced data, o, provides
slightly better results due to the fact that potential noise
has been removed from the data and a simpler problem
needs to be learned. Additionally, the average error is very
low, 0.6767cm, which is much less than the mechanical
inaccuracy of the manipulator we use. We mention that RBF
training is very efficient, taking 181.6ms, which would easily
allow for unsupervised online learning as the robot performs
new motions, a task that we leave for future work.
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Fig. 5. Figure 5(a) and 5(b) show the accuracy and training time for the NN,
RBF, v-SVR, and e-SVR learning algorithms for both the dimensionally-
reduced data (29) and the full data (12750). The reader shall note that we
use log-scale for the Y-axis of Figure 5(b).

The RBF requires an observation as input and will output
the action matching that observation. Consequently, we need
a process that generates a new observation, which is then
fed to the RBF. The entire process generates a new action,
gFzpand ysing the Expand function shown in Algorithm 2.
In line 3 and 4, we fit a multivariate Gaussian distribution
to the training data. The dimensionality of the multivariate
Gaussian (line 1) is 29, as dictated by the dimensional
reduction through PCA. In line 6, we sample an observation,
O#, from the multivariate Gaussian distribution and compare,
in line 7, the time of the sampled observation, OS, and
best action executed during the exploration stage, ngftl ore
The sampling process is repeated until the time difference
between the two is less than threshold e, which we set to
0.2 seconds. We finally generate a new action, §F=Pand by
feeding our sampled observation, Os, into the trained RBF.

The time check on line 7 of the algorithm is performed
to compensate for the temporal incoherencies inherently
encoded in our training data, where two valid folds can
take a different amount of time to execute. We use the
motion’s execution times to increase the likelihood that
generated actions will be similar to Hgfftl"m, since it is
unlikely that two folding motions that are performed in a
similar amount of time will be drastically different. In the
unlikely case that they are different, the resulting motion
will be executed on the robot and likely result in a poor
reward relative to 657", Similarly to the exploratory
layer, there is no guarantee that the robot will be able to
successfully execute the generated actions, in which case the

Algorithm 2 Expand(O?, §577!°" RBF, ¢)

Best
n = NumColumns(O?)
Ot ~ [0t Oh...0%)
u = [E[0Y] E[0Y)... EOL]]
Y= [COV(OL O;)]i:l,Q,,..,n;j:1,2,...,n
repeat
Sample O° from f(x)

7: until |Time(O*)-Time(5-717)| < e
8: gFzrand _RBF(0®)

9: return @Fzpand

// n = 29 in our case

A o e

—3@—p) TS (a—p))

reinforcement learning will require more exploration. We run
Algorithm 2 [ times, resulting in a set of [ new actions

Ezpand __ pExzpand nExpand Exzpand
0 = [pFepandp! .0 !

For all of the experiments in this paper, [ = 5, expanding
OEPI™ o five new, yet similar, actions. We let the robot
execute each encoded trajectory, GZE wpand - record its corre-
sponding observation, OZ-E #pand - and calculate the motion’s
reward using RZP" — R(O*, OF*P*™%). The best folding
motions acquired from both the exploration and expansion
layers of our imitation algorithm will provide a good seed

for reinforcement learning, allowing it to quickly converge.

C. Reinforcement Learning

We finalize the algorithm using a modified version of the
state-of-the-art reinforcement algorithm POWER [8]. POWER
tries to find new actions in such a way that the expected
rewards of the rollouts is maximized. The process is iterative
and the action performed at time n is updated to produce a
new action 6,1 for the next rollout. The process is repeated
until convergence, which we choose to be when the last three
rollouts’ rewards are within 0.1% of each other. POWER’s
update function does not work for our application, so we
modify it to be

0F = 05" + (070p — 05" [R(O', O1op) — R(O,0,)]

where Top is the index of the action that
resulted in the best reward among the actions
[Gg:féoreﬁpra”d .. HlepandG{% ...0EL]. The update

function is modified to account for two major issues that
occur when using POWER’s unmodified update function for
our folding task. Our first modification is to only use the
best action, as designated by Top, rather than employing
importance sampling, which takes into account the best
o actions (i.e. o is 1 in our case). The problem with
importance sampling with our folding motions comes from
the fact that very different folds lying in different regions
of the action space can yield similarly high rewards (see
Figure 1 for an example). This phenomenon happens quite
frequently and would result in poor and slow learning
performance since it would confuse the algorithm with



contrasting information. Additionally, small potential time
incoherencies between multiple high reward actions can
quickly lead the exploration into an action space region that
is either not executable by the robot or does not resemble
a folding motion. The more actions are considered with
importance sampling (i.e. the greater the o), the higher
likelihood for this phenomenon to take place. In our second
modification, we include the reward of the last rollout,
R(0%,0,,), to influence the speed of the exploration. More
specifically, the term [R(O',Or,p) — R(O',0,)] in the
update function allows for a fine-grain search when the
current action’s reward, 9,11%, is close to the best action’s
reward, Or,,. Conversely, the further our current action’s
reward is from the best action’s reward, the more space we
cover during the update step.

VI. EXPERIMENTAL RESULTS

We present a real-world evaluation of the proposed al-
gorithm on our robotic platform, a static torso comprised
of two seven degree-of-freedoms (DoF) Barrett Arms, each
equipped with the Barrett Hand. The task of the robot is
to successfully symmetrically fold a thin hand-towel that is
both light and highly susceptible to air flow resistance. As
previously mentioned, the training data is comprised of 80
folding motions performed by the human demonstrator and
each action is encoded as timed Cartesian coordinates for
both manipulators. In order to play actions on the robot,
we convert the Cartesian coordinates to robot configurations,
for each manipulator, using inverse kinematics (IK). More
specifically, our IK solver analytically solves for 6 DoF
by uniformly sampling possible joint values for the 7th,
and redundant, DoF. This yields a large space of solutions,
which is dependent on the sampling step. We select the IK
solution that is both collision-free and minimizes the joints’
movement from the previous time frame, in order to reduce
the amount of torque that the joints experience. A starting
robot configuration was manually selected and the towel is
grasped using a pinch grasp. Figure 7 shows some rollouts
performed by our robotic platform.

The exploratory and expansion layers of the algorithm
operate in constant time, since they always yield the same
number of actions to be performed by the robot. Specifically,
we always run the exploratory layer 10 times and the
expansion layer 5 times. Once all 15 motions have been
played back on the robot, the reinforcement learning iterates
until convergence, which we define to be when the last three
rewards are all within 0.001 of each other. Once the folding
motion converges, the towel is folded using our previously
published algorithm [1]. Figure 6 shows the resulting rewards
for a learning session. In the exploratory and expansion
stages of the algorithm, the rewards oscillate, in no particular
order since the actions are acquired independently of each
other, as the robot tries to find a good seed for the learning
algorithm. The reinforcement algorithm converges in 4 steps
since high-quality motions were found during the exploratory
and expansion stages of the algorithm. Overall, only 19 roll-
outs are required to converge to a good solution for this com-

plex dynamic task, as opposed to 50 or 75 rollouts for similar
tasks [8], [10]. We note that the fast convergence is entirely
due to the very good starting seed acquired through the first
15 rollouts, thus the benefit of combining our hierarchical
imitation learning algorithm with reinforcement learning.
Even though Reinforcement Learning is not necessary for
the application presented, since a couple of very high quality
actions were found in the exploratory layer, the algorithm is
built for applications when that might not be the case, thus
requiring the expansion and Reinforcement Learning layers.
The accompanying video shows the robot performing all 19
trials. We encourage readers to go to our website! for more
videos, including the human demonstrations and more trials,
along with the data sets used in the paper.
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Fig. 6. Rewards given to the robot for each rollout performed.

VII. CONCLUSIONS AND FUTURE WORK

We have shown that the combination of imitation and
reinforcement learning provides a notable benefit to learning
complex tasks. Indeed, once the exploratory and expansion
steps are completed with the help of imitation learning,
the reinforcement learning algorithm converges extremely
quickly thanks to a very good starting seed. The approach
is especially suited for tasks with different but equally-
appropriate ways of solving them, where human-like motions
are desirable, or where kinesthetic learning is impractical
or impossible (e.g. when using two or more manipulators).
These tasks range from folding towels or clothes to opening
letters or boxes, tying knots, and loading or unloading
grocery bags. The absence of an object model is a welcomed
benefit, especially when dealing with deformable objects. We
have demonstrated that the problem of time incoherencies in
the training data, which are notoriously difficult to deal with,
can be circumvented with our imitation learning algorithm.
Last but not least, the algorithm runs in real time.

There are a few directions for future work. From a
practical standpoint, the data acquisition using the motion
capture system needs to be replaced by a user-friendly
and cost-effective solution. Based on our data, only 29
dimensions were required to successfully interpret a 3- to
5-second towel motion, leading us to believe that some
simple image processing with stereo vision or an inexpensive

Ihttp://robotics.ucmerced.edu/Robotics/IROS2011/



Fig. 7. Rollouts producing rewards of 0.57391 (top) and 0.93905 (middle), along with final folding motion (bottom).

sensor such as Microsoft’s Kinect might be sufficient for
similar tasks. Evidently, new feature vectors would have to
be acquired (e.g. SIFT features, corner or edge detection) and
the algorithm would learn a different function. We note that
this extension is entirely dependent on the learning algorithm
and, as such, the camera viewpoint would not affect the
results (assuming that the same viewpoint is used during
training). An interesting algorithmic extension would be to
add online learning to the approach. As we perform more
actions using reinforcement learning and get an idea of how
good they are through the reward function, we might not
want to discard that information especially if it is likely that
the task or environment conditions will change.
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