
Reconstructing a Spatial Field with an
Autonomous Robot Under a Budget Constraint

Azin Shamshirgaran Stefano Carpin

Abstract— In this paper we consider the information path-
planning problem for a single robot in a stochastic environment
with static obstacles subject to a preassigned constraint on
the distance it can travel. Given a set of candidate sampling
locations, the objective is to determine a path for the robot that
allows to visit as many sampling locations as possible to accu-
rately reconstruct an unknown underlying scalar field while
not exceeding the assigned travel budget. Starting from the as-
sumption that the phenomenon being measured can be modeled
by a Gaussian Process, our algorithm balances exploration and
exploitation to determine a sequence of locations ensuring that a
preassigned final site is reached before the budget is consumed.
Using mutual information as a reward criterion, as well as a
generative model to predict consumed energy, the algorithm
iteratively determines where to sample next, and when to end
the mission. Our findings are validated in simulation in various
scenarios and lead to a better reconstruction with less failures
when compared with other methods.

I. INTRODUCTION

Autonomous robots are finding more and more applica-
tions in domains such as environmental monitoring and agri-
culture [1], [16]. In these applications it is often necessary
to frequently collect data to monitor parameters such as
water, nitrates, nutrients, or to determine soil quality, or crop
estimates. These samples must be collected over vast spatial
domains and the use of robots allows a more efficient use of
the dwindling agricultural workforce. A key problem in this
area is how to handle the tradeoff originating by the necessity
to collect numerous samples while being constrained by how
far a robot can travel before its battery is depleted and
needs recharging. In this context, planning a path to ideally
collect the best samples while not running out of fuel is of
fundamental importance. More precisely, best samples means
the set of samples leading to the most accurate estimate
of the quantity being measured. This family of problems
is known as informative path planning (IPP). Informally
speaking, the goal of IPP is to define a path through a set
of sampling locations allowing for the best estimate of the
parameter being measured. Depending on the application,
sampling locations may be preassigned (and then the robot
has to select a subset of them), or may be determined on the
fly. Owing to the intrinsic computational complexity of the

A. Shamshirgaran and S. Carpin are with the Department of Computer
Science and Engineering, University of California, Merced, CA, USA. A.
Shamshirgaran is the supported by USDA-NIFA under award # 2021-67022-
33452 (National Robotics Initiative). S. Carpin is partially supported by the
IoT4Ag Engineering Research Center funded by the National Science Foun-
dation (NSF) under NSF Cooperative Agreement Number EEC-1941529.
Any opinions, findings, conclusions, or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect the view
of the U.S. Department of Agriculture or the National Science Foundation.

problem, one has to settle for collecting a sub-optimal subset
of samples. A distribution of spatial data can be modeled by
a Gaussian Process (GP), and this approach is often used in
agriculture [8], [9]. Combined with this model, metrics such
as mutual information (MI), entropy, or variance can be used
to guide the process of collecting samples to estimate a GP
field. While the IPP problem has been extensively studied in
the past, in this paper we consider a harder version where we
also manage an assigned energy budget that is influenced by
stochastic travel costs. This makes this problem different and
harder than the orienteering problem that we have recently
studied in a similar, yet simpler setting emerging in precision
agriculture [11]–[14].

Our proposed solution is off-line and relies on two alter-
nating steps to iteratively add more vertices to the path being
computed. The first determines the next sample location
based on the last added position, the remaining budget,
and the estimated quality of the possible sample locations.
Mutual information is used to rank the value of a possible
location where a sample could be collected. The second
step uses a rapidly exploring random tree (RRT) planner to
determine a path in the environment with known obstacles
to reach and visit the next location. Using a given model for
stochastic energy consumption, this planned path is used to
estimate the energy consumed.

The main contribution of this paper is to develop a plan-
ning based method to find the sequence of sampling locations
that is more likely to determine an accurate reconstruction
of the GP and to determine when to end the exploration
and move to the final location or docking point. The key
idea of the proposed method is managing the budget, which
means that after various off-line simulations the robot will
learn how to manage the traveling cost between locations
and visit the more important and informative locations.
Extensive simulations outline the validity of our method
when compared with other alternatives and show that the
produced plan allows the reconstruction of the spatial field
while not exceeding the energy budget.

The rest of this paper is organized as follows. Section II
discusses related works and Section III formally introduces
the problem. In Section IV, we discuss the proposed method,
while simulation results are given in Section V. Finally in
section VI we summarize our results and discuss possible
venues for future work.

II. RELATED WORK

As path planning is an integral part of the IPP problem,
sampling based path planning methods such as rapidly ex-

ploring random trees (RRT-RRT*), rapidly exploring random
graphs (RRG*), probabilistic roadmaps (PRM*), and rapidly
exploring information gathering (RIG*) have been adapted
to tackle the IPP problem. In [2], the authors proposed a
RIG-based algorithm for incremental information gathering.
They used mutual information as an information criteria
to maximize the information gathering with respect to the
budget constraint. One of the limitations of these methods is
the assumption of the availability of a suitable near point
for graph expansion which in some cases may result in
task failure. On the other hand, sampling-based methods
have the advantage that they do not require to discretize the
environment as they work on continuous space. In our work
we use RRT for planning a path to the next selected sampling
location.

An alternative approach to solving the problem of IPP is
to use the model of the environment to place the sensors
and plan a path for a robot. This approach is more similar to
what we study in this paper, where we assume that a set of
potential sampling locations is given upfront. GP is a pow-
erful Bayesian approach used to model different phenomena
in natural environments [9]. Different kernels can be used to
model prior assumptions about the underlying function being
estimated [7]. After modeling the spatial field, one can then
plan the path based on the model. In [9], the authors study
how to balance between the amount of sensing resources
(e.g., number of deployed robots, energy consumption, mis-
sion time) and the quality of data collected. To this end, they
formulated a constrained optimization problem imposing a
bound on the variance of the estimated field. The problem is
then solved finding measurement locations, planning a tour
for a single robot to visit those measurement locations and
finally planning tours for multiple mobile robots. GP is used
to model the spatial parameter being estimated and later the
traveling salesperson with neighborhoods (TSPN) is used to
find the best path for a single robot to visit the location of
interest. Finally, the multi robot version of the algorithm is
proposed to save operating time. This solution however, does
not consider energy constraints.

Another approach to solving IPP is learning based meth-
ods. In [17] the authors used Reinforcement Learning (RL)
to solve the IPP problem. The problem is defined as visiting
a set of sample locations with a robot with a travel budget.
The nearest sample location with shortest path is selected and
the reward is assigned considering the budget. However, the
authors did not consider a stochastic environment and exclu-
sively choose the shortest path for the next sampling location.
In our problem, we address the selection of next sampling
location with learning methods where the robot itself learns
to choose the next sample point based on assigned budget,
consumed and remaining energy, the information and reward
it gets by visiting each location and the stochastic noise of
the environment.

III. BACKGROUND AND PROBLEM FORMULATION

A. Markov Decision Process

Markov Decision Process (MDP) is a standard modeling
tool for tackling planning problems when the state is fully
observable, the environment is stochastic, and rewards are
additive. An MDP is defined by set of states s ∈ S, set of
actions a ∈ A, a transition function p(s′|s, a) and a reward
function R(s, a, s′). The goal is to find the optimal policy
π∗ : S → A to maximize the expected return. Different
return metrics have been proposed in literature. In our work
we deal with an episodic task, i.e., the task always ends after
a finite amount of time, either because the robot reaches the
final location, or because it runs out of fuel. In this case it
is typical to define Gt as a function of reward sequence

Gt = rt + λrt+1 + ...+ λT−trT ; 0 ≤ λ ≤ 1 (1)

where λ is a factor discounting future rewards and T is the
time of the last action. The objective is then to produce
realizations that in expectation maximize Gt. When the
model of the environment is known, classic methods such
as the Bellman equation and dynamic programming can be
used to find the optimal policy. It is worth noting that this
problem is unconstrained, i.e., the objective is to maximize
Gt only, while in the problem studied in this paper we are
also subject to a constraint on the traveled budget.

In model-free or direct reinforcement learning complete
knowledge of the environment is not assumed. In our case,
while we assume that the transition probabilities are known,
the rewards are instead not known upfront (their specific
formulation is described later). In such scenarios, methods
such as Q-learning, SARSA, and others can be used to
determine the policy [10]. Q-learning is often used because
of its off-policy nature, i.e., the ability to estimate the value
of taking a certain action a from state s while the system
is following a preassigned policy that may be different from
the optimal one. Key to Q-learning is the following update
equation

Q(st, at)←Q(st, at) + α[Rt+1

+ λ argmax
a

Q(st+1, a)−Q(st, at)]
(2)

where α is the learning parameter and st and at are the
state and action at time t. In this case, the learned action
value function directly approximate the optimal action value
function Q∗ irrespective of the policy being followed [10]. In
our work, as detailed in section IV, we implement a similar
update equation to estimate the value of visiting a certain
location.

B. Informative Path Planning

Let U ⊂ ℜ2 be the environment of interest. We hypothe-
size the presence of random disturbances characterized by a
time-invariant, Markovian transition kernel that depends on
the position, but not on the underlying field being sampled.
The current location of the robot is defined by s = (sx, sy).
We assume the robot starts from a pre-assigned start location
ss (e.g., the point where the robot is deployed), and must

terminate its mission at the final location sf , where it will
either be retrieved or recharged. The robot is provided with
n different sample locations of interest denoted by the set
V = {s1, s2, . . . , sn}. The robot is subject to a travel budget
B limiting the set of sample locations it can visit. This
constraint models, for example, the limited energy provided
by the battery onboard the robot. We denote with xg the
scalar reading collected by the robot when sampling location
sg ∈ V , and will denote with χg the random variable
modeling xg . The goal is to visit a subset of locations of
V such that the overall travel budget is not exceeded and the
accuracy of field reconstructed using the collected samples
is maximized. More formally, assuming ρ is a path starting
at ss visiting a subset of locations of V and ending in sf ,
let f(ρ) be a generic function measuring the quality of the
reconstructed field and C(ρ) be the travel cost associated
with traversing ρ. The informative path planning problem
(IPP) can then be expressed as the problem of solving the
following constrained optimization problem

ρ∗ = argmax
ρ∈ψ

f(ρ) s.t. C(ρ) ≤ B

where ψ is the set of all paths from ss (start point) to sf
(final point). It is immediate to note that the orienteering
problem is a special instance of IPP, and IPP is therefore
NP-hard [9].

IV. PROPOSED METHOD

A. Mutual information

Let V ⊂ U be the subset of coordinates in the domain
where the robot can collect a sample. We assume that V is
given, e.g., it may be provided by a human with expertise
about the domain of operation. We associate a random
variable χg to each location sg ∈ V . χg models the sample
collected at sg . Let A ⊂ V be the subset of already visited
locations and let χA denote the set of random variables
associated with the elements of A. Initially A = ss (the
starting location), and the role of the planning algorithm
is to iteratively add locations to A so that eventually the
underlying spatial field can be accurately estimated, while
at the same time ensuring that the robot does not overrrun
its assigned travel budget. To avoid trivial instances, we
assume that with the assigned budget the robot cannot visit
all elements V .

To asses the quality of the information gathered at a given
location, and drive the sampling selection process we use mu-
tual information (MI). MI expresses the expected reduction
of entropy of the sample locations V \A which the robot has
not visited yet, after considering the measurements obtained
at visited locations. This is an instance of the regression
problem, where we use the measured data from the visited
sample locations to predict values at yet to be visited sample
locations. MI can be defined as follows by using entropy and
conditional entropy. The classical definition of continuous
(or differential) entropy of a continuous random variable χg

according to [6] is

H(χg) = −
∫
Pχg

log(Pχg
) dx

This definition can be naturally extended to the case of a set
of variables χA. For a sample location sg /∈ A and a set
A ⊂ V we define the conditional entropy of sg with respect
to A as:

H(χg|χA) = −
∫
P (χg, χA) log(P (χg|χA))dxgdxA

MI is then defined as

MI(χA;χV\A) = H(χV\A)−H(χV\A|χA)

Therefore, the problem of selecting the best set of sample lo-
cations A is equivalent to solving the following optimization
problem

argmax
A⊂V

[H(χV\A)−H(χV\A|χA)]

while ensuring that the robot keeps the consuming energy
under the travel budget as it visits the locations in A. In our
work, A is not determined globally, but rather incrementally,
i.e., by adding one sample location at the time we aim
to maximally increase MI. More formally, each candidate
sample location sg will give the following contribution [3]:

MI(χA ∪ χg)−MI(χA) =

H(χg|χA)−H(χg|χV\{A∪g})
(3)

It is well known that this approach yields suboptimal results,
but this is inevitable in the general case due to the intrinsic
computational complexity of the problem. To formally define
how we compute Eq. 3, we resort to the assumption that the
underlying field can be modeled using a GP. To make predic-
tions at location sg , we consider the conditional distribution
p(χg = xg|χA = xA), where we condition on all sample
locations xA visited by the robot [4].

The multivariate normal distribution over a set χV of
random variables associated with n locations in V is defined
as:

P (χV = xV) =
1

(2π)n/2|Σ|
e−

1
2 (xV−µ)TΣ−1(xV−µ) (4)

where every location in V corresponds to one particular
sampling location. The multivariate normal distribution is
fully specified by providing a mean vector µ and a covariance
matrix Σ. If we know the values collected at A ⊂ V , we
find that for the sample location sg ∈ V \A the conditional
distribution p(χg = xg|χA = xA) is a normal distribution,
where mean µg|A and variance σ2

g|A are given by [6]:

µg|A = µg +ΣgAΣ
−1
AA(xA − µA),

σ2
g|A = σ2

g − ΣgAΣ
−1
AAΣAg

(5)

where ΣgA = ΣTAg is a row vector of the variances χg with
all variables in χA, similarly for ΣAA. µg and σ2

g are the
mean and variance of χg .

For any finite subset A = {s1, s2, ..., sm}, A ⊂ V
of location variables, the covariance matrix ΣAA of the
variables χA is obtained by

ΣAA =

K(s1, s1) K(s1, s2) · · · K(s1, sm)
...

...
...

K(sm, s1) K(sm, s2) ... K(sm, sm)

 (6)

where K is the Mattérn kernel [8], which is the generalization
of RBF Kernel and is parameterized by length scale l ≥ 0,
smoothness scale ν and Euclidean distance d(., .) which as-
sumes the distance between two random variables (isotropy)
and is independent of their locations (stationary). Once all the
mean and covariance functions have been estimated, we can
evaluate the MI criterion in Eq. 3. Using Eq. 5 and the fact
that the differential entropy of a Gaussian random variable
χg conditioned on some set of variables A is a monotonic
function of its variance

H(χg|χA) =
1

2
log(2πeσ2

g|A)

=
1

2
log(σ2

g|A) +
1

2
(log(2π) + 1)

(7)

we can define the value information of each candidate sample
location as

Rg =
σ2
g − ΣgAΣ

−1
AAΣAg

σ2
g − ΣgĀΣ

−1
ĀĀΣĀg

(8)

where Ā = V \ {A ∪ {g}}. We have to make sure
σ2
g − ΣgĀΣ

−1
ĀĀΣĀg is always nonzero to guarantee the Rg

is the finite number.

B. Proposed Algorithm

Starting from the framework established in the previous
subsection, to select the subset of sample locations A while
considering the travel budget, we propose a two stages
algorithm1. The outer planning algorithm determines the next
location to add to the path, while the inner algorithm plans
a collision-free path to it and estimates the travel cost while
accounting for the stochastic nature of the environment.
Algorithm 1 shows the outer planning loop and works as
follows.

The algorithm takes as input the set of candidate sampling
locations V , the start and final locations ss and sf , the budget
B, a number of iterations M , the locations of obstacles, and
parameter r (radius), ε, γ, and α.

The idea behind the algorithm is to develop a plan using
an approach inspired by Q-learning, whereby for each state
s we estimate Q(s, a), i.e., the expected return of executing
action a while in state s. In our problem, s is a robot location,
i.e., one of the elements of A, and action a represents a
possible next sampling location in V\A, i.e., a is an unvisited
location. The reward associated with a potential sampling

1This problem is related to orienteering, but it is however different
because in orienteering one must know the value of each vertex before, while
in this scenario this is not the case. This aspect will be further discussed in
the experimental section.

Algorithm 1 Sample Location Selection Planner

1: Input: V , ss, sf , B, N , obstacles-list, r, γ, ε, α
2: Output: RT , ET , A
3: Initialize matrix U with zeros
4: for N iterations do
5: RT ← 0
6: ET ← 0
7: A ← {ss}
8: s← ss
9: for each episode do

10: sg ←

{
random el. in V \ A in r with prob ε
element as per Eq. 9 with prob 1− ε

11: eT ← RRT(env, s, sg , obstacles-list)
12: ET ← ET + eT
13: if ET > B then
14: RT ← RT −∆
15: else if ET ≤ B & sg = sf then
16: RT ← RT − (B − ET)/K
17: else
18: RT ← RT +Rg (see Eq. 8) /dist (s, sg)
19: end if
20: update U based on Eq. 10
21: A ← A∪ {sg}
22: update ε
23: s← sg
24: end for
25: end for
26: return A and navigation path to travel along A.

location (i.e., an action) is given by Rg defined in Eq. (8).
These values are stored in an n × n matrix U such that
U [i, j] represents the estimated value of moving from si
to sj and collecting a sample at sj . Assuming the robot
is currently positioned at location si, it will pick the next
location randomly among the locations in V \ A within a
radius r with probability ε, and with probability 1−ε it will
pick location sg with g defined as

g = arg max
j∈V\A

U [i, j]. (9)

Constraining the choice of the next location to be within
radius r ensures that the robot does not switch too frequently
between far away locations, thus helping to make a more
efficient use of the available budget. Parameter ε instead
balances exploration and exploitation and is decreased during
the execution of the algorithm to favor exploration in the
beginning and then exploitation. After a location sg is
selected, in line 11 the second step of the algorithm (inner
algorithm) is executed. Based on the current location s
and the selected next location sg , the RRT algorithm [5]
computes an obstacle free path and estimates the energy
consumed (eT). In our implementation we use RRT, but
other motion planners could be used as well. To estimate
the consumed energy et, the algorithm uses the motion
model for the robot to simulate multiple times the execution
of the returned path and obtain an estimate for eT . The

concatenation of the routes returned by the successive calls of
the inner planning loop are eventually returned by the overall
planner to define how to navigate through the sequence of
selected locations A.

In the next step, the matrix U is updated as follows. First,
for location sg , we will find the best next goal based on Eq. 9
and then U is updated as follows:

U [i, g] = (1− α)U [i, g] + α(RT + γ argmax
j∈V\A

U [g, j]) (10)

where i is the index fo the current location and g varies
over the set of all unvisited locations. The idea behind this
update is to consider not only the immediate reward, but also
a one-step lookahead. In Eq. (10) the current return value
RT is used. As seen in the pseudocode, RT accumulates
the rewards, but incurs a penalty when the consumed energy
ET exceeds the budget. The algorithm also penalizes runs
where the robot ends with too much unused budget (line
18). One could of course use a deeper lookahead, but this
would come at an increased computational cost. Studying the
impact of the lookahead horizon is part of our future work.
In each iteration, the algorithm assumes the robot starts from
beginning location ss and in each episode, it will add one
sample location sg . Each iteration consists of number of a
number of episodes depending on the budget and will end if
the consumed energy goes beyond the Budget or the robot
visits the final location sf with in a budget. Through repeated
iterations, the contents of the matrix U are updated and
model the value of visiting a certain location while averaging
all past executions, aligned with the spirit of Q-learning.

V. RESULTS AND DISCUSSION

To investigate the effectiveness of the proposed method,
we simulate it in different scenarios with various underlying
distributions of the field being measured, number of sample
locations, and obstacles. Comparisons are made with three
alternatives; heuristic greedy-random point selection; a Q-
learning method; and an orienteering method.

The heuristic greedy-random strategy, MGRRRT , selects at
each stage either a random unvisited location or the closest
unvisited location. More precisely, with probability β > 0
it selects a location in V \ A using a uniform distribution
(random option), and with probability 1 − β it selects the
location in V \A that is closest to the current robot location
(greedy option). To account for the budget constraint, in both
instances the next sample is rejected if there is not enough
budget left to reach it and then move to the final location sf .
When a location is discarded, the selection method is iterated
until either a valid location is found or no more candidate
locations are left. In this last case, the algorithm selects
sf and tries to reach the final location. After the sample
selection process, the RRT method finds an obstacle free path
to the next location. The Q-learning method, MLQL, chooses
the next location based on Algorithm 1, and afterwards runs
an offline Q-learning method to find the best obstacle free
path to reach the location of choice. In this method the

robot receives the penalty once it enters one of the locations
considered as obstacles. Finally, the orienteering methods,
MOr and MOrwP , determine the path that visits the most
points in V without exceeding the preassigned budget. Note
that in this case it is necessary to assign a value to each
element of V in advance, consistently with the fact that
in orienteering one must know the rewards of the vertices
beforehand. In MOr we set all rewards to 1 and in MOrwP

we set the rewards to the expectation of the GP prior at the
point.

To compare the quality of the solutions produced by the
different methods we use two criteria. First, we use the
mean squared error (MSE) error between the predicted model
and the underlying model (ground truth, unknown to each
of the algorithms). To predict the model using the values
collected at the sample locations we use the scikit-learn
Python library and its GP regression library with Mattern
Kernel with length scale of 1 and smoothness parameter of
1.5. The choice of the kernel and of the parameters was made
after having experimentally evaluated different alternatives.
The same kernel and parameters were used for all algorithms.
The second criterion to evaluate the effectiveness of the
algorithm is the ability to remain within the assigned budget
B. Indeed, from a practical perspective it is important for
the robot to reach the final docking station before running
out of energy.

In the first scenario, we consider a 2D stochastic environ-
ment with obstacles spread uniformly on a lattice pattern.
This choice is informed by our practical problem, i.e.,
collecting samples in an orchard with equally spaced fruit
trees. In all cases, the start location ss is on the bottom left
(0,0) and the final location sf is on the top right, (50,50).
Four different budgets were used, namely 500, 750, 1000 and
2000. For this scenario, the set V consists of 100 locations,
half of which are randomly dispersed in the environment,
while the other half are chosen by hand in proximity of the
peaks of the underlying ground truth distribution (see figure
1 (a)-(b)). The random locations are used to test robustness
to inaccurate information, while the locations placed by hand
are consistent with our initial assumption that a human with
domain expertise would select interesting places to sample.
With reference to algorithm 1, we set ∆ to 1, K to 100, γ
to 0.9, α to 0.5, r to 10 and ε starts from 0.9 and decreases
to 0.2. Also for MLQL and MGRRRT , we set α to 0.5, λ to
0.9 and β to 0.5.

Table I summarizes the results of the three algorithms for
the different budgets. For this first scenario, we do not con-
sider the orienteering method. For each test case we present
the average results produced by each of the algorithms
(MLRRT is the algorithm discussed in this paper, MGRRRT

is the heuristic greedy-random algorithm and MLQL is the
learning sampling selection method following by Q-learning
[10]). The values displayed for NA, ET , RT and MSE are
limited to the cases where the robot does not exceed the as-
signed budget B. Nf shows how often the algorithms violate
the budget constraint B (out of 25 runs). The trial counts
as a failure when the robot runs out of the energy while

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1: Figures (a)-(b) show the underlying distribution with all sample locations and predicted distribution with all locations. Figures (c)-
(d), (e)-(f) and (g)-(h) show the selected sample locations and reconstructed underlying distribution with MGRRRT (B = 750), MLRRT

(B = 750) and MLRRT (B = 2000).

it has not visited the final location sg . NA is the number
of locations visited by each algorithm, ET is the consumed
energy, RT is total reward and MSE is the mean square
error. The last column provides the running time of each
algorithms (with the format of minute:seconds.milliseconds.)
The results illustrate that our proposed algorithm MLRRT

is generally faster and achieves better MSE comparing to
MGRRRT despite visiting a smaller number of locations
on average. Importantly, MLRRT consistently manages the
assigned budget, while the other two algorithms have a
higher failure rate. Overall, the reward column indicates
the MLRRT method visits the locations providing better
information (in term of GP regression) which is another
crucial factor in IPP problem. In cases with tight budgets
(B = 500), this issue becomes increasingly important where
the MLRRT method would be able to reach better MSE and
reward with fewer failures.

Fig. 1 (a)-(b) show the underlying model of the spatial
data in the environment with all sample locations and the
predicted model computed with all locations. Fig. 1 (c)-
(d) show the selected points with the heuristic greedy-
random method. Despite the robot visiting more locations,
the reconstructed scalar field is less accurate. Furthermore, it
runs out of energy more frequently. Subfigures (e)-(f) show
the selected and visited locations with our proposed method
with budget 750. It can be seen that the proposed approach
selects the points widely to cover the whole area and predicts
the model more accurately by visiting a sufficient number of
sample locations while maintaining the budget. Subfigures
(g)-(h) show the predicted model with the visited locations
in MLRRT method with budget 2000. It is clear from the
picture that the predicted models resemble the underlying
model especially it has the ability of predicting each peaks
of Gaussian distribution despite the fact that it will only visit
half of the sample locations.

The path generated by the MLRRT algorithm with a
budget 750 is shown in Figure 2, while Figure 3 shows the

path generated by MGRRRT under the same conditions. The
figures show that the path produced in the first case more
effectively balances between covering the entire space and
focusing on the peaks of the underlying distribution. More-
over, the path is more regular with less switches between
different sides of the environment.

Fig. 2: Path followed by the robot running the MLRRT algorithm
with budget of 750.

Fig. 3: Path followed by the robot running the MGRRRT algorithm
with budget of 750.

As a second scenario, we consider the same environment,
but this time without obstacles and with a different underly-
ing distribution (see Figure 4).

In this case our method is compared with the orienteering

Budget methods NA ET RT MSE Nf time

500
MLRRT 14.4 437.93 1.53 0.001734 1 0:17.23

MLQL 15.2 456.12 0.54 0.001803 1 7:62.13

MGRRRT 17.4 468.95 0.44 0.001748 3 0:28.74

750
MLRRT 16.4 645.14 2.74 0.001494 0 0:23.38

MLQL 22.25 690.22 2.28 0.001671 1 10:45.12

MGRRRT 22.6 686.35 1.14 0.001621 3 0:35.42

1000
MLRRT 25 801.13 2.69 0.001144 1 0:35.55

MLQL 30.7 847.24 2.47 0.001372 0 14:25.18

MGRRRT 34.5 780.90 1.40 0.001468 2 0:45.87

2000
MLRRT 45.9 1764.85 3.14 0.0007221 0 01:34.69

MLQL 55.3 1842.84 3.63 0.0005320 0 22:38.10

MGRRRT 53.2 1743.23 2.17 0.0007980 0 01:40.74

TABLE I: Summary of results for 25 runs with different budgets. The iteration number is set to 20.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Figures (a)-(b) show the underlying distribution with all sample locations and predicted distribution with all locations. Figures
(c)-(d), (e)-(f) and (g)-(h) show the selected sample locations and reconstructed underlying distribution with MLRRT (B = 200), MOr

(B = 200) and MOrwP (B = 200).

method. MLRRT represents the proposed method, while
MOr and MOrwP are the orienterering methods formerly in-
troduced. The orienteering problem is solved using a general
purpose heuristic known as S-algorithm (the exact solution
based on mixed integer linear programming is too time
consuming when considering our problem instances). While
the orienteering methods manages to visit a much larger
number of locations in V they suffer two major setbacks. The
first is that their number of failures are much higher. This is
explained by the fact that orienteering assumes deterministic
travel costs, while in our scenario these are stochastic. The
second is that the subset of selected points still renders a
less accurate reconstruction, as attested by the MSE column.
Note that in this case our algorithm is slower because we
have increased the number of iterations to 200.

Figure 4 (a) and (b) show all the sample locations in the
environment and predicted model using them. Sub-figures
(c) and (d) show the sample locations selected by learning
based selection method MLRRT and the reconstructed under-

lying model with budget 200. MLRRT can more precisely
reconstruct the underlying field even with half the locations
visited compared to both orienteering methods. Sub-figures
(e) and (f) show the sample locations selected by the MOr

method and the reconstructed underlying model. Since the
robot does not reach the second peak, the reconstructed
field is incomplete. Sub-figures (g) and (h) show the sample
locations selected by MOrwP method. In this case, the robot
attempts to visit both peaks, but is unsuccessful in rebuilding
the underlying field correctly which in result leads to higher
MSE. The other drawback of the MOr and MOrwP methods
is that they attempt to select sample locations near one
another in densely populated areas, which results in the
robot’s energy depletion and its inability to cover all peaks
in environments with distribution like Fig.4.

VI. CONCLUSIONS

In this paper we proposed a planning algorithm to solve
the problem of information path-planning in a stochastic
dynamic environment with stationary obstacles where the

Budget methods Nf NA ET MSE time

100
MLRRT 3 7.5 89.22 0.00121 3:20.78

MOr 12 23 99.54 0.00137 0:11.09

MOrwP 9 17.8 98.80 0.00128 0:10.33

200
MLRRT 2 13.2 187.84 0.00072 5:14.08

MOr 8 38 199.03 0.00126 0:32.39

MOrwP 10 32.8 198.47 0.00111 0:29.12

TABLE II: Summary of results for 25 runs with B = 100 and B = 200. The iteration number for MLRRT is set to 200.

goal is to determine a path through a set of preassigned
sampling locations. The objective is to provide the best
estimation of an unknown scalar field while subject to a
travel budget. The algorithm determines the next sample
location based on the consumed energy, budget and mutual
information criteria, and then a second loop finds the best
obstacle free path using the RRT algorithm to visit the
designated sample location. The simulation result showed
the effectiveness and application of the proposed method.
Our proposed learning method predicts the underlying model
more accurately than the heuristic greedy-random method
and orienteering method in complex environments, with tight
budget according to MSE criteria. For future work, we plan
to extend our work to use multiple robots in the environment
to divide the task between them and decrease the work load
and increase the efficiency and run this method in the field.

REFERENCES

[1] D. V. Gealy, S. McKinley, M. Gou, L. Miller, S. Vougioukas, J. Viers,
S. Carpin, and K. Goldberg. Co-robotic device for automated tuning
of emitters to enable precision irrigation. In Proceedings of the IEEE
Conference on Automation Science and Engineering, pages 922–927,
2016.

[2] M. Gh. Jadidi, J. V Miro, and G. Dissanayake. Sampling-based incre-
mental information gathering with applications to robotic exploration
and environmental monitoring. The International Journal of Robotics
Research, 38(6):658–685, 2019.

[3] C. Guestrin, A. Krause, and A. P. Singh. Near-optimal sensor place-
ments in gaussian processes. In Proceedings of the 22nd international
conference on Machine learning, pages 265–272, 2005.

[4] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal
sensor placements: Maximizing information while minimizing com-
munication cost. In Proceedings of the 5th international conference
on Information processing in sensor networks, pages 2–10, 2006.

[5] J. Kuffner Jr. S. M. lavalle. The International Journal of Robotics
Research, 20(5):378–400, 2001.

[6] C. E. Rasmussen. Gaussian processes in machine learning. In Summer
school on machine learning, pages 63–71. Springer, 2003.

[7] E. Schulz, M. Speekenbrink, and A. Krause. A tutorial on gaussian
process regression: Modelling, exploring, and exploiting functions.
Journal of Mathematical Psychology, 85:1–16, 2018.

[8] M.L. Stein. Interpolation of Spatial Data – Some Theory for Kriging.
Springer, 1999.

[9] V. Suryan and P. Tokekar. Learning a spatial field in minimum time
with a team of robots. IEEE Transactions on Robotics, 36(5):1562–
1576, 2020.

[10] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[11] T. Thayer and S. Carpin. An adaptive method for the stochastic orien-
teering problem. IEEE Robotics and Automation Letters, 6(2):4185–
4192, 2021.

[12] T. Thayer and S. Carpin. A fast algorithm for stochastic orienteering
with chance constraints. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2021 (to appear).

[13] T. Thayer and S. Carpin. A resolution adaptive algorithm for the
stochastic orienteering problem with chance constraints. In Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2021 (to appear).

[14] T. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin. Routing
algorithms for robot assisted precision irrigation. In Proceedings of
the IEEE International Conference on Robotics and Automation, pages
2221–2228, 2018.

[15] T. Tsiligiridis. Heuristic methods applied to orienteering. Journal of
the Operational Research Society, 35:797–809, 09 1984.

[16] S. Vougioukas. Agricultural robotics. Annual review of control,
robotics, and autonomous systems, 2:339–364, 2019.

[17] Y. Wei and R. Zheng. Informative path planning for mobile sensing
with reinforcement learning. In IEEE INFOCOM 2020-IEEE Confer-
ence on Computer Communications, pages 864–873. IEEE, 2020.

