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Abstract— The proliferation of unmanned vehicles offers
many opportunities for solving environmental sampling tasks
with applications in resource monitoring and precision agri-
culture. Informative path planning (IPP) includes a family of
methods which offer improvements over traditional surveying
techniques for suggesting locations for observation collection.
In this work, we present a novel solution to the IPP problem by
using a coregionalized Gaussian processes to estimate a dynamic
scalar field that varies in space and time. Our method improves
previous approaches by using a composite kernel accounting for
spatiotemporal correlations and at the same time, can be readily
incorporated in existing IPP algorithms. Through extensive
simulations, we show that our novel modeling approach leads to
more accurate estimations when compared with formerly pro-
posed methods that do not account for the temporal dimension.

I. INTRODUCTION

Consider the task of modeling a soil property in an agricul-
tural field with a point sensor. Whether the sensor is wielded
by a human or an autonomous robot, the agent is tasked with
deciding where to capture observations of the environment in
order to inform the spatial interpolation. If the environmental
properties are dynamic and can change over the course of
the survey, the operator is also tasked with the option of
updating an old measurement at a previously-visited site,
or measuring an unvisited location. When sampling under
practical constraints such as time and fuel, the operator must
strategically choose sampling locations that allow for useful
predictive ability in space and time, in order to arrive at a
cohesive estimation of the system’s state at the end of the
survey.

Thus, this task of informative path planning (IPP) shares
many elements with the task of optimal sensor placement and
can be formalized as a constrained optimization, where the
agent must evaluate the best location to travel, to satisfy an
objective function based in reconstructing a spatial process
[23], [3]. Recently, there have been many improvements in
approaches to the IPP task for various objectives including:
map reconstruction with distributed agents, source position
estimation for sound and contaminant plumes, and search
and rescue [26].
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Fig. 1: An overview of our evaluation methodology. (a) shows
the ground truth, and the vehicle in the replanning stage, with
observation history enumerated. (b) shows the environment during
the planning stage with the locations of previous observations. (c)
Samples can be visualized along a path in a temporal dimension
and (d) displays the final map estimate at all inducing points in the
Gaussian process.

Steady efforts have been directed toward sensing strategies
for monitoring spatiotemporal processes [7]. The emergence
of small, inexpensive mobile platforms points to a future
where mobile sensors may be rapidly dispatched to model a
dynamic phenomenon. However, to the best of our knowl-
edge there have been limited investigations of informative
planners that consider the temporal dimension of information
content, especially in an online planning approach. This is
necessary to produce faithful representations of dynamic
environments, as observations made early in the course of
a survey may no longer represent the state of the system at
the location at the end of the survey. Additionally, it may be
desirable to infer the state of the system at arbitrary points
in time, or into the future.

To address this issue, we propose a novel sampling-based
IPP framework that considers the information content of
sensing locations in space and time. An overview of the
framework is shown in Figure 1 and in the accompanying
video. Inspired by the asymptotic optimality of IPP methods
based on random trees [16] [17] and advancements in large-
scale, multiple-output Gaussian process modeling [15], our



method combines an information-theoretic sampling-based
planner with a spatiotemporal covariance function imple-
mented as a separable kernel to access the information gain
from the locations of candidate sensing locations both in
space and time. This also allows for both inference of the
state and inference of model uncertainty for unexplored
parts of the system and establishes a criterion for revisit-
ing already-observed locations that no longer meaningfully
reduce uncertainty of the system’s current state.

The contributions of this work are:
• A framework for reasoning about the information con-

tent of observations in arbitrary dimensions reconciled
to a metric appropriate for path planning

• The integration of this spatiotemporal information func-
tion in a novel time-aware informative planner for
terrestrial monitoring

• Validation of the approach in the context of spatial and
temporal priors with simulated and real-world dynamic
scenarios inspired by common environmental dispersion
processes

• Exploration of interactions between the parameters gov-
erning the planner and the model

Our work opens up several avenues for consideration: the
continuous update of spatial and temporal priors through
adaptive planning, extensions into multi-robot systems, com-
bined sensing modalities for prediction in multiple dimen-
sions (in a manner similar to Co-Kriging in the geostatistical
literature), and extensions into different classes of multi-
output Gaussian processes. Our framework will be open-
sourced, for use in future investigations.

This paper is organized as follows: Selected related work
is presented in section II. The problem formulation is in-
troduced in section III and our methods are discussed in
section IV. In section V we experimentally evaluate our
proposal and conclude in section VI.

II. RELATED WORK

This paper draws from a rich body of literature, surround-
ing the task of collecting observations by an autonomous
agent for modeling the distribution of a variable of interest in
the environment. IPP approaches have been extended to en-
compass different sensing modalities (e.g. altitude-dependent
sensor models [26]). Notably, most IPP approaches consider
the spatial phenomenon to be static or at steady-state, or they
assume that the phenomenon does not change meaningfully
during the duration of the survey.

IPP for robotic planning is similar to methods which seek
to optimize the placement or visitation of environmental
sensors [21]. IPP problems that employ an adaptive planning
approach re-compute vehicle trajectories as observations are
collected. This approach can be framed under the category
of problems which involve sequential decision-making with
uncertainty, which in turn can be formally described as
a Partially-observable Markov Decision Process (POMDP)
[18]. As a constrained optimization problem, IPP shares may
qualities with the orienteering problem [8].

Other methods leverage optimization techniques to de-
termine the most informative route through a collection of
candidate actions or locations. These approaches include
Bayesian optimization [2], evolutionary algorithms [25], and
reinforcement learning [27].

The asymptotic optimality of rapidly-exploring random
trees (RRT) has been leveraged to solve IPP tasks in a com-
putationally tractable manner, including exploration applica-
tions where the robot is tasked with monitoring an unknown
parameter of interest [19]. Rapidly-exploring information
gathering (RIG) algorithms approach the IPP task using
incremental sampling with branch and bound optimization
[16]. Our work builds on [17], which extended RIG with an
information-theoretic utility function and a related stopping
criterion.

III. PROBLEM FORMULATION

In this work, we consider the problem of reconstructing a
dynamic scalar field given a limited number of observations,
collected along a path. Paths are generated using a receding-
horizon approach, alternating between planning and execu-
tion of the plan until the traveled distance exceeds the budget
B or a prediction window tmax. The task can be formulated
as a constrained optimization problem, where information
quantity is to be maximized subject to an observation cost.
In [16], the task is specified follows:

P∗ = argmax
P∈Ψ

I(P) s.t. c(P) ≤ B (1)

where P∗ is an optimal trajectory found in the space of
possible trajectories Ψ, for an individual or set of mobile
agents such that the cost of executing the trajectory c(P)
does not exceed an assigned motion budget, B. I(P) is
the information gathered along the trajectory P , and the
movement budget can be any cost that constrains the effort
used to collect observations (e.g., fuel, distance, time, etc.)

This paper inherits the assumptions of the original RIG
formulation and of prior sampling-based motion planning
literature [16], [19] and adds the following assumptions with
respect to time:

1) The state of the robots and the environment are mod-
eled using discrete time dynamics

2) Movement of the sampling agent is anisotropic in the
time dimension (see: section V)

To quantify the information content of a trajectory, we
employ a utility function that optimizes for a reduction in
the posterior variance of the GP used to model the environ-
ment. This follows from framing the information gain of an
observation as a reduction of map entropy or uncertainty.
In [5], the authors present an approach for quantifying the
information content of a map M as its entropy H and the
information content of a new observation Z as the mutual
information between M and Z, denoted as I(M ;Z) and
defined as follows:

I(M ;Z) = H(M)−H(M | Z) (2)



We take advantage of the submodularity of mutual in-
formation; that is, the information gained by adding an
observation to a smaller set is more useful than adding
the same observation to a larger (super-) set (See [22]
for an analysis of the benefit of submodular information
functions for informative sensing applications and [14] for
the submodularity of mutual information.)

From the perspective of the environmental modeling task,
a useful survey is one that produces the most accurate
representation of the environment, minimizing the expected
error given field observations. This follows from equations
(1) and (2). This assumption holds when the model is well-
calibrated with respect to the priors embodied in the model
parameters 1. Our approach can be extended to an adaptive
planning scenario, where model hyperparameters are updated
based on new measurements and future path plans leverage
the updated model. In previous work, we have demonstrated
how model priors can encode modeler intuition, resulting in
sampling strategies that vary in the degree if exploration [4].

IV. METHODS

A. Environmental Model

We describe the spatial distribution of an unknown
stochastic, dynamic environmental process occurring in a
region ξ ⊂ R2 as a function f : X → R that is sampled
and modeled at the discrete grid, X ⊂ RNt×Nx,y . Here Nx,y

is a discretization of the spatial domain ξ, while Nt is the
temporal domain in which the spatial process evolves.

The environmental map comprises this function f that
describes our observations yi, plus some additive measure-
ment noise εi, i.e., yi = f(xi) + εi, where we assume
that this noise follows an i.i.d. Gaussian distribution with
zero mean and variance σ2

n: ε ∼ N
(
0, σ2

n

)
. We assume

that f is a realization of a Gaussian process, represented
as a probability distribution over a space of functions.
Through marginalization, we can obtain the conditional
density f | y = N (µf |y,Σf |y). The joint distribution of
observations y, {f(x1)+ε1, . . . , f(xn)+εn} and predictions
f , {f⋆, . . . , f⋆n} at indices Xi, t, {x(st)

1,1 , . . . , x
(st)
m,n} becomes:

[
y

f(x⋆)

]
∼ N

(
0,

[
k(X,X) + σ2IN k (X, x⋆)

k (x⋆,X) k (x⋆, x⋆)

])
(3)

where s and t denote spatial and temporal indices re-
spectively. Here, environmental observations y, are drawn
from a training set D of n observations, D = (X,y) =
{(xi,t, yi,t) | i = 1, . . . , n}. k is the covariance function (or
kernel), σ2

n is the variance of the observation noise, and
input vectors x and query points x⋆ of dimension D, are
aggregated in the D× n design matrices X and X⋆ respec-
tively. From the Gaussian process, we can obtain estimations
of both the expected value of the environmental field and
the variance of each prediction. Noteworthy is the posterior

1Refer to Section V and Figure 3 for discussion of the consequences
when this assumption does not hold

variance, which takes the form:

σ = V [f⋆] = k (x⋆, x⋆)− k (x⋆,X)× (4)[
k(X,X) + σ2

nIn
]−1

k (X,x∗)

The differential entropy of a Gaussian random variable is a
monotonic function of its variance, and can be used to derive
the information content of a proposed measurement. We will
show how this can be used to approximate information gain
(equation (2)) in subsection IV-D.

It is important to note that for fixed kernels the variance
does not depend on the value of the observation, allowing us
to reason about the effectiveness of a proposed observation
before traveling to the sampling location [23]. Also notable is
the kernel k which establishes a prior over the covariance of
any pair of observations. Separate priors can be established in
spatial or temporal dimensions, leading to the opportunity to
incorporate spatial and/or temporal domain knowledge into
the planning process.

B. Spatiotemporal prior

The modeling effort can be framed as a multi-task (or
multi-output) prediction of correlated temporal processes at
each spatial discretization Nx,y . As we only have a finite
set of sampling vehicles (one, in fact), we cannot observe
all of the spatial "outputs" for a given time, however we
can establish a basis upon which they can be correlated
[12]. Specifically, the Linear Model of Coregionalization
(LMC) has been applied to GP regression where p outputs
are expressed as linear combinations of independent random
vector-valued functions f : T → Rp. If these input functions
are GPs, it follows that the resulting model will also be a
GP [1]. The multi-output GP (MOGP) can be described by a
vector-valued mean function and a matrix-valued covariance
function (see Equation (4)). A practical limitation of MOGPs
has been their computational complexity. For making p
predictions with n input observations y (t1) , . . . , y (tn) ∈
Rp, the complexity of inference is O

(
n3p3

)
in time and

O
(
n2p2

)
in memory [6]. A variety of strategies exist to solve

lighter, equivalent inference tasks under simplifying assump-
tions, such as expressing an output from linear combinations
of latent functions that share the same covariance function,
but are sampled independently [1]. Since our information
function is only dependent on the posterior covariance, we
can take advantage fast approximations with complexity
O(k(n+ p log p) (see discussion in subsection IV-D).

As mentioned earlier, the kernel k establishes a prior
likelihood over the space of functions that can fit observed
data in the regression task. For the regression of discretely-
indexed spatiotemporal data, where space is indexed by s (eg.
latitude/longitude) and time is indexed by t (eg. seconds),
we build a composite kernel by multiplying a spatial and
temporal kernel:

k((s, t), t(s′, t′)) = ks(s, s
′)kt(t, t

′) (5)

While other approaches to kernel composition are possible
and encode different environmental priors, constructing a



kernel that is separable along input dimensions affords con-
siderable computational advantages. More generally, when
k(x,x′) =

∏D
d=1 k

(d)(x(d),x′(d)), the kernel (Gram) matrix
K can be decomposed into smaller matrices K = K1⊗· · ·⊗
KD which can be computed in O(Dn

D+1
D ) time (see [31]

and [9] for more on kernel composition for multidimensional
regression.)

For the spatial relation, we use the Matérn kernel with ν =
3/2 and fixed hyperparameters. Comprehensively described
in [29], the Matérn kernel is a finitely-differentiable function
with broad use in the geostatistical literature for modeling
physical processes due in part to its ability to resist over-
smoothing natural phenomena with sharp discontinuities. It
takes the form:

KMatern(X,X⋆) = σ2 2
1−ν

Γ(ν)

(√
2v

l
r

)ν

Kν

(√
2ν

l
r

)
(6)

where Kν is a modified Bessel function , Γ(·) is the Gamma
function, and r is the Euclidean distance between input
points X and X⋆. ν > 0, l > 0, and σ2 > 0 are
hyperparemeters representing smoothness, lengthscale, and
observation variance respectively. We use a radial basis
function kernel (RBF or squared-exponential) in the time
dimension to smoothly capture diffusive properties that may
fade in time. Note that the Matérn kernel approaches the
RBF as ν →∞.

C. Informative Planning

In this work, we present a novel planner IIG-ST to
address IPP task defined in equation (1). Our planner
is built upon IIG-Tree, a sampling-based planner with
an information-theoretic utility function and convergence
criterion [17] and derived from the family of Rapidly-
exploring Information Gathering (RIG) algorithms intro-
duced by Hollinger and Sukhatme [16]. RIG inherits the
asymptotic cost-optimality of the RRT⋆, RRG, and PRM⋆

algorithms [20], a conservative pruning strategy from the
branch and bound technique [3], and an information-theoretic
convergence criterion (see discussion in subsection IV-E). We
add routines to consider the time dimension of samples in
the tree and combine it with a hybrid covariance function
and stopping criterion grounded in map accuracy.

D. Information Functions

From equation (2), we established information gain as the
reduction of map entropy H given a new observation Z.

If the map is modeled as a Gaussian Process where each
map point (or query point) is a Gaussian random variable,
we can approximate mutual entropy with differential entropy.
For a Gaussian random vector of dimension n, the differen-
tial entropy can be derived as h(X) = 1

2 log ((2πe)
n|Σ|). If

we let X ∼ N (µX ,ΣX) and X | Z ∼ N
(
µX|Z ,ΣX|Z

)
be the prior and posterior distribution of the random vector
X , before and after incorporating observation Z, then the
mutual information becomes:

I(X;Z) =
1

2

[
log (|ΣX |)− log

(
|ΣX|Z |

)]
(7)

where Σ is the full covariance matrix.
For a random vector X = (X1, . . . , Xn) with covariance

matrix K, the mutual information between X and observa-
tions Z can be approximated from equation (7) as:

Î(X;Z) =

n∑
i=1

1

2

[
log (σXi)− log

(
σXi|Z

)]
(8)

Using marginalization, for every Xi, it holds that V [Xi] =
K [i,i]. The expression becomes:

Î [i] (Xi;Z) =
1

2

[
log (σXi

)− log
(
σXi|Z

)]
(9)

and can be computed as the sum of marginal variances at
i: Î(X;Z) =

∑n
i=1 Î

[i](Xi;Z) (see [17] for a derivation).
The main motivation of using marginal variances at eval-

uation points (Equation (8)) is to avoid maintaining and
updating (inverting) the full covariance matrix. This is of
a particular concern for spatiotemporal modeling, because
the number of inducing points grows on the order of m× n
for a spatial domain of m rows and n columns. Alternate GP
formulations such as spatio-temporational sparse variational
GPs (ST-SVGP) allow for computational scaling that is linear
in the number of time steps [15] For computing the posterior
variance at GP inducing points, we use LOVE (LanczOs
Variance Estimates), for a fast, constant-time approximation
of predictive variance [24], [11].

Algorithm 1 Information_GPVR-ST()

Require:
Proposed robot pose or location from RRT/RIG
Steer p, current map/state estimate MD, co-
variance function k(·, ·), prior map variance σ,
variance of observation noise σ2

n, near node in-
formation Inear;

1: σ̄ ← σ ▷ Initialize updated map variance as the current
map variance

2: if Inear is not empty then ▷ Initialize information gain
3: I ← Inear
4: else
5: I ← 0
6: z ← Propose a future measurement at location p and

map M ▷ Calculate posterior map variance at training
and query points

7: σ̄ ← LOVE (X,X∗)
8: for all i ∈MD do
9: I ← I + 1/2

[
logdet

(
σ[i]
)
− logdet

(
σ̄[i]
)]

10: return I (total information gain), σ̄ (updated map vari-
ance)

Algorithm 1 details the procedure for updating a node’s
information content. In lines 6-8, the location of a future
measurement z at pose p, is added to the set of past
observations (training points) from the entire node graph.
This is used to create a new map state containing the previous
training points plus the new measurement and the preexisting
query points where the GP is evaluated. Next, the posterior



variance is calculated (lines 8) using LOVE (LanczOs Vari-
ance Estimates) [24], [11] to produce a posterior variance at
the proposed locations of training points X ∈ MD, query
points X∗ ∈MD, and the variance of observation noise σ2

n.
Finally, information content of the entire posterior map is
updated and the information gain is returned as a marginal
variance (lines 9-11).

E. Convergence criterion

The closely related Incrementally-exploring Information
Gathering (IIG) algorithm modifies RIG with an information-
theoretic convergence criterion [17]. Specifically, IIG bases
the stopping criterion around a relative information contribu-
tion (RIC) criterion that describes the marginal information
gain of adding a new observation relative to the previous state
the RIG tree (see Equation 15 in [17] for a comprehensive
discussion of the IIG algorithm and for a definition of
the RIC). There, it was used as a tunable parameter that
established a planning horizon for information gathering. In
this paper, we use posterior map variance as a lower bound
for mean-square error (MSE) (Equation (10)) at a arbitrary
test location in the GP, given optimal hyperparameters θ for
the GP regression model. We replace the stopping criterion
in IIG with a threshold established by the operator as the
lower bound of expected prediction MSE.

MSE
(
f̂⋆

)
≥ V [f⋆]︸ ︷︷ ︸

=σ2
⋆|y(θ)

(10)

It is important to note that this inequality holds for the
hyperparameters θ that produce an optimal predictor of f
(see Result 1 in [30] for a proof of Equation (10) using
the Bayesian Cramér-Rao Bound (BCRB).) In practice, θ is
learned from the data. For approximate (suboptimal) values
of θ, the bound of Equation (10) will not hold, as addi-
tional error is introduced from the unknown model hyper-
parameters. However, when coupled with adaptive planning
techniques to learn θ from observations, then the posterior
variance approaches the true lower bound of the MSE. A
deeper analysis of the implications of this application is a
target of future work.

F. Path selection and planning

Once the planner terminates (either by the convergence
criterion or after a fixed planning horizon), a path must
be selected from the graph of possible sampling locations.
We use a vote-based heuristic from [17] that ranks paths
according to a similarity ratio and biases towards paths that
are longer and more informative with a depth-first search.
In the simulated environment, parameters are set for vehicle
speed, sampling frequency, and replanning interval. The ve-
hicle alternates between planning, executing, and replanning
in a receeding-horizon fashion, such that 2-3 waypoints are
visited in each planning interval.

The path selection strategy is independent of the informa-
tive path planning algorithm and can be thought of as an
orienteering problem within a tree of sampling locations.

Fig. 2: A visualization of the benchmark (coverage) sampling sce-
narios (top: fluid simulation, bottom: ocean sampling simulation).
The posterior variance is depicted in the second panel, and the
posterior mean in the third, with near-zero values filtered show
the underlying structure. The coverage planners are given a path
budget and node budget equivalent to the median of the equivalent
metrics among all runs of the informed planners. Observations are
collected on a circlular coverage in the synthetic environment and
a lemniscatic coverage in the oceanic experiment.

V. EXPERIMENTAL EVALUATION AND DISCUSSION

In this section, we contrast our proposed spatiotemporal-
informed planner (IIG-ST) against a traditional coverage
survey strategy (see Figure 2), and an informed planner that
does not consider temporal variation (IIG). We evaluate the
accuracy of the final map representation at the end of the
survey period under varying choices of spatial and temporal
priors. We also consider the ancillary objective of making
predictions of the state of environment at arbitrary points
in time. This can be useful for objectives that wish to
reconstruct the dynamics of a system, such as modeling a
vector field. However, this is complicated by the fact that
the survey envelope is anisotropic in the temporal dimension
– the robot and sensor can only travel forward through time.

A. Experimental setting

Our objective is to model the end-state of a spatial
phenomenon that undergoes advection and diffusion in a
2D environment. This can represent the movement of a
substance of interest in a fluid, a porous medium such as
soil, or any number of similar natural processes. Two fluid
parcels are initialized with inversely-proportional velocities,
at opposite corners of a 500×500-unit gridded environment.
The fluid parcels advect and diffuse according to the Navier-
Stokes equations for an incompressible fluid, implemented
as a forward-differencing discretization without boundary
conditions.

We initialized the RIG-planner with fixed planning pa-
rameters: the vehicle can move a maximum of 100 map-
units, every 5 time-units. Replanning is done every 10 time
increments, and planning within each increment stops when
estimated V [f⋆] = 0.15. Sampling occurs once every 5
time increments. We set the time budget to be 100 units
and compute the accuracy of the final representation of the
map at t = 50 min. Map accuracy at different moments in



Fig. 3: [Advection/diffusion simulation] A comparison of map error and posterior variance (lower is better) at different locations in the
mission time for different spatiotemporal priors Optimal priors are chosen in the top left panel (ℓt = 20 and ℓs = 30) and become
increasingly suboptimal in other panels. IIG-ST (our planner) is compared the same planner lacking time information (IIG) and a circular
survey strategy. The error metric is expressed across the entire spatial domain at different time indices (denoted on the x-axis), and reflects
the error between the estimated map and the state of the environment at that time. Y-axis scales are shared between rows.

mission time are presented in Figure 3. While the planner
was not given a movement budget, the fixed speed of the
vehicle and finite time-horizon resulted in consistent numbers
of observations (M = 21.0, SD = 0.2) and path lengths
(M = 1236, SD = 36) among the informative planners.
The coverage baseline is given a proportional budget (21
observations, 1610 map units traveled). This is sufficient to
complete a full tour of the environment with revisitation (see
Figure 2). The full table of parameters set for the planner
can be found in the accompanying video. We executed the
experiments in a GNU/Linux environment on a 3.6 GHz Intel
i7-4790 computer with 11 GB of RAM available. All proce-
dures used single-threaded Python implementations for RRT
sampling from [28] and multi-threaded posterior variance
final map predictions were performed using implementations
from GPyTorch [11] without GPU or TPU acceleration so as
to simulate the resources available on an embedded system.

B. Consequences of the temporal prior
To demonstrate the consequences of incorporating a spa-

tiotemporal prior on informative planning in dynamic fields,
we use the composite covariance function given in equation
(5) both in planning and for evaluating the accuracy of the
final map representation. This is notable for the baseline
comparisons–while the coverage planner follows a determin-
istic trajectory, different map accuracies and variance reduc-
tions are expected depending on the choice of spatiotemporal
prior during the construction of the final map model.

For the temporal relation, we use a RBF kernel with
length scales of ℓt = 20, 100, 200 time units. The spatial
relation comprises a Matérn kernel with ν = 3/2 and length

scales of ℓs = 100 distance units. To verify that the robot
solves the problem in section III, we evaluate the root-mean
squared error between the map representation at t = 100
and the state of the field at the same time. As the planner
only requires the posterior covariance, it is not necessary to
produce continuous estimations of the map state, so the final
representation is computed once the simulation has ended.
20 episodes are run for each hyperparameter combination
and summaries of average error, average posterior variance
and standard deviations are found in table I.

In Figure 3, we examine the choice of kernel hyperparam-
eters on the performance of our planner. Optimal parameters
were established offline using the baseline samples and a
standard marginal log likelihood function and the Adam
optimizer in gpytorch (ℓt = 20 and ℓs = 30). These serve
as the basis of comparison in the top-left panel of Figure
3 and resulted the spatiotemporal planner outperforming
the temporally-naive and baseline planner for on average,
throughout the entire mission duration. Large lengthscales
imply a greater degree of correlation across space or time,
and result a greater reduction of posterior variance. A re-
duction of model uncertainty should translate to a higher
map accuracy, however this is not the case if the spatial
priors are unrepresentative. For example, while the coverage
planner had lower variance due to a longer path traveled
and more dispersed observations, the resulting map accuracy
was not better than the informative planners, leading to the
conclusion that the spatiotemporal prior did not reflect the
variation of the observed process. We want to emphasize that
path planning algorithms based around variance reduction



RMSE V

planner ℓs ℓt tmax tall tmax tall

IIG
30 20 0.781 (0.066) 1.123 (0.072) 0.686 (0.0) 0.664 (0.001)

100 0.612 (0.096) 1.035 (0.098) 0.64 (0.005) 0.626 (0.006)

100 20 0.762 (0.113) 1.288 (0.179) 0.645 (0.007) 0.547 (0.004)
100 0.75 (0.222) 1.093 (0.116) 0.462 (0.02) 0.413 (0.025)

IIG-ST
30 20 0.733 (0.089) 1.092 (0.064) 0.686 (0.0) 0.665 (0.001)

100 0.611 (0.121) 1.028 (0.135) 0.638 (0.005) 0.624 (0.006)

100 20 0.768 (0.101) 1.3 (0.238) 0.64 (0.004) 0.547 (0.005)
100 0.866 (0.194) 1.114 (0.117) 0.458 (0.014) 0.414 (0.017)

coverage
30 20 0.777 1.132 0.671 0.658

100 0.697 1.099 0.639 0.638

100 20 0.718 1.173 0.552 0.491
100 0.721 1.19 0.398 0.394

RMSE

planner ℓs tmax tall

IIG
5 6.654 (0.015) 5.499 (0.004)
40 5.934 (0.382) 4.926 (0.087)
100 3.835 (0.725) 3.777 (0.17)

IIG-ST
5 6.658 (0.013) 5.499 (0.003)
40 5.846 (0.305) 4.904 (0.072)
100 4.1 (0.739) 3.698 (0.252)

coverage
5 3.826 6.238
40 3.281 5.506
100 2.909 4.56

TABLE I: (L) [Advection/diffusion] Aggregated (n = 20) map accuracy (RMSE) and posterior variance (mean, std) of the spatiotemporal
planner (IIG-ST) compared to a spatial-only and deterministic survey strategies for fixed length scales. (R) [Ocean dataset] Aggregated
n = 20 map accuracy for the ocean water quality experiment (ℓt = 100 for all runs). Lower numbers are better. Note: standard deviation
values are not expressed for the deterministic planner.

should also place the metric within a broader context of the
practical objective – map accuracy.

Fig. 4: Example results from the ocean modeling experiments. (Top)
Map error as a function of mission time, (ℓt = 100). (L) Example
trajectory, with path trace projected above a representation of the
environment at t = 0. (R) Aggregated statistics from the figures in
the top panel.

For informative planners, the effect is magnified, as the
planner will move toward more dispersive sampling, thus
missing high-frequency spatial phenomena entirely. This is
demonstrated in the marginally improved accuracy and lower
posterior variance for IIG-ST when given a unrepresentative
spatial and temporal prior. In worst-case scenarios, a very
unrepresentative temporal prior (ℓt = 200) can reduce the
performance of the spatiotemporal planner below the baseline
(Figure 3, Col. 2). As the ultimate goal of informed robotic
sensing is model accuracy and not simply variance reduction,
hyperparameter optimization must be a key component for
accurate mapping and is a common practice in adaptive
planning [10]. Furthermore, a time-varying kernel could be
specified and optimized as observations of the environment
are gathered. Future work will investigate the effect and
performance of updating model priors during the course of

a survey mission.
The final map posterior is evaluated with the same spa-

tiotemporal kernel in all cases, regardless of planning method
to ensure a fair comparison between the methods. Only
the spatiotemporal planner (IIG-ST) is able to make use of
temporal variance during replanning. Training observations
are obtained from a point sensor model, where the a "sample"
is obtained by the simulated agent querying the ground-
truth scalar field at a sample location. We use a sparse
representation of posterior variance, evaluated at a 1/20
scale spatial resolution for a total of 25 × 25 × 50 query
(inducing) points. Recent advancements in spatiotemporal
GPs with separable kernels, enable computational scaling to
scale lineally in the temporal dimension, instead of cubic
[15]. These and other recent developments are reducing the
computational burden of large GPs and informative planning
with spatiotemporal information at a large scale.

C. Ocean particulate mapping scenario

We demonstrate our spatiotemporal IPP approach in a
syoptic-scale simulation using real-world ocean reflectance
data. The data was collected in an approximately 1500 x
1000 km region off the west coast of California from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
aboard NASA’s Terra and Aqua earth observation satellites
[13]. Rasters of weekly median reflectance from band 9 (443
nm wavelength) were assembled for the calendar year of
2020. Backscattered light in this wavelength band is highly
correlated with the concentration of suspended organic and
inorganic particles (e.g. sediments) in the water. In terrestrial
and oceanic waters, this can be used as an indicator of water
quality, which can guide management decisions related to
water diversion and treatment.

We simulated an autonomous aquatic vehicle (AUV) with
characteristics similar to the Wave Glider, which is an AUV
capable of extended oceanic monitoring campaigns by using
oceanic waves for propulsion. Based on the long-mission
average speed of 1.5 knots, our simulated vehicle could cover
a maximum of 330 km per week. We compare the perfor-
mance of our informed planner against a fixed lemniscatic
coverage pattern. As with the previous section, we evaluate



the RMSE of the map representation, both at the final time
step and at arbitrary temporal increments in the mission
envelope. Summaries of average error, standard deviations,
and posterior variance are presented in Table I and Figure
4. As with the previous experiment, posterior variance and
map accuracy are evaluated at a 1/20 scale spatial resolution.
Also, as with the previous experiment, the performance of
IIG-ST is sensitive to the choice of hyperparameters.

VI. CONCLUSION

This work presented an approach for environmental mod-
eling using a novel spatiotemporally-informed path planner.
We presented a framework for quantifying the information
gain of sampling locations based on their location and time
and quantifying the operative outcome – map accuracy. We
show that this informed strategy is computationally tractable
with modern computational techniques and can outperform
naive and conventional approaches, conditional on an ap-
propriate spatiotemporal prior. Multiple avenues for future
work lead from this effort. Adaptive planning can be used to
revise the spatiotemporal prior as measurements are collected
between replanning intervals. This approach can be extended
to consider time-varying kernels. variable sensor models, and
multi-robot systems.
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