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Abstract— We present a novel algorithm to solve the stochas-
tic orienteering problem with chance constraints that combines
Monte Carlo Tree Search (MCTS) with a best arm identification
(BAI) algorithm. This method extends our recently proposed
solution that builds a search planning tree considering both an
objective function to maximize, as well as a chance constraint
on the failure probability, i.e., the probability of violating the
assigned budget constraint. By combining these two approaches,
we obtain a new planner that tunes the amount of tree search
at run time. Extensive simulation results on our benchmark
problems show that the new approach is significantly faster than
the previous one, while incurring in just marginal decrements
in terms of performance.

I. INTRODUCTION

The orienteering problem is a combinatorial optimization
problem whose input is a graph G with weights on edges
and rewards on vertices, and a budget B. The objective is
to find a path in the graph between preassigned start and
end vertices that collects the maximum sum of rewards,
while ensuring that the path length does not exceed the
budget B. Orienteering offers a convenient abstraction for
many robotic problems where a robot has to select a subset
of locations to perform certain services. Examples include
logistics [14], environmental monitoring [23], surveillance
[8], and precision agriculture [19], just to name a few.
Applications in precision agriculture motivate our ongoing
research in this problem (see Figure 1).

In stochastic orienteering, the costs of the edges are
random variables whose realizations are obtained at run time.
This extension is suitable to model scenarios in which the
time or energy spent to move between two locations can vary
due to environmental conditions and is not known upfront.
In this case the cost of the path is a random variable and
the constraint on the budget can be expressed as a chance
constraint, i.e., as a bound on the probability that the cost of
the path exceeds the budget B (a formal problem statement
will be given in section III).

In our recent work [20] we introduced a new algorithm us-
ing Monte Carlo Tree Search (MCTS) to solve the stochastic
orienteering problem with chance constraints. MCTS algo-
rithms are extensively used to solve planning problems using
generative models, and use a receding horizon approach
to explore a set of alternatives to identify the best next
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Fig. 1: In many precision agriculture applications, a robot is tasked
with performing a set of tasks (with different rewards) situated at
different locations (red dots). Due to limited onboard energy, the
robot has to select which subset of tasks it can execute. Moreover,
in unstructured conditions the energy needed to move between two
locations can be subject to significant random variations.

action. As common in these types of planning problems,
the objective is to identify an action that accumulates high
reward in an additive setting. However, in some problem
instances each action is not only associated with a reward,
but also with a failure probability. For example, in the
stochastic orienteering problem the choice of a path is not
only associated with the reward collected along the path, but
also with the probability that the stochastic length of the
path violates a preassigned budget (an event that we deem a
failure). Starting from this observation, to use MCTS for the
stochastic orienteering problem with chance constraints, in
[20] we introduced a modified criterion for node selection
that modifies the widely used Upper Confidence Bounds
(UCB) heuristic by considering not only the accrued reward,
but also the estimated failure probability. This method turns
out to beat our previously proposed solutions, but is not
immune from drawbacks. In particular, it is not adaptive.
This means that, as is typical for MCTS, a certain amount
of computational effort (e.g., number of different actions to
try or rollouts to perform) is predetermined and executed at
each stage. In some instances this number may be too high,
for example when after few steps it is already evident which
option is the best. But in some instances the opposite may



be true as well, i.e., after the search budget is exhausted it
may still be unclear which option is the best. In an effort
to overcome this limit, in this paper we explore a new
alternative, i.e., the use of pure exploration algorithms to
solve the best arm identification problem. These algorithms
are adaptive, i.e., keep exploring as long as needed, but
stop as soon as the probability of having identified the
best arm exceeds a given target threshold. There is a well
known connection between MCTS and bandit problems,
as the action selection in MCTS is equivalent to the arm
selection in bandit problems. In a pure exploration bandit
problem the objective is to identify the best arm without
worrying about the regret accrued during exploration. Rather,
the objective is to identify the best arm in the least number
of attempts subject to a fixed confidence bound. Pure explo-
ration algorithms generally consider bandits with a single
reward, however as pointed out above, we are interested
in situations where each action is associated with both a
stochastic reward and a failure probability. Hence, in this
paper we define a new model suitable to solve this type of
problems and propose a new algorithm called track, stop and
eliminate that extends the formerly proposed ”track and stop”
algorithm [5] introduced to solve pure exploration problems
with a single objective function. Afterwards, we use it to
derive a heuristic for the stochastic orienteering problem with
chance constraints that overcomes our previous solutions.

The rest of this paper is organized as follows. Related
literature is presented in Section II and relevant theoretical
background is provided in Section III. Our algorithmic
contributions are given in Section IV and validated in Sec-
tion V, where we compare them with various alternatives,
including an optimal planner using a mixed integer program
formulation. Finally, in Section VI we conclude the paper
and outline venues for future work.

II. RELATED WORK

The deterministic orienteering problem is known to be NP-
hard and was first formalized in [6]. Exact solutions can be
found formulating this problem as an integer program [4],
and therefore heuristics are mostly used when solving large
problem instances [7]. Approximation algorithms [3] have
appeared in literature but their use is scarce. The stochastic
orienteering problem has received less attention and was
first introduced in [2], though this initial formulation did
not consider chance constraints. As this problem is also NP-
hard, most solutions for this problem rely on heuristics, too.
In our previous works, we have studied the problem using
a chance constrained formulation [16]–[18] and introduced
the concept of path policy, i.e., a family of sub-paths was
computed off-line, and the decision of which one to follow
was taken online based on the actual incurred costs. In [22]
the authors propose an algorithm to solve orienteering based
on local search, while in [21] the authors propose a mixed
integer program based on sample average approximation.
These solutions are fundamentally different from the one we
propose because they are formulated offline, and not updated
as the mission unfolds based on the travel costs experienced

during the mission. In [20] we proposed an alternative
method to solve the stochastic orienteering problem with
chance constraints that uses MCTS. MCTS includes a family
of any-time methods to solve sequential stochastic decision
problems using a generative model. These methods have been
used for quite some time but have seen a resurgence in
popularity due to their successful use in combination with
reinforcement learning (see e.g., [12]).

There is a rich literature about bandit algorithms and the
reader is referred to [11] for a comprehensive introduction
to the problem. Bandit algorithms are connected to MCTS
algorithms because at each level in the tree one is tasked with
selecting the best action to execute, and this is equivalent to
picking a bandit arm. In fact, the UCT criterion widely used
in MCTS is derived by the UCB rule derived for bandits
[10]. The pure exploration, or best arm identification (BAI)
algorithms for multi-armed bandits (MAB) generally fall into
two categories: fixed confidence and fixed budget settings.
The focus of this work is the former case, fixed confidence
settings, where the goal of the algorithm is to identify the
optimal arm (highest mean reward) within some confidence
threshold in the minimum number of pulls or samples. The
assumption is that there is a single optimal arm to identify.
In [5], the authors present both a lower bound on the number
of pulls needed in the fixed confidence formulation and an
algorithm that is (asymptotically) optimal called “Track and
Stop”. We decided to build our solution on top of the track
and stop algorithm because of its optimality and guarantees,
however, we consider its application to a constrained version
of the MAB-BAI problem. In our formulation, the goal is not
only to identify the best arm within a minimum number of
pulls but to also to make sure that the optimal arm is feasible
as well.

The application of these fixed confidence best arm identi-
fication algorithms to MCTS (MCTS-BAI) has been studied
before in [15] and [9], among others. The potential is to
have tools for analyzing the sample complexity of MCTS
methods, and algorithms for MCTS that are adaptive with re-
spect to the difficulty of determining high reward actions. [9]
presents a general algorithmic framework for MCTS by best
arm identification and analyzes some instances such as the
Lower Upper Confidence Bounds-MCTS (LUCB-MCTS);
furthermore, the authors conclude by presenting a lower
bound on the samples needed for MCTS-BAI which requires
the solution to a generally difficult optimization problem.
The MCTS-BAI method presented in this work differs with
respect to the previously mentioned works in many regards.
As mentioned before, we consider a constrained version of
the BAI problem and the integration of its solution into the
MCTS framework. Moreover, we break down the so-called
selection phase (tree policy) [1] into two distinct parts. At
the root of the entire tree our proposed method uses the track
and stop algorithm to decide which sub-tree to explore next,
then it applies our UCTF [20] heuristic, discussed in depth
later, when traversing from the root of the selected sub-tree to
a leaf. Finally, it performs a rollout and updates the statistics
in the tree.



III. BACKGROUND AND PROBLEM DEFINITION

A. Stochastic Orienteering with Chance Constraints

The stochastic orienteering problem with chance con-
straints (SOPCC) can be defined as follows. Let G = (V,E)
be a directed graph, and s, g ∈ V be the start and goal
vertices. Let r : V → R+ be a positive reward function
defined over the vertices. For each edge e ∈ E, let ce be
a random variable with non-negative support modeling the
cost incurred when traversing edge e. Let B > 0 be a travel
budget and 0 < Pf < 1 be a given failure bound. For a
path p in G from s to g, its reward R(p) is the sum1 of the
rewards of the vertices appearing along p. Its cost C(p) is a
random variable given by the sum of the random variables
associated with all edges appearing along p. Let Π be the
set of all paths in G from s to g. The stochastic orienteering
problem with chance constraints asks to solve the following
optimization problem:

p∗ = argmax
p∈Π

R(p)

s.t.Pr[C(p) > B] ≤ Pf

As the deterministic orienteering problem is a special case
of the stochastic orienteering problem, it follows that this
problem is also NP-hard.

B. Best Arm Identification (BAI) with Failures

We consider the following bandit exploration problem
(see [11], ch. 33 for more details about pure exploration
algorithms for bandits). We have a bandit A with k arms.
Each arm ai ∈ A is associated with two distributions, i.e.,
when we pull arm ai we obtain two random returns. The
first return X comes from a distribution Pai with finite
mean µi. The second return Y comes from a Binomial
distribution with parameter bi. As usual in bandit algorithms,
we assume that for each arm the values µi and bi are
unknown. We consider two confidence levels δ and ε, as
well as a probability threshold ζ. A policy π = (πt)

∞
t=1

selects the arms of A in sequence as well as a stopping time
τ . Paralleling the notation in [11], let τ be a stopping time,
and ψ ∈ {1, . . . , k} be the recommendation by policy π for
the arm to pull at time τ + 1. The rules of the game are
the same, i.e., π (the learner) repeatedly pulls arms from
A until it eventually chooses as stopping time τ to stop
exploring, and then makes a recommendation ψ for the best
arm identified. In the following definition, ∆ψ(ν) is the
immediate regret, i.e., the difference between the expected
return of the optimal arm and the expected return of arm
ψ. Note that for a suboptimal arm the immediate regret is
strictly positive.

Definition 1: A triple (π, τ, ψ) is sound at confidence
levels δ, ε if for all bandits

Pπ(τ <∞ and ∆ψ(ν) > 0) ≤ δ

1If a vertex v appears multiple times along a path, its reward is collected
only once.

and
Pπ(bψ > ζ) ≤ ε.

In plain words, we look for an algorithm π (policy) that
through exploration determines a stopping time and then
selects an arm that with high confidence is the best arm and
has a parameter bψ not exceeding the threshold value ζ. In
[11] the same problem is presented, but without considering
the second return Y distributed according to a binomial
distribution.

Remark: we introduce the problem BAI with failures to
use it for action selection in MCTS to solve SOPCC, as we
will describe shortly. Consider an instance of SOPCC and
consider a partial path p1 from s to an intermediate vertex
v ̸= g (see Figure 2). This path has cost C(p1). Path p1 can
be extended into a full path from s to g by considering all
subpaths starting at v and ending at g. Each of these paths
pj will have a reward and a random cost that may or may
not exceed the residual budget B − C(p1). In this case we
use BAI with constraints to identify with high confidence
the path from v to sg that has the highest reward and does
not exceed the residual budget. In this case each path pj
from v to g can be seen as an arm whose reward X is
C(pj) and whose variable Y is a Bernoulli with parameter
bj = Pr[C(pj) > B − C(p1)] .

s
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Fig. 2: A partial path p1 from s to v can be extended into a full
path from s to g considering multiple subpaths from v to g. Each
will have a reward X and a failure probability Y with parameter
Pr[C(pj) > B−C(p1)]. Each such path can be seen as an arm in
a BAI problem with failure probability.

IV. TRACK, STOP AND ELIMINATE

A. Solving SOPCC with Constrained MCTS

We start sketching the basic algorithm we developed in
[20] to solve the SOPCC problem, as this is the foundation
for the algorithm we develop later on. The idea is to alternate
planning and execution where at each iteration we build
a MCTS rooted at the current vertex in the graph and
parametrized by the remaining budget B. In the tree, each
node is associated with a vertex in the graph, and each
edge in the tree is associated with an action corresponding
to moving between the two corresponding vertices in the
graph. For each action a the MCTS produces two estimates
Q(a) and F (a). Q(a) is the estimated return of the path
going from the root to the end vertex and using action a,
and F (a) is the probability that the path will violate the
budget constraint (details on how these are computed are
given below). After the tree is built, the action a to execute
is the one at the root that has the highest Q(a) value subject
to the constraint that its F (a) value does not exceed Pf . The
action is then executed, and the budget is updated based on
the time spent to complete the action. The process iterates



until either the final vertex g is reached, or all budget is
consumed. Algorithm 1 sketches this approach.

Algorithm 1 Solving SOPCC with MCTS
Data: Graph G = (V,E), vertices s, g ∈ V , budget B
v ← s
while B > 0 and v ̸= g do

nextv ← MCTS(v,B)
move to vertex nextv and let ξv be the incurred cost
B ← B − ξv
v ← nextv

The process to build the MCTS extends the classic MCTS
approach in two ways. First, for each action a we include
the probability F (a) that a path using a will violate the
constraint Pf . This is obtained by executing multiple rollouts
at the leaves and using the sample average to estimate F (a).
Second, rather than using the well known UCB rule [10] as
the tree policy to balance exploration and exploitation, we
introduce a new criterion called UCTF that evaluates each
action a using both Q(a) and F (a). The formula for UCTF
is

UCTF (a) = Q(a)(1− F (a)) + c

√
log t

N(a)

By introducing the term (1−F (a)) the exploitation term puts
less weight on actions that have a high failure probability,
even if they are associated with high returns. The other
quantities in the formula are the same as in UCB. Algorithm
2 sketches this approach.

Algorithm 2 MCTS
Data: start vertex v, budget B
Initialize tree T with root equal to v
for K iterations do

vj ← UCTF (T )
Perform multiple rollouts at vj and estimate Q and F
Backup(Q,F )

return ActionSelection(T )

For lack of space we omit details like the heuristic used to
execute the rollouts, and how the backup step is performed
to propagate the values Q and F from the leaf vj back to
the root of the tree. The reader is referred to [20] for the
specifics, and in the experimental section we use exactly the
same implementation described therein. While this approach
is competitive when compared with former solutions we
proposed, we identify two aspects that can be improved.
First, the number of iterations K is a preassigned parameter
that requires manual tuning. It would be desirable to remove
this dependency and let the algorithm determine on the fly
when enough exploration happened. Second, as the number
of paths generated increases, the estimates for F could be
used to eliminate from the search space actions that are
very likely to violate the failure probability Pf . This can
be done noting that F is the experimental estimate of the
success/failure probability of a Bernoulli random variable.
These two aspects are tackled in the following subsections.

B. Solving BAI with constraints

In [5] the authors propose an algorithm for the best arm
identification problem that stops the exploration step after
a predetermined level of confidence δ is achieved. This is
similar to the problem we introduced in section III but
it considers a single reward. Algorithm 3 sketches their
proposed solution and the reader is referred to [5] for more
information and a thorough mathematical analysis.

Algorithm 3 Best Arm Identification (Track and Stop)
Data: confidence level δ, k arms a1, . . . , ak
Try all k arms once and set t← k
while Zt < βt(δ) do

if argmini Ti(t) ≤
√
t then

Choose At+1 = argmini Ti(t)
else

Choose At+1 = argmaxi(tα̂
∗
i (t)− Ti(t))

Observe return Xt+1, update statistics, increase t
return τ = t, ψ = i∗

After having tried all arms at least once, the algorithm
enters a loop where it considers Ti(t), the number of times
that the i-th arm has been tried up to time t. If there is at least
one arm tried less than

√
t times, it selects that arm (with

ties randomly broken), otherwise it picks an arm solving an
optimization problem whose solution depends on the number
of times each arm has been tried so far, as well as the
cumulative reward obtained up to that point (quantities called
statistics in the paper). Critical to this approach is the test
governing the main loop. Given the statistics and an assigned
confidence level δ, the authors identify two functions Zt (a
function of the statistics) and βt(δ) such that as soon as
Zt exceeds βt(δ) one can conclude that with probability at
least δ the arm with the highest cumulative reward is the best
one. The index of this arm is then returned at the end. The
theoretical guarantees studied in the paper hold under the
assumption that the returns of each arm ai are sub-Gaussian
random variables. The authors name the algorithm track and
stop and prove that it is asymptotically optimal with respect
to the lower bound on the number of pulls needed to provide
statistical certainty.

To solve the Best Arm Identification with Failures prob-
lem, we extend algorithm 3 by tracking the statistics not
only for the return X but also for the Bernoulli variable Y .
In particular, for each variable Yi we estimate its parameter
bi using the sample mean. Moreover, using the the Wald
test [13], one can estimate lower and upper bounds for the
confidence interval for bi with the formulas:

L = bi − zε/2

√
bi(1− bi)

Ti
U = bi + zε/2

√
bi(1− bi)

Ti

where Ti is the number of times arm ai has been tried and
zε/2 is the 1−ε/2 quantile of a standard normal distribution.

In algorithm 4 we start as in algorithm 3, but after the best
arm with respect to the return X has been identified and we
exit the inner while loop, the Wald criterion is used to test the



Algorithm 4 Best Arm Identification with Failures
Data: confidence levels δ and ε, k arms a1, . . . , ak
Try all k arms once and set t← k
done← false
while not done do

while Zt < βt(δ) do
if argmini Ti(t) ≤

√
t then

Choose At+1 = argmini Ti(t)
else

Choose At+1 = argmaxi(tα̂
∗
i (t)− Ti(t))

Observe return Xt+1, update statistics, increase t
Compute L,U for best arm i∗

if U ≤ Pf then
done← true

else if L > Pf then
eliminate arm i∗

else
keep pulling arm i∗ until U < Pf or L > Pf

return τ = t, ψ = i∗

confidence interval for the estimate for bi∗ . If U ≤ Pf , then
the best arm satisfies the criterion and is returned. If instead
L > Pf , then the arm is eliminated because it violates the
failure constraint. In such case, the algorithm goes back to
the inner loop and keeps exploring. If neither case holds, the
arm is repeatedly pulled until one of the two cases apply and
we behave accordingly, either terminating or eliminating the
arm (this is guaranteed to happen as Ti grows).

C. Solving SOPCC with MCTS and Constrained BAI

Starting from the previous algorithms we can now combine
algorithms 2 and 4 to expedite the solution of SOPCC.
The idea is to use the algorithm to solve the constrained
BAI problem to decide when to stop the exploration while
building the MCTS. More specifically, algorithm 4 is used at
the root of the tree to identify the arms to explore and when
to stop. When an arm at the root is selected for exploration,
we use UCTF as the tree policy to traverse from that arm
to a leaf. This way, we combine the advantages of both
approaches. The pseudocode is given in algorithm 5.

We see that BAI with failure is used at the root to select
one arm, i.e., the first edge on the path from the current vertex
v (root of the node) to the goal vertex g. When the arm (i.e.,
edge towards another node) is selected, we then use UCTF to
expand the tree, as in the original MCTS algorithm updating
Q and F for all involved edges/actions. When the inner loop
exits, the confidence levels L,U are computed using F (i∗),
i.e., the estimated failure probability of the tentative best
arm. At that point we follow the same strategy as before,
i.e., we may terminate, eliminate the arm, or pull it again
until needed.

The practical implementation of this algorithm may have
one limitation. In the case of a graph with symmetries or
similar rewards, there may be multiple arms at the root that
have exactly the same expected reward (or very similar).
In this case, there is no best arm (if they have the same
expected reward) or it may take an extremely large number of

Algorithm 5 MCTS with Constrained BAI (MCTS-BAI)
Data: start vertex v, budget B,confidence levels δ and ε
Initialize tree T with root equal to v
Try all k actions as the root once using UCTF to determine
Q andF
t← k
done← false
while not done do

while Zt < βt(δ) do
if argmini Ti(t) ≤

√
t then

Choose At+1 = argmini Ti(t)
else

Choose At+1 = argmaxi(tα̂
∗
i (t)− Ti(t))

Use UCTF(At+1) expand the tree, updating Q and
F for all involved actions, and performing Backups

Update statistics, increase t
Compute L,U for best arm i∗

if U ≤ Pf then
done← true

else if L > Pf then
eliminate arm i∗

else
keep pulling arm i∗ until U < Pf or L > Pf

return τ = t, ψ = i∗

attempts to disambiguate (if they have similar rewards). We
actually observed this in some of the benchmark problems
we studied in Section V. If this is the case, this problem can
be mitigated by clustering the arms in three groups, based on
the cumulative reward accrued during the exploration. Then
the criterion Zt < β(δ) used to terminate the exploration is
computed using representatives from each cluster (i.e., we
reduce the problem to the case of a bandit with three arms).
The number three is of course arbitrary and could be refined
based on the specific application.

Remark: one could observe that the theoretical results
supporting algorithm 3 hold under precise assumptions for
the returns, i.e., that the random variables are sub-Gaussian,
but that in general there is no guarantee that the returns in
the MCTS algorithm satisfy this hypothesis. This is correct.
However, it should be pointed out that even when using UCB
for tree exploration one is de-facto using an heuristic that
is guaranteed to provide optimal results only under specific
hypothesis that are most often not verified. In fact, many
successful strategies for MCTS implementation rely on in-
sightful heuristics that cannot be theoretically characterized.
Our work falls into this category.

V. RESULTS

In this section we start comparing the performance of our
proposed new algorithm with the original MCTS version we
proposed in [20]. Note that therein we already showed that
the MCTS approach outperformed our former solutions that
produced path policies using Constrained Markov Decision
Processes. To ensure a fair evaluation, we use the same set of
benchmark problems. These consists of four different graphs
whose number of vertices vary between 10 and 40 (with
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Fig. 3: The four test graphs used for benchmarking. In all graphs the start vertex is marked in red and the end vertex is marked in black.

increments of 10) and we consider two different budgets B,
namely 2 and 3. In all instances, the locations of the points
were randomly selected in the unit square, and the reward
of each vertex was generated sampling from a uniform
distribution in [0, 1]. The graphs are shown in figure 3.

Each edge (vi, vj) between vertices vi and vj has a random
travel cost given by the formula

αdi,j + E
(

1

(1− α)di,j

)
where di,j is the Euclidean distance between vi and vj and
E(λ) is random sample from the exponential distribution
with parameter λ. With this choice we ensure that the
travel cost is a random variable with expectation di,j . As
in our previous works, throughout the experiments we set
α = 0.5. All graphs are complete, i.e., they include all
possible edges. This setup is the most challenging for the
MCTS and MCTS-BAI algorithms, because every node in
the tree has highest possible branching factor and and for n
vertices there are O(n!) possible paths. In all experiments
we set the confidence levels δ and ε to 0.1. All algorithms
were coded in Python and executed on an Apple M1 Max
with 32 GB of memory. For the implementation of the BAI
algorithm in Algorithm 3, we relied on a publicly available
implementation provided by the authors.2

We start comparing the performance of the algorithm we
presented in this paper with the MCTS implementation we
discussed in [20]. Specifically, we compare three quantities,
i.e., the collected reward, the the time spent for planning, and
the number of rollouts executed. All instances are obtained
averaging the results of 100 independent runs for all cases.
Figure 4 shows the ratio between the average reward col-
lected by the MCTS algorithm (Algorithm 2) and the MCTS-
BAI algorithm (Algorithm 5). As the latter is designed to use
less resources, it is expected that it will perform worse, i.e.,
that it will collect less reward. However, the figure shows
that the decrement in performance is modest, and in most
cases is below 10%.

Figures 5 and 6 contrast the two algorithms with respect
to the number of rollouts performed and the time spent
for planning. As we can see, the MCTS-BAI algorithm
consistently performs less rollouts and spends less time,
and the gap between the two widens as the number of

2The implementation is coded in Julia and we translated it in Python.

Fig. 4: Rewards ratio between the MCTS and the MCTS-BAI
algorithms for different graph sizes (averages over 100 independent
runs) and different budgets and failure probabilities.

vertices increases. This outlines the ability of MCTS-BAI
to scale to larger problem instances. Overall, MCTS-BAI
collects rewards similar to MCTS, while being much faster
by performing far less rollouts.

Finally, for sake of completeness, we compare our solution
with the approach presented in [21] which uses a mixed
integer linear program (MILP) formulation to optimally solve
the problem. One drawback of the approach presented in [21]
is that it requires to manually tune various parameters. In
particular, to meet the constraint that Pr[C(p) > B] < Pf it
is necessary to carefully pick a number of samples that will
influence the number of integer variables in the problem.
We implemented the algorithm in [21] using the Python
library PULP to generate the integer programs, and then used
the commercial solver Gurobi to solve them. In all cases,
if the solver had not found the optimal solution after 10
minutes, it stopped and produced the best solution found up
to that point. Figure 7 parallels figure 4 and displays the ratio
between the quality found by the MILP algorithm and the
MCTS-BAI algorithm. As expected, the ratio is higher, but
it is interesting to observe that it never exceeds 1.35. Figure
8 instead compares the time spent by the two algorithms.
For small problem instances (n = 10) the time spent is
comparable, but for larger sizes the time spent becomes much
larger. The only exception is for Pf = 0.05 and B = 2
(where nevertheless MCTS-BAI is faster). This is explained
by the fact that with a small budget and a small failure
probability the number of paths satisfying the constraints



10 15 20 25 30 35 40
Number of vertices

0

2000

4000

6000

R
ol

lo
ut

s
Budget=2,3 Pf=0.05

MCTS-BAI

MCTS

MCTS-BAI

MCTS

10 15 20 25 30 35 40
Number of vertices

0

2000

4000

6000

R
ol

lo
ut

s

Budget=2,3 Pf=0.1

MCTS-BAI

MCTS

MCTS-BAI

MCTS

Fig. 5: Average number of rollouts performed by the original MCTS
algorithm and the MCTS-BAI algorithm proposed in this paper as
a function of the number of vertices when solving SOPCC. Solid
lines correspond to the case with budget 2, while dashed lines are
for the case with budget 3. The top figure is for failure probability
Pf = 0.05, while the bottom figure is for failure probability Pf =
0.1.

is smaller, and therefore the MILP algorithm manages to
efficiently prune the search space and reduce its computation
time. In all other cases the gap is large.

VI. CONCLUSIONS

In this paper we presented a novel algorithm to solve
the stochastic orienteering problem with chance constraints.
The idea is to combine our recently introduced MCTS
algorithm for this problem with the solution of the best arm
identification with constraints problem. The combination of
these algorithms gives a new method that is much faster
than the previous one, while incurring in a marginal decrease
in the performance. Interestingly, when compared with the
optimal solution, we see that for hard problem instances the
reward gap remains bounded, while our algorithm is orders
of magnitude faster. In the future we will explore how these
algorithmic ideas can be used to solve other constrained
planning problems.
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