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Abstract— We consider the Stochastic Orienteering Problem
with random traversal time for edges. In this scenario the length
of the path is a random variable and we consider a formulation
with chance constraints, i.e., a bound on the probability that the
length of the path exceeds the allotted budget. Our proposed
solution casts the problem as an instance of a suitably defined
Constrained Markov Decision Process and uses a Lagrangian
formulation to solve it. In particular, exploiting some structural
properties of the associated decision process we can solve
the Markov Decision Process using a Lagrangian approach
and efficiently determine the optimal Lagrange multiplier.
Our method is experimentally evaluated and demonstrated to
be significantly faster than previous solutions using a linear
programming approach to solve the Stochastic Orienteering
Problem with chance constraints.

I. INTRODUCTION

In this paper we consider a stochastic variant of a route op-
timization problem known as orienteering. The deterministic
version of the problem is formulated over a graph G where
every edge has a positive cost and every vertex has a positive
reward. Given a budget B, the objective is to find a path in G
of cost smaller than or equal to B that maximizes the sum of
rewards for visited vertices. The Orienteering Problem (OP)
has numerous applications in robotics because it is related to
problems like warehouse logistics, environmental sampling
and precision agriculture, just to name a few [3], [13],
[17], [19], [28]. Our previous works studied orienteering
on graphs modeled after grape vineyards [14], [22]–[24],
and while these proved useful for routing robots through
large vineyards, from a practical standpoint the presented
algorithms were limited as they did not consider the inherent
stochasticity of outdoors conditions for robotic operations
(see Figure 1 for an example). In these scenarios, it is useful
to model the cost of an edge as the time spent to traverse
it (or as the energy consumed to move along the edge), and
this parameter is often better described by a random variable
rather than a deterministic cost. When this type of uncertainty
is introduced, the cost of a path becomes a random variable
c, and therefore one is interested in the failure probability,
i.e., the probability Pr[c > B] that the cost exceeds the
allocated budget. When one puts a bound on this probability,
the formulation is known as chance constrained because it
aims at bounding the probability of a certain event.
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Fig. 1: A robot operating in a vineyard must service certain areas
associated with grapevines (shown as red dots) while obeying
movement constraints that limit travel between rows (shown as
blue lines). While movement costs between service areas may be
estimated as deterministic time, this cost is generally stochastic as
many factors influence how long a robot takes to move from point to
point. Mud, debris, human workers, machinery, etc. may be present
in the vineyard and effect movement within it.

In our recent works [20], [21] we used a formulation
based on Constrained Markov Decision Processes (CMDP)
to compute paths such that Pr[c > B] < Pf , where Pf is
an assigned bound on the failure probability. Starting from a
pre-computed path, the algorithm computes a path policy that
allows taking shortcuts, i.e., skipping some vertices along
the path to ensure that the failure bound is respected. While
this approach works, it does not scale well with the size
of the problem because the CMDP formulation is solved
using a constrained linear program (LP) that can generate
tens of thousands of optimization variables. Motivated by
these limitations, in this paper we tackle the same problem
using a different approach. Rather than using a LP to solve
the CMDP, we use a method based Lagrange multipliers.
This involves solving an unconstrained Markov Decision
Process (MDP) for a given choice of multipliers and then
updating the multipliers themselves. These two problems
are iteratively solved in alternation until convergence. In our



work we exploit some of the inherent characteristics of the
Stochastic Orienteering Problem (SOP) to expedite the pro-
cess. First, we utilize a composite state space ensuring that
trajectories followed in the state space has no cycles. This
guarantees that, for a given choice of Lagrange multipliers,
the MDP can be solved with a single pass over the state
space. Second, for the chance constraint, we demonstrate
that its monotonic structure allows the use of a bracketed
root finding method to search for the optimal Lagrange
parameter. By combining these two methods together, we
are able to solve problem instances at a fraction of the time
spent using the LP, and, more importantly, we manage to
solve instances that are too large to practically solve with the
LP approach. These results are substantiated by a significant
number of simulations for large problems. The remainder of
this paper is organized as follows. Selected related works are
presented in Section II, while in Section III we provide the
mathematical background. Section IV shows how a CMDP
can be used to formulate a SOP with chance constraints.
Our algorithms are presented in Section V, and evaluated
experimentally in Section VI. Finally, conclusions are offered
in Section VII.

II. RELATED WORK

Orienteering is a combinatorial optimization problem with
a long history. The deterministic version was introduced in
[11] and shown to be NP -hard. Most of its variants are also
NP -hard [12] and it was later on shown that the problem is
APX -hard [4]. Because of this intrinsic complexity, numer-
ous heuristic approaches have been developed [12], either
for the general case or for special cases [22]. Alternatively,
exact solutions based on branch-and-bound techniques were
developed [9], as well as approximate solutions [6].

The SOP is an extension of the OP where random costs
or rewards are considered, and it has received much less
attention. In [5], various heuristic methods were introduced
to solve it, but without considering chance constraints. In
[26] the authors consider a SOP with chance constraints and
propose a method based on sample average approximation
and a mixed integer LP formulation to solve it. The authors
present results on graphs with few tens of vertices. This
approach is later on extended in [27] where a risk-sensitive
formulation is introduced, as well as a dynamic version
of the problem where travel times along the edges are no
longer independent. Different from this work, none of these
references use a formulation based on MDPs or CMDPs.

III. PROBLEM FORMULATION

A. Stochastic Orienteering with Chance Constraints

Let G = (V,E) be a graph where V is the set of
vertices and E is the set of edges. Let r : V → R+

be a reward function associating every vertex to a positive
reward. For each edge e ∈ E let fe be a probability density
function (pdf) defining the stochastic variable modeling the
time spent to traverse the edge. We assume that fe has
positive support and finite expectation. Finally, let B > 0
be a positive budget. Given a path p in G, the reward of the

path r(p) is the sum of rewards of its visited vertices while
the cost of the path c(p) is the random variable obtained
by summing the random variables associated with each edge
along the path. For a given failure probability Pf , the SOP
with Chance Constraints (SOPCC) asks to determine a path
p that maximizes r(p) such that Pr[c(p) > B] < Pf . As
the deterministic OP is a special instance of the SOPCC, it
follows that the SOPCC is NP-hard.

B. Sequential Stochastic Decision Making

We provide a short recap on MDPs [2] and CMDPs [1]
since we use them to formulate a solution to the SOPCC. A
finite MDP M = (S,A,Pr, r) is defined as follows:
• S is a finite state space;
• A is a finite set of actions, with A(s) being the set

of actions available s ∈ S. We define the combined
state/action space as K = {(s, a) : s ∈ S, a ∈ A(s)}.

• P : K×S → [0, 1] is a transition kernel which describes
the probability Pr(s, a, s′) of moving to state s′ after
executing action a in state s.

• r : K → R is a reward function1 describing the reward
obtained r(s, a) for executing action a in state s.

A policy is a deterministic function π : S → a ∈ A(s)
mapping every state to an action. For a given policy π,
the sequence of states traversed is a stochastic process
and different reward functions can be associated to each
realization. For simplicity we consider just the total cost
formulation, where we assume that there exists a special
absorbing state sA ∈ S that is a sink state, i.e., once it is
reached the state is trapped and no more rewards are accrued.
We assume that for each policy π, the absorbing state sA is
reached with probability 1. Under these assumptions the sum
of rewards for vertices visited in each realization is a random
variable with finite expectation. It is known that for MDPs it
is sufficient to consider deterministic policies, and let ΠD be
the set of deterministic policies. For a given policy π let r(π)
be the stochastic variable describing the collected reward.
The classic MDP formulation asks to find the optimal policy
solving the following optimization problem:

π∗ = arg max
π∈ΠD

E[r(π)]

The definition of an MDP can be extended to a CMDP,
which is useful for decision making problems where
there are multiple objectives. A finite CMDP CM =
(S,A, P, r, β, cj , Uj) includes the properties of an MDP
defined above as well as the following:
• β(s) is a probability mass function describing the

probability distribution for the initial state s ∈ S.
• cj : K → R+ with 1 ≤ j ≤ J are J cost functions

representing costs accrued cj(s, a) for executing action
a in state s.

• Uj > 0 with 1 ≤ j ≤ J J are J constants representing
upper bounds on accumulated costs cj .

1We intentionally use the same letter used for the reward of the vertices
in G because they will be coincident in the following.



To optimally solve a CMDP [1], it is necessary to consider
stochastic policies, i.e., policies π : S → P(A(s)) which
associate to each state a probability mass function over
the set of available actions A(s). Let ΠS be the set of
stochastic policies. We consider again the case of absorbing
CMDPs where there is a special absorbing state sA that
is reached with probability 1 under every policy and that
once reached does not generate more rewards or costs. In
addition to the reward r(π), each realization generated by π
incurs J costs cj(π) that are the sum of all costs accrued
along the realization. Each of the cj(π), as well as r(π), are
stochastic variables with finite expectation. A CMDP asks
to find the optimal policy solving the following constrained
optimization problem:

π∗ = arg max
π∈ΠS

E[r(π)]

s.t. E[cj(π)] ≤ Uj 1 ≤ j ≤ J
This means finding a stochastic policy π∗ that maximizes the
collected reward r(π∗) while also limiting the accumulation
of each of the J costs below the upper bounds Uj .

Remark: In literature, discounted cost criteria are more
commonly found. Such formulations are appropriate for
the case of continuing tasks. The total cost formulation
we described above is more appropriate for episodic tasks
with finite duration. As we aim at using CMDPs to solve
orienteering tasks, the episodic approach and the total cost
formulation are chosen because orienteering is an episodic
task.

C. Solving Sequential Stochastic Decision Making Problems
MDPs are commonly solved using methods like Value

Iteration (VI) and Policy Iteration (PI). These are iterative
methods where repeated sweeps through the state space are
used to update the value function or policy until convergence
is obtained. In the case of VI one stops when the maximum
variation of the value function falls below a preassigned
threshold θ, while in PI the iteration ends when the policy
does not change anymore. For VI, one can then extract
the optimal policy from the value function. Both methods
are well known applications of the dynamic programming
principle. Dynamic programming is however not applicable
for the case of CMDPs and therefore different methods
are required to compute the optimal policy. One common
approach exploits a well known theorem that converts the
CMDP optimization problem into an equivalent constrained
LP [1]. Our past works in this domain [20], [21] used
the LP approach and the reader is referred to our former
papers for details. The drawback of this approach is that
one can easily generate problem instances with hundred of
thousand of optimization variables and very large associated
matrices defining the constraints. Alternatively, one can use
a Lagrangian approach defined as follows. Let λ ∈ RJ be a
vector with J non negative components. For a given λ we
introduce the following cost criterion rλ(π) for a policy π:

rλ(π) = r(π)−
J∑
j=1

λj(cj(π)− Uj)

As shown in [1] (theorem 9.9), a policy π∗ is optimal for
CM if and only if

r(π∗) = sup
λ

max

r(π)−
J∑
j=1

λj(cj(π)− Uj)

 .
The drawback of the Lagrangian approach is that the search
for appropriate multipliers often needs to be done numer-
ically. For each choice of λ, one has an associated MDP
(called a Lagrangian MDP) that can be solved either with VI
or PI. Different techniques have been proposed in literature
to efficiently search for the optimal vector λ [7].

IV. USING CMDPS TO SOLVE SOPCC

In this section we establish a CMDP formulation to solve
instances of the SOPCC, the basic version of which was
introduced in [20]. For a graph G with reward function r
defined over its vertices, let fe be the probability density
function (pdf) associated with edge e ∈ E. We start by
assuming that a path p = v1, v2, . . . , vn in G is given. This
can be built using any algorithm for the deterministic OP by
using E(fe) as the deterministic cost for edge e. Path p will
respect the budget constraint B in expectation only, and there
is no guarantee that the chance constraint Pr[C(p) > B] <
Pf will be satisfied. To ensure this, we introduce the concept
of a path policy defined over the path p. A path policy over
the path may visit all its vertices in sequence, or shortcuts
may be taken such that one or more vertices along the path
may be intentionally skipped (see figure 2). For example,
one may go directly from vi to some other vertex vi+j using
edge (vi, vi+j) where 2 ≤ j ≤ (n − i). The purpose of a
path policy allowing for shortcuts is so that the goal vertex
vn can be reached before the total travel time exceeds the
budget B, with a probability of failure Pf . In particular,
the path policy keeps track not only of the current vertex
along the path, but also of the remaining time. To compute
a path policy for a given path p, we frame it as a CMDP
CM = (S,A, P, r, β, c, U) with the following properties:
• The state space is S = (V × T) ∪ {sf , sA}, where T

is a discretization of time with N = dB∆e time steps
of length ∆ between t0 = 0 and tN = B, and tk is
the interval between [kδ, (k + 1)δ). The state (vi, tj)
represents arriving at vertex vi during time interval tj .
The additional states sf and sA are described later.

• Each state has an action set Avi = S(vi) where S is
the subset of vertices along path p occurring after vi.
Actions deterministically decide the next vertex.

• The probability of landing in successor state (vj , tl)
from state (vi, tk) taking action aj ∈ A is
Pr((vj , tl), aj , (vi, tk)) =

∫ (ti+1)∆

ti∆
[F (∆(tk+1)−ξ)−

Fvi,vj (∆tk − ξ)]dξ for vj = aj and k ≤ l, where F is
the cumulative function of the pdf for edge (vi, vj).

• r((vi, tk), a) = r(vi) which is the reward for vi in G.
• β = 1 for state (v1, t0) and β = 0 for all other

states, i.e., we always deterministically start from the
first vertex.



Fig. 2: An example of the shortcuts available to the path policy at
each vertex in a hypothetical path of length n = 4.

• The failure state sf defines when B is exceeded, and
the probability of landing in sf from state (vj , n) with
action aj is Pr((vj , n), aj , sF ) =

∫ +∞
Ns∆

d(ψ − n∆)dψ.
• All states at vn and the failure state sf have only one

action moving to sA, where Pr((vn, tk), aA, sA) = 1
for all k, and Pr(sf , aA, sA) = 1.

• c(sf , aA) = 1 and is 0 everywhere else.
• U = Pf .

It is easy to show that with this definition one defines
an absorbing CMDP, i.e., under every possible policy state
sA will be reached with probability 1. As we have formerly
shown [20], one can prove that the following CMDP problem
finds a path policy satisfying the chance constraint on the
failure probability

π∗ = arg max
π∈ΠS

E[r(π)] s.t. E[c(π)] ≤ Pf

The limit of this formulation is that one needs a fine grain
decomposition of time (large N ) and this generates a very
large number of optimization variables if a LP approach is
used to find π∗. Additionally, the use of an initial path limits
the maximum reward of a policy and therefore provides sub-
optimal results.

An extended version of the above process was developed
in [21], where the path p is augmented into a path tree. A
path tree defines “branches” on p such that upon arriving
at a certain state (vi, ti), an agent can change its course
and move toward vn along a sequence of vertices different
from the remainder of the original vi . . . vn. This new path
may contain some vertices in the original path as long as
they have not yet been visited, as well as new vertices that
were not originally included. The path for each branch is
computed in the same way as the original path, that is by
utilizing a deterministic OP solver, where the initial vertex is
vi rather than v1 and the budget is the difference between B
and the beginning of ti. Shortcuts are still allowed, however
once a path branch is utilized, it is no longer feasible to take
shortcuts to other branches or along the main path. Figure
3 shows how a path tree is connected, and the reader is
referred to [21] for complete details regarding this method.
With a path tree, the CMDP built to solve the SOPCC has
the same properties described above, and therefore the same
solution approach can be used to find its optimal policy
without modification.

Finally, the SOPCC cast as a CMDP results in a
state/action space that is acyclic, meaning the CMDP does
not contain actions that allow states to be visited more than
once. This acyclic property is provided by two conditions
satisfied by this problem

Fig. 3: An example of a path tree with two additional branches.
The black arrows represent the flow of the original path as well as
the branches. The red arrows are possible shortcuts available to an
agent at vertex v1, which allow it to move anywhere in the path
tree.

• For any two states si and sj , if sj is reachable from si,
then si is not reachable from sj .

• Any action a leading from state s back to s must have
r(s, a) = 0 and cj(s, a) = 0 for all 1 ≤ j ≤ J .

For acyclic CMDPs (and acyclic directed graphs in general)
it can be shown that the state space has a consistent topo-
logical ordering, i.e., an arrangement of states that does not
change for any trajectory. Formally, it means that for every
action a ∈ A leading from state s to s′, s′ occurs later in the
ordering than s. For example, for a CMDP with a topological
ordering si > · · · > sj , all trajectories containing both si
and sj will have si occurring before sj regardless of states
in between. A path policy for the SOPCC will have this
property because of the initial path p, which dictates that all
vertices not skipped are visited in a certain order. Topological
ordering becomes important when proving Theorem 2.

V. EFFICIENTLY SOLVING THE SOPCC

Typically, solving CMDPs using the Lagrangian method
requires two inner functions which compute a policy π
for the current Lagrangian MDP and evaluate π for the
unmodified CMDP, and an outer function which loops over
the two inner functions and iteratively modifies the value
of the vector λ until some stopping criteria is met [7]. In
this section we show how exploiting some properties of
the formulation allows us to efficiently determine the policy
solving the CMDP presented in the previous section. Our
method consists of a modified version of value iteration to
replace the two inner functions, and two alternative ways
to perform the λ update based on bracketed root finding
algorithms. The Lagrangian MDP is a standard MDP whose
immediate reward function parameterized by λ ∈ [0, 1] is

rλ(s, a) = (1− λ)r(s, a)− λc(s, a) (1)

The following theorem from [1] establishes a relationship
between the optimal stochastic policy for the CMDP and the
optimal deterministic policies for Lagrangian MDPs.

Theorem 1. The optimal policy π∗ for a CMDP with a single
constraint is a randomized mixture of two deterministic
policies of its Lagrangian MDP, i.e.,

π∗ = σπ∗λ1
+ (1− σ)π∗λ2



where π∗λi is the optimal policy for the Lagrangian CMDP
for λi and σ is a suitable mixing parameter to be determined.

Note that the theorem does not imply that the optimal
policy is the mixture of any two deterministic policies for
the Lagrangian MDP, but rather that there exists two such
policies. As we will see later, it is possible to use a bracketed
root finding method to search for the optimal λ value. Clas-
sical methods proposed in literature [10] suggest to start the
search for the optimal λ between 0 and a value “sufficiently
large”, but it is in general not obvious how to pick this
second value. Using the formulation we provide, with λ = 0
the reward rλ gives an MDP maximizing only r without
considering c, while with λ = 1 the reward rλ gives an MDP
that minimizes the additional cost c without considering r.
Moreover, note that rλ(s, a) is strictly decreasing when λ
increases, and consequently the total cost for the associated
MDP is also strictly decreasing as a function of λ. As we
will show in Algorithm 2, the immediate cost function in
Eq. (1) allows for determining a λ value for which the
constraint E[c(π)] ≤ Pf is active, consistent with the theory
of constrained optimization.

Algorithm 1 computes the maximum reward policy ac-
cording to the rλ while also determining the value of
Rλ(s), R(s), C(s) for each state according to the policy
using rλ(s, a), r(s, a), c(s, a). This allows us to find a policy
for the Lagrangian MDP while simultaneously evaluating the
policy for both reward and cost on the original CMDP.

Algorithm 1: Value Iteration
Input : P, rλ, r, c
Output : Rλ, R, C, π

1 Rλ(s)← 0, R(s)← 0, C(s)← 0 ∀s ∈ S
2 δ ←∞
3 while δ ≥ θ do
4 forall s ∈ S do
5 r ← Rλ(s)
6 π(s)←

argmaxa
∑
s′,rλ p(s

′, rλ|s, a)[rλ +Rλ(s′)]

7 Rλ(s)←
∑
s′,rλ p(s

′, rλ|s, π(s))[rλ +Rλ(s′)]
8 R(s)←

∑
s′,r p(s

′, r|s, π(s))[r +R(s′)]
9 C(s)←

∑
s′,c p(s

′, c|s, π(s))[c+ C(s′)]

10 δ ← max(δ, |r −Rλ(s)|)

Generally, the while loop at line 3 will execute as long
as the max difference between state’s value after successive
iterations δ is larger than a preassigned constant θ. However,
we can exploit the topological ordering of our CMDP to
reduce computation down to a single iteration. Consequently,
value iteration can be modified to converge in a single
iteration through the state space. This is established by the
following theorem.

Theorem 2. Given an MDP where no state can appear
twice in a realization and with a single sink state that is
reached with probability 1, value iteration can converge to
the optimum value function in a single iteration.

Proof. The value function in this case can be computed

with a single backward pass of the topological ordering
starting from the absorbing state sA. We begin with setting
Rλ(sA) = 0, a value which will never change regardless of
the number of iterations performed, as it has no transitions
to other states. Next we consider states that can only proceed
to the absorbing state, which must exist because of the
topological ordering. Since Rλ(sA) is unchanging, so too is
the value of these states. We continue with states that have
not been evaluated and can only transition to states that have
(following reverse topological ordering) until eventually all
states have been evaluated.

Theorem 2 allows us to remove the while loop in line 3 of
Algorithm 1 by strategically arranging states in S according
to the reverse topological ordering, as the second iteration
of the algorithm will always result in δ = 0. For state
spaces with a temporal component (that is, the current state
always moves in the positive direction of one component
during every transition), this simply means sorting the states
according to their temporal component. Because of this,
on the Lagrangian MDP for the SOPCC presented in the
previous section, Algorithm 1 runs in O(S2) time, as we
can pre-sort the states in O(S logS).

The Lagrangian instantaneous cost in Eq. (1) is a weighted
sum of the two cost functions parameterized by λ. However,
the optimal λ value must be determined in order to obtain a
policy satisfying the constraint Pf , and in particular to make
the constraint active. As λ is defined within an interval, we
can use any bracketing root finding algorithm to close in
on it’s appropriate value. Algorithm 2 uses the bisection
method to iteratively determine an interval in which the
optimal value of λ lays for the given Pf on C, such that
the ends of the interval have a difference in reward R
no greater than ε. This algorithm allows us to control the

Algorithm 2: Lagrange Bisection
Input : P, r, c, Pf , ε, θ
Output : Rhi, Rlo, Chi, Clo, πhi, πlo

1 λhi ← 1 λlo ← 0
2 Rλ, R, C, πhi = V alueIteration(P, c, r, c)
3 Rhi ← R(s0)
4 Rλ, R, C, πlo = V alueIteration(P, r, r, c)
5 Rlo ← R(s0)
6 λ = 0.5
7 while (|Rhi −Rlo| > ε) and (|λhi − λlo| > θ) do
8 rλ(s, a)← (1− λ)r(s, a)− λc(s, a);∀(s, a) ∈ S ×A
9 Rλ, R, C, π = V alueIteration(P, rλ, r, c)

10 if C(s0) > Pf then
11 λlo ← λ
12 Rlo ← R(s0)
13 Clo ← C(s0)
14 πlo ← π
15 else
16 λhi ← λ
17 Rhi ← R(s0)
18 Chi ← C(s0)
19 πhi ← π
20 λ← (λlo + λhi)/2

precision of the approximation in two ways. The first is



with the parameter ε, which provides a maximum bound
for the difference in expected total reward (R(s0)) of both
policies πlo and πhi. Since we know the expected total cost
is monotonically decreasing as λ increases, we also know
that all policies between the two computed policies have
expected total rewards between them, and thus the maximum
deviation from the optimum policy will be no more than ε.
The second way to control the precision is with the parameter
θ, which provides a stopping condition for Algorithm 2 so
that it will terminate execution when the difference between
the two λ at the ends of the interval is sufficiently small
(and makes the constraint active). This is necessary because
the first stopping condition may never be satisfied, as the
expected total reward R(s0) is a step function over λ since
MDPs have a finite number of deterministic policies. The
optimal value for λ may lay on the edge of a step, and λhi
and λlo will never converge since they will approach from
opposite sides on different steps.

Algorithm 2 as presented stops after O(log( 1
ε )) iterations

in the worst case and in each iteration it executes Algorithm
1. Together with Algorithm 1, the worst case complexity is
O(log2( 1

ε )|S|2).
Instead of using the bisection method to find the optimal

value for λ, we could use the Illinois False Position method
[8] by swapping the formula in line 20 for the following:

λ← 0.5(λlo(Clo − Pf ))− λhi(Chi − Pf )

0.5(Chi − Pf )− (Clo − Pf )

The Illinois method usually converges faster than the bi-
section method, however it is not guaranteed to do so.
Nevertheless, it is included here as an alternative because
it does provide a significant speed improvement on average.

Theorem 1 states that the optimal stochastic policy for the
CMDP can be obtained as a mixture of two deterministic
policies for the Lagrangian MDP for different values of λi,
but it does not specify how to find the mixing parameter σ.
However, there exists a closed formula for σ (see [16], page
139). The key observation is that for the CMDP to be well
posed, the constraint E[c(π∗)] = Pf must be active for the
optimal policy π∗, and this leads to the following formula.

σ =
Pf − Clo
Chi − Clo

For mixing policies, π1 = πlo and π2 = πhi. This algorithm
runs in O(S2) time. The end results of using Algorithms

Algorithm 3: Policy Mixture
Input : π1, π2, σ
Output : π

1 forall s ∈ S do
2 forall a ∈ A(s) do
3 π(s, a)← σπ1(s, a) + (1− σ)π2(s, a)

1, 2, and 3 together is a policy for the acyclic absorbing
CMDP, computed in O(log2( 1

ε )|S|2) time, that satisfies the
constraint V2(s0) ≤ Pf and minimizes the expected total
cost V1(s0) within ε of the optimum.

VI. COMPARISON TO CONVENTIONAL LP METHODS

To asses the efficiency of our new methods, this section
compares the test results for our methods presented in
Section V to LP based solvers, using the original SOPCC
formulation with a single path p as well as the extended
version with a path tree, both of which are described in
Section IV.

The vertices v ∈ V for G are obtained sampling the unit
square with uniform distribution, and the reward for each
r(v) is a random sample from the [0, 1] uniform distribution.
G was made complete by inserted edges for all pairs of
vertices. Edge travel times are calculated as

αdi,j + E
(

1

(1− α)di,j

)
(2)

where di,j is the euclidean distance between vi and vj , E is
the exponential distribution, and 0 < α < 1 is a parameter
relating to the variance of edge travel time ((1 − α)di,j)

2.
This gives each edge a random, non-negative cost with
expectation equal to its euclidean distance. The initial path
p is calculated by solving the OP with the S-Algorithm [25]
using the expected value for each edge as its travel time.

Starting with the original SOPCC formulation, we varied
the length of the path p, because this is a proxy for the
size of the CMDP, and thus affects how long it takes to
find a solution. The number of vertices in the graph was
fixed to twice the length of the desired path, |V | = 2|p|.
Because B can effect the length of p, we did not fix B, but
instead allowed it to vary so that we could obtain consistent
lengths of p. Other parameters were also fixed, with ε = 0.1
and θ = 0.0001 to highlight the potential speed increases
without giving up much optimality, and α = 0.5 along
with Pf = 0.05 to show the method works even in highly
uncertain environments with tight failure constraints. For
each length of p, we created 10 random graphs and solved the
resulting CMDP using the Lagrangian method with Bisection
search and Illinois False Position search from Section V,
as well as using the LP formulation with the Interior Point
algorithm [18] and the Dual Simplex algorithm [15], [18] .
The Lagrangian method with both types of search were coded
in Matlab and the built in Matlab solver was used for the
LP method. While it is acknowledged that more efficient LP
solvers exists, by implementing everything in Matlab we can
establish a consistent timeline to evaluate the scalability of
the various methods. The tests were run on a Linux computer
with an Intel Core i7 6700k processor and 32GB of memory.

Figure 4 shows the average computation time for different
lengths of p, as well as the minimum and maximum com-
putation times for the 10 trials at each length. The trends
for the different solvers are noticeable after the path reaches
50 vertices. Both the Interior Point method and the Dual
Simplex method start to grow in computation time much
faster than the methods we propose. They also develop a
large variance in computation time while the variance for
our proposed methods stays small. For a path p with 100
vertices, it is clear that the Illinois False Position search
Lagrangian is the fastest (average time of 21.3s), followed



Fig. 4: A comparison of the time to solution for different methods
of solving the SOPCC using a CMDP, on lengths of paths up to
100 vertices.

Fig. 5: A comparison of the total reward error for the proposed
Lagrangian methods for solving the SOPCC using a CMDP, on
lengths of paths up to 100 vertices.

by the Bisection search Lagrangian (43.1s), then the Dual
Simplex LP (96.3s), and lastly the Interior Point LP (188.7s).
These results are to be contrasted to those presented in
[26], [27] where their mixed integer sample approximation
algorithm gave solutions within 600s when |V | = 63.

Figure 5 shows the average reward error for the two
Lagrangian methods. Since ε = 0.1, there is a maximum
of 10% difference from the optimum computed with the
LP formulation, however our trials show that in practice the
actual error is much smaller than the bound we set. For the
Bisection search, the largest error on the reward found was
2.79% when p had 20 vertices, and for every other trial the
error was less than 1%. Conversely, a trial with error of 0%
was found when p was of lengths 10, 20, and 40. This shows
it is indeed possible to find the optimal solution of an CMDP
using our methods. For the Illinois search, the largest error
was 1.71% when p had 90 vertices, and errors of 0% were
achieved when p had 10, 20, 30, 40 and 60 vertices.

Fig. 6: A comparison of the time to solution for the proposed
Lagrangian methods solving the SOPCC using a CMDP, on lengths
of paths from 100 to 200 vertices.

Fig. 7: A comparison of the time to solution for the proposed
Lagrangian methods solving the SOPCC using the path tree method,
on lengths of paths from 10 to 120 vertices.

For the Lagrangian methods presented in this paper, we
ran them on randomized SOPs with path lengths up to 200
vertices. Results of these trials are shown in Figures 6. The
LP methods were not included in these trials because time
and memory constraints made them impractical. As seen in
Figure 6, the trend for computation time continues, with
both methods showing a quadratic increase in time for the
path length. Every trial of the Illinois False Position Search
method was faster than the Bisection Search method.

Finally, we show that our proposed Lagrangian approaches
for solving CMDPs work just as well on the more complex
path tree SOPCC method. Figure 7 shows how favorable they
are compared to LP based solvers. Again we varied the length
of the initial route as a proxy to state space size, however
because the path tree method works by augmenting the
path with branches to other vertices, this method produces
CMDPs with much larger state and action spaces. Conse-
quentially, all of the CMDP solvers required significantly



more time to produce a solution. In particular, the Dual
Simplex LP took on average 391s to obtain a solution when
the initial path contained 100 vertices, versus the Illinois
search which took on average 147s for the same problems.
Beyond 100 vertices, the Dual Simplex method took too long
to complete and thus no results were obtained. Likewise,
beyond 90 vertices in the initial path, the Bisection search
Lagrangian performed better than the Interior Point LP, with
results showing a diverging trend in favor of the Bisection
search. Again in all cases, the Illinois False Position search
Lagrangian method was the fastest.

VII. CONCLUSIONS

In this work we studied the Stochastic Orienteering Prob-
lem with Chance Constraints (SOPCC), using Constrained
Markov Decision Processes (CMDP) as a solution method.
We utilize our previous work that presents a CMDP for-
mulation for the SOPCC by reducing the problem to a
deterministic version of Orienteering and finding an initial
optimistic path over which a path policy can be computed.
The path policy utilizes a composite state space of both
vertex and time, and allows for shortcuts to be taken in the
path so that the time budget can be observed with respect
to a given failure probability. Our previous method utilized
linear programming (LP) to find the optimal path policy,
however this method takes considerable time to compute.
Here, we present a much quicker method to compute the
path policy by taking a Lagrangian approach to solving the
CMDP. We use a bracketed root finding algorithm to find two
Lagrangian multipliers close to the optimal, which allow us
to create a mixed policy that is within a given error bound
of the optimal policy. Dynamic programming is used to
compute each Lagrangian MDP, and we exploit the inherent
topological ordering of our state space to speed up the Value
Iteration algorithm to be quadratic on the size of the state
space. Finally we experimentally show that our Lagrangian
approach for solving the SOPCC is very quick to converge,
beating two different LP based solvers and giving policies
that are within acceptable bounds of the optimal.

REFERENCES

[1] Eitan Altman. Constrained Markov Decision Processes - Stochastic
Modeling, Vol. 7. Chapman and Hall/CRC, 1999.

[2] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control,
Vol. 1 and 2. Athena Scientific, 1995.

[3] Graeme Best and Geoffrey A. Hollinger. Decentralised self-organizing
maps for the online orienteering problem with neighbourhoods. In
IEEE International Symposium on Multi-Robot and Multi-Agent Sys-
tems, pages 139–141, 2019.

[4] Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, Adam
Meyerson, and Maria Minkoff. Approximation algorithms for ori-
enteering and discounted-reward tsp. SIAM Journal on Computing,
37(2):653–670, 2007.

[5] Ann M. Campbell, Michel Gendreau, and Barrett W. Thomas. The
orienteering problem with stochastic travel and service times. Annals
of Operations Research, 186(1):61–81, 2011.

[6] Chandra Chekuri, Nitish Korula, and Martin Pál. Improved algorithms
for orienteering and related problems. ACM Transactions on Algo-
rithms, 8(3):23:1–23:27, 2012.

[7] Dejan V. Djonin and Vikram Krishnamurthy. Q-learning algorithms
for constrained markov decision processes with randomized monotone
policies: Application to mimo transmission control. IEEE Transactions
on Signal Processing, 55(5):2170–2181, 2007.

[8] Mark Dowell and Peter Jarratt. A modified regula falsi method for
computing the root of an equation. BIT Numerical Mathematics,
11:168–174, 1971.
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