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Abstract— We study a stochastic version of the classic ori-
enteering problem where the time to traverse an edge is a
continuous random variable. For a given temporal deadline
B, our solution produces a policy, i.e., a function that, based
on the current position along a solution path and the elapsed
time, decides whether to continue along the path or take
a shortcut to avoid missing the deadline. The solution is
based on a formulation using constrained Markov decision
processes to ensure that the deadline is met with a preassigned
confidence level. To expedite the computation, a Monte Carlo
simulation on an open loop policy is run to determine how
to adaptively discretize the temporal dimension and therefore
reduce the number of states and the number of optimization
variables in the associated linear program. Our results show
that the adaptive algorithm matches the performance of the
non-adaptive one while taking significantly less time.

I. INTRODUCTION

Orienteering is a classic graph optimization problem de-
fined over graphs where every vertex is associated with a
reward and every edge is associated with a cost. A path in
the graph collects rewards associated with all the vertices
visited, and incurs a cost given by the sum of the costs for
all traversed edges. If a path visits a vertex more than once
the reward is collected only once, but if an edge is traversed
multiple times, the corresponding cost is incurred each time.
In the classic formulation of the Orienteering Problem (OP),
one is given a graph with a maximum budget B, and the
objective is to find a path (also called route in the sequel) in
the graph that maximizes the collected rewards with a cost
no larger than B.

Significant research efforts have been devoted to studying
the OP and its variants, because it is a suitable model to
tackle many practical problems related to logistics or robot
task assignments. Our recent work in robot assisted precision
irrigation delivery [16], [18], [21], [22], [23] brought us to
consider the problem we study in this paper. When the OP is
used to model a robot servicing different locations spatially
distributed in a partially structured environment, the time
to traverse an edge is generally not a constant, but rather
a continuous random variable. Assuming that the density
function is known, a simplistic way to approach this problem
would be to assign each edge a deterministic cost equal to
the expectation of the random variable, and to reuse any
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of the existing methods to compute a solution. However,
such approach will generate a solution that when executed
will very often lead to realizations where the budget is
exceeded before the robot reaches the target vertex. In many
situations this is unacceptable. For example, overrunning the
budget may mean that the robot runs out of power and must
be manually recovered for recharging. A more principled
solution would be to compute not a route (i.e., a sequence
of vertices to traverse), but a policy that establishes where the
robot should move to next given the current position of the
robot and remaining budget. This idea captures the intuition
that if one is “running late” while completing the route
because traversing some edges took more than expected, it
would be advisable to skip some intermediate vertices to
make sure the last one is reached before the temporal budget
expires. A second aspect to consider is that unless the support
of the distributions for all the traversal times is compact
for all edges, there will always be a non-zero probability
that the final vertex is not reached by the given deadline.
Therefore the solution should be formulated with respect to
an acceptable failure probability.

Recently, we presented works on the Stochastic OP (SOP)
described above that are based on the idea of computing
a policy π(v, t) over a path defining which vertex one
should move to next if at time t it is positioned at vertex
v [19], [20]. These works have in common three main
concepts: 1) the use of an initial path found by reducing
the SOP to a deterministic simplification; 2) the idea of a
composite state space that combines vertices in the initial
path with arrival times; 3) the computation of a policy
by formulating the problem within a constrained Markov
decision process (CMDP) framework. In these works, the
composite state space necessitates a discretization of time,
however the method used was simply to discretize uniformly.
In this paper, we present a new method to discretize the
temporal dimension, such that we can use a coarser, yet
adaptive resolution informed by the statistics we collect
about the initial path. We validate this proposed approach by
comparison against the original uniform resolution method
and we show that it returns equally good solutions, but in
significantly less time.

The rest of this paper is organized as follows. Related
work is discussed in Section II, while the SOP is introduced
in Section III. In Section IV we discuss a fixed resolution
approach based on CMDPs, and in Section V we present
its adaptive extension. Numerical simulations are given in
Section VI and in Section VII we summarize our findings
and discuss future work.



II. RELATED WORK

The deterministic version of the OP was first formalized
in [12], where its NP-hardness was also proven. Later, it
was also shown that the problem is APX-hard [2]. Through
the years, numerous variants have been introduced, and the
reader is referred to the survey [13] for an overview of the
many derivative problems. Because of its intrinsic complex-
ity, various approximation and heuristic algorithms have been
proposed in literature. Approximation algorithms typically
produce solutions that satisfy the budget constraint, but
collect only a fraction of the optimal reward. In this context,
a c approximation would collect a reward of at least R/c,
where R is the reward collected by the optimal solution. To
the best of our knowledge, the best approximation algorithm
was proposed in [7], which provides a (2+ε) approximation
algorithm with time complexity of nO( 1

ε ) where n is the
number of vertices in the graph. An approximation algorithm
with factor (1−ε) was also proposed in [8], but is applicable
only to planar, complete graphs. Heuristic algorithms have
been widely used in practice, especially when solving large
problem instances, but heuristics working well in a wide
variety of cases have not been found, yet. Our recent works
[18], [21], [23] allow us to quickly solve very large instances
with tens of thousands of vertices, but are only applicable
to a very special type of graph particular to our application
(so called irrigation graphs). Note that while [21], [23] pro-
vide heuristic approaches, [18] provides a provably optimal
solution for an even more restricted class of graphs.

While there has been significant research devoted to the
OP with deterministic costs and rewards, the stochastic
version has received less attention. The SOP was introduced
in [5] where the authors introduce uncertainty both in the
time to traverse an edge, and in the time to service a
vertex. Solutions presented in [5] are either heuristic or
applicable only to specific graph topologies. Some versions
of the SOP use graphs with deterministic travel times and
instead introduce stochasticity with vertex processing times,
i.e., the amount of time needed to collect a reward after
arriving at some vertex. This case is studied in [14], where
the authors give approximation algorithms using both non-
adaptive and adaptive (policy driven) techniques. The non-
adaptive algorithm provides a constant factor approximation
and the adaptive algorithm provides a O(log logB) approx-
imation. The related literature [3] proves a lower bound for
the adaptivity gap of Ω(

√
log logB), which comes close

to the earlier provided approximation bound, however the
authors stop short of providing an algorithm that meets this
bound. These works consider maximizing expectation of the
collected reward only and, unlike the methods we present
here, do not examine risk sensitivity with respect to failure
probability.

More recently, [15] studied a variation of the OP where
each edge is associated with a survival probability and
considered how to deploy multiple agents to collect the
maximum reward while ensuring a minimum probability that
at least one survives. [10] considers a variant of the SOP

where travel times on edges are initially stochastic, but are
deterministic after realization with the first traversal of that
edge. This provides growing knowledge about the graph,
allowing an adaptive policy to be built that will reuse certain
edges which guarantee lower cost than what is expected for
a new edge. A non-linear chance constrained mathematical
program is given in [26] which provides a non-adaptive
solution SOP. The authors also introduce the dynamic SOP,
whereby the distributions of travel costs for each edge are
functions of time rather than static. [11] developed a mixed
integer program with sample average approximation and
a heuristic method to obtain good paths, however these
solutions are also not adaptive. The most similar work to
the problem we study in this paper is found in [25] where
the authors consider a risk-sensitive approach to the problem
formulation with stochastic weights and chance constraints.
Their solution is based on a mixed integer linear program
formulation but provides an open-loop solution, differently
from the solution we proposed that instead adapts online
based on actual incurred travel times.

III. PROBLEM DEFINITION

We start by defining the deterministic OP and then intro-
duce the stochastic version considered in [19], [20] and this
work. We assume the reader is familiar with basic notions
about graphs, such as paths, tours, cost of a path, etc.

1) The Deterministic Orienteering Problem: Let G =
(V,E) be an undirected, fully connected graph, c : E → R+

be an edge cost function, and r : V → R+ be a vertex reward
function. Given vs, vg ∈ V and B ∈ R+, determine a path
P starting at vs and ending at vg which maximizes the sum
of collected rewards and whose cost does not exceed B. The
cost of a path C(P) is the sum of the costs for all traversed
edges, with costs accrued every time an edge is traversed.
The sum of collected rewards R(P) is the sum of the rewards
for all visited vertices, but with each vertex contributing
only once, i.e., if visited multiple times, a vertex’s reward
is counted only once.

The version of the problem we introduced specifies both
the start and goal vertices, which may be coincident (requir-
ing then to return a tour). In some instances the problem
is defined without specifying the start and goal vertices.
Nevertheless, even this “simpler” version is NP-hard. In the
following we focus on the above definition, and later on it
will become evident how our findings generalize to the case
where one can pick the first and last vertex on the path.
Moreover, without loss of generality we can assume that the
graph G is complete. If this is not the case, additional edges
can be added with cost equal to shortest path between the
vertices they connect.

2) Path Policy: Let P be a path in G and let v1, v2, . . . , vn
be the sequence of all n vertices along P . For vi ∈ P we
define S(vi) = {vi+1, vi+2, . . . , vn}, i.e., S(vi) is the set of
vertices following vi in P and for convenience we define
S(vn) = ∅. Given a path P , a path policy π is a function
defined over P × R+ → P such that for each vj ∈ P and
each t ∈ R+ we have that π(vj , t) ∈ S(vj). In essence, for



Fig. 1: Upon visiting a vertex vi, the path policy π defines which
successive vertex one should move to next for the current value
of t. The possible next vertices include any further along in the
path P , such as vi+1, vi+2 . . . vn. By skipping ahead, for example
passing over vi+1 and directly visiting vi+2, one can decrease the
cost to reach the last vertex along the path, although doing so will
decrease the overall collected reward.

every t, π(vj , t) maps vj onto one of the following vertices
along the path. The reason to introduce path policies is to
formalize the idea of taking shortcuts along a path solving
an instance of the OP with random travel times along the
edges. Assuming an agent starts moving along the path at
time t = 0, the path policy introduces a formal way to skip
some vertices along the way based on the current time and
position. In particular, if the objective is to reach the last
vertex before the temporal deadline B, a path policy π can
be defined to skip vertices when the time t is approaching
B (see Figure 1).

3) The Stochastic Orienteering Problem: Let G, vs, vg , r
and B be defined as above. For every edge e ∈ E, let fe be
a probability density function (pdf) with positive support and
finite expectation. Every time edge e = (vi, vj) is traversed,
the incurred cost is not constant, but rather is a random
variable ci,j whose pdf is fe. For a path P = {v1, . . . , vn}
and a path policy π, an agent starts at time t = 0 in vertex v1

and moves to vi = π(v1, 0) arriving at time ti where ti is a
random variable with pdf fv1,vi . Once in vi, the agent moves
to vj = π(vi, ti) arriving at time ti + tj , where tj a random
variable with pdf fvi,vj . The process then continues until the
agent arrives at the last vertex in the path vn. In this case
both the cost to complete the path and the reward collected
along the path are random variables. In particular, we indicate
CP,π the random variable for the cost to complete path P
following policy π and RP,π the random variable for the
reward collected. For a given failure probability Pf , the
SOP asks to determine a path P and a path policy π that
maximizes the expected sum of rewards E[RP,π] and such
that Pr[CP,π > B] ≤ Pf .

For a given path P and path policy π it is always that
E[RP,π] ≤ R(P) because π can only skip vertices along the
path. The deterministic OP is evidently a special case of the
SOP, and therefore the latter is NP-hard, too.

IV. A FIXED RESOLUTION ALGORITHM

This section describes the basic method to obtain a path
policy π, which was introduced in [19] and used in [20].

For now, we assume that a path P in G is given. An
agent moving along the path P = {v1, . . . , vn} following
a path policy π moves from vertex to vertex, and when at
vertex v can move to any of subsequent vertices found in
S(v). The time to make this transition is characterized by
the pdf associated with the edge between the two vertices.

Thus, this transition sequence can be formalized by a Markov
Decision Process (MDP) with a suitably defined state space.
We assume the reader is familiar with MDPs and refer to
[4] for a comprehensive introduction. An MDP is defined as
M = {S,A,Pr, r} where S is the set of states, A is the set
of actions, Pr is the transition kernel, and r is the reward
function associated with every state/action pair. 1 For the
SOP from Section III, the MDP can be defined as follows.
• S = V × T, where V is the set of vertices in P

and T is a time discretization with step ∆. T is a
collection of k successive time intervals starting with
t0 ∈ T and continuing through tj = [j∆, (j+1)∆). The
composite state (vi, tj) represents the agent arriving at
vertex vi during the time interval associated with tj . In
the following, we say time tj for the whole interval.

• For each state (v, t) the action set is S(v).
• The transition kernel Pr defines the probability the next

state is (vj , tk), assuming that action a is executed
from state (v, ti), indicated as Pr((v, ti), a, (vj , tk)).
The action a is a state in S(v) indicating the agent will
move to vj next. Therefore the transition probability is
0 for all states (vi, t) with i 6= j. For states of the type
(vj , tk) where tk ≤ ti, the probability is 0 because the
agent cannot go back in time. For the remaining states,
Pr((v, ti), vj , (vj , tk)) =

∫ (ti+1)∆

ti∆
[F (∆(tk + 1)− ξ)−

F (∆tk − ξ)]dξ where F is the cumulative function of
the pdf f associated with the edge from v to vj . This
integral can be computed numerically off-line.

• The reward function r for ((v, t), vj) is r(v), i.e., the
reward associated with v in G.

For the defined MDP, we opt for an undiscounted reward
function while ensuring the reward remains bounded using
a sink state and a loop state. The sink state ss represents the
situation where the elapsed time is higher than the temporal
budget B, and therefore the chosen discretization step ∆
is chosen such that there will be N = dB∆e time intervals
in T. The transition kernel Pr is accordingly extended so
that for each vertex vi, Pr((vi, tk), vj , s) is the probability
that vj is not reached before the temporal deadline B. The
action set of the sink state ss consists of a single action
as leading to sl with probability 1 and has an associated
reward r(ss, as) = 0. The loop state sl absorbs all possible
runs of the MDP and bounds the cumulative reward. The
action set of the loop state sl consists of a single action al
looping to itself (hence the name) with probability 1 and has
an associated reward r(sl, al) = 0, meaning once entered
no more rewards can be accrued. Finally, for all states of
the type (vn, ti) (recall that vn is the last vertex along the
path), we add an action al leading to the loop state sl with
probability 1. Figure 2 illustrates the structure of the MDP
we just defined.

A policy for the MDP is a function π : S → A mapping
actions onto states, and in the proposed structure a policy

1With a slight abuse of notation, r refers to both the reward function
in G and the reward function in M because the latter is derived from the
former.
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Fig. 2: The MDP states can be imagined as arranged on a grid
with vertices (rows) and arrival times (columns). Here, arrows are
depicted for some of the transitions with non-zero probability. From
state (v1, t0) it is possible to go to any of the following states, and
when moving towards a specific vertex, the arrival time can be any
of the times ti > t0 because of the random nature of edge traversal
time. Reaching a vertex after the temporal deadline B has passed is
modeled as a transition to ss. Once vn is reached, a deterministic
transition is made to sl.

for the MDP is a path policy for the path P . With this MDP
structure, the probability of reaching sl is 1 under any policy
π. Therefore, we can consider the following undiscounted
reward function for some π and start state (v0, t0),

E[RP,π] = R(π) = E

[ ∞∑
i=1

r(Xi, π(Xi))

]
where Xi is the random variable for the state at time i
and the expectation is taken with respect to the probability
distribution induced by π. This expectation exists and is
finite because the state sl will be reached with probability
1 within a finite number of transitions and no more rewards
will be accrued. The MDP formulation, however, is unsuited
to solve the SOP we formerly defined, which constrains
the probability of exceeding the temporal deadline B to
Pf . Therefore, we use a constrained MDP (CMDP), which
aims to maximize a reward function while ensuring bounds
in expectation for other costs [1]. Fitting the definition for
a CMDP, a cost function is applied to each state/action
d : S × A → R+ such that it is 0 everywhere, except for
the state/action pair (ss, as) where it is 1. A CMDP defined
this way can be solved through the following linear program,
where the optimization variables ρ are defined over the set
of state/action pairs S × A and β is a function that is 1 for
the start state (v1, t0) and 0 everywhere else.

max
ρ

∑
(x,a)∈S×A

ρ(x, a)r(x, a)

s.t.
∑

(x,a)∈S×A

ρ(x, a)d(x, a) ≤ Pf∑
y∈S

∑
a∈S(y)

ρ(y, a)(δx(y)− Payx) = β(x) ∀x ∈ S \ {l}

ρ(x, a) ≥ 0 ∀(x, a) ∈ S ×A.

The linear program has a solution if and only if a policy
π can be found that satisfies the constraint on the cost, and
is uniquely defined by the solution vector ρ. The reader
is referred to [6], [9], [17] for a detailed discussion about
this approach. The optimization variables ρ(x, a), called
occupation measures, correspond to the following:

ρ(x, a) =

∞∑
i=1

Pr[Xi = x,Ai = a]

where Xi is the random variable for the state at time i and
Ai is the random variable for the action at time i. In this
particular CMDP structure, ρ(x, a) can be thought of as the
probability of encountering the state/action pair (x, a), and
therefore for any π the probability of entering each state
can be determined. We make use of this fact by setting
Pf as the bound for the sum of costs over ρ(x, a)d(x, a),
which is equal to the probability of entering the sink state
ss and violating the budget constraint. Thus, we arrive at the
following theorem, which we proved in [19].

Theorem 1: If the linear program admits a solution, then
the associated policy π fails to reach the last state vn within
time B with probability at most Pf . �

Following the CMDP based formulation is an algorithm
to solve an instance of the SOP introduced in Section III.

1) Create an instance of the deterministic OP, assigning
to every edge e the expected travel cost E[fe].

2) Solve the deterministic OP with any existing method
and let P be the returned path.

3) Use P to build and solve the CMDP described above
and return π.

The quality of the solution is dependent on the algorithm
used in step 2 to solve the deterministic OP. For small
problem instances one could obtain an exact solution using
the standard mixed integer program to solve the OP [13], or
a heuristic or an approximated method for larger problem
instances. The difficulty of this approach is that the uniform
discretization used to build S = V × T is wasteful, as it
uses the same resolution for states (v, t) with very small
probability of being reached as well as those with high
probability. In regions where there are many states with high
probability, one should use a discretization with a smaller
∆ to determine policies and this would increase the size
of the state space and ultimately the number of optimization
variables in the linear program to solve the CMDP. We tackle
this problem in the next section.

V. AN ADAPTIVE RESOLUTION ALGORITHM

In this section we propose a refinement of the previous
algorithm that performs an adaptive discretization of the
temporal dimension, as opposed to the uniform one we
introduced. As the time to traverse an edge is a continuous
random variable, it follows that the time when a vertex is
reached is a continuous random variable, too. Ideally one
would like to compute a policy of the type π(v, t), for
t ∈ R. A continuous time policy can be approximated with
a discretized policy and the approximation is better as ∆



shrinks. However, as we formerly discussed, this increases
the computation time. The idea, instead, is to allocate a more
fine grain time subdivision in high density temporal regions
and a more coarse one in low density temporal regions.
Here, with temporal region for a given vertex we mean the
possible distribution of times when the vertex is reached. The
algorithm is sketched in the following.

1) Create an instance of the deterministic OP assigning
to every edge e the expected travel cost E[fe].

2) Solve the deterministic OP with any existing determin-
istic method and let P be the returned path.

3) Simulate the path P for K trials and for each vertex
record the K times when it was reached.

4) For each vertex consider a temporal split in which L
times of arrival are in the same temporal segment.

5) Solve the CMDP obtained building the state space
where every vertex is paired with its associated tem-
poral split from in step 4, returning π.

Steps 3 and 4 deserve some additional explanation. In step
3, the path P produced by the deterministic orienteering
algorithm is repeatedly executed without considering any
policy, i.e., all vertices in P are sequentially traversed from
the first to the last, without considering the temporal deadline
B. During this process, for every vertex, we log the arrival
time and we can therefore numerically approximate the
temporal distribution of arrival times and its spread (see top
panel in Figure 3.) These temporal distributions are then used
in step 4 where, for each vertex v ∈ P , we build a tailored
temporal discretization based on the distribution collected in
step 3. In the algorithm described in Section IV, vertex v is
combined with each of the N uniform time intervals in T
and this gives S (plus of course the sink state ss and the loop
state sl). In the adaptive case, for each vertex v we build a
vertex-dependent temporal discretization Tv in which every
segment includes L of the samples collected in step 3. The
number of intervals in this case is therefore N = dK≤BL e
(Only samples where the arrival time is less than or equal
to B are considered, since arrival times larger than B are
encompassed by ss). Two special segments are created at
the beginning and end, i.e., the first temporal segment in Tv
starts at time 0, and the last one ends at time B.

While it is useful to consider the distribution of arrival
times to adaptively discretize the temporal dimension of the
state space, this approach has a fatal flaw. It considers the
arrival times produced by simulation the original path, rather
than actual arrival times of the policy. Thus there can be
instances where a state has a very coarse time discretization
but the resulting policy directs an agent to this state with
a high probability. For example, a policy might direct an
agent to always skip a vertex, so the next vertex is visited
with a time distribution that is much different than expected.
Additionally, there can be value (in the form of increased
expected reward) in a state space that limits the size of its
largest time intervals, as smaller intervals are more accurate.
There is no way of knowing what the distribution of arrival
times will be for a certain policy without first computing the

Fig. 3: First: distribution of arrival times at a certain vertex vi
following strictly P (K = 10000). Second: time discretization
built by the algorithm using a fixed-resolution approach with
10 intervals. Third: time discretization built using the adaptive-
resolution approach placing L = 1000 samples in each of the
10 intervals. Fourth: time discretization built by combining the
adaptive-resolution approach (K = 10000) with evenly spaced data
(K = 10000) obtaining a total of L = 2000 samples in each of the
10 intervals. Last: distribution of arrival times at vertex vi following
policies computed with each type of time discretization. Note that
each discretization has the same number of intervals.

policy, therefore it makes sense to generalize our estimate by
augmenting the simulated arrival times with evenly spaced
data on the interval 0 < t < B. This essentially combines the
fixed discretization method in Section IV with the adaptive
time method described above. Figure 3 shows an example of
the uniform, adaptive, and combined discretizations. Once
the set Tv is built for every vertex, the CMDP can be built
as in the fixed-resolution algorithm and solved.

An interesting aspect discussed in the next section is that
by using an adaptive approach one can reduce the number
of elements in each of the sets Tv while essentially keeping
the same performance as in the fixed-resolution algorithm.
Here, by same performance we mean that in expectation the
two algorithms both collect the same reward while ensuring
that the probability of reaching vn after B is less than Pf .
However, the combined fixed-adaptive resolution algorithm
is much faster because it has a much smaller state space.

VI. RESULTS AND DISCUSSION

In this section we present an overview of results obtained
simulating the methods described earlier. Vertices of the
graph G are obtained sampling the unit square with a uniform
distribution, and edges are added to make a complete graph.
Each vertex is associated with a constant reward sampled
from a uniform distribution over the interval [0, 1]. The
stochastic travel time between vertices is obtained as follows.
Let di,j be the Euclidean distance between vi and vj , and



0 < α < 1. Then, the travel distance along edge (vi, vj) is

αdi,j + E
(

1

(1− α)di,j

)
where E(λ) is a random sample obtained from an exponential
distribution with parameter λ. As per the properties of the
exponential distribution, it follows that the expected cost
of the random variable associated with edge (vi, vj) is di,j
and the variance is ((1 − α)di,j)

2. This shifted exponential
cost distribution is useful for modeling robotic movement
(a common application of stochastic orienteering), which
requires a minimum amount of time but may be significantly
longer. Other distributions are not considered, however any
with strict positive support may be used.

The fixed-resolution, adaptive-resolution, and combined
fixed-adaptive algorithms start computing a solution to the
deterministic OP using an existing algorithm. For problem
instances with less than 25 vertices, we use an exact solver
based on a mixed integer program formulation, while for
larger instances we use the the S-algorithm heuristic de-
scribed in [24] due to its relative speed and robustness. Both
algorithms can handle versions of the problem where the
start and end vertices are assigned or not. In either case, the
output is a path P whose expected length is smaller than or
equal to B. However, It is worth recalling that if one were
to follow all vertices in the path without using a path policy
π, the temporal deadline B would be often missed, and for
the setup we described this happens roughly half the time.

The initial orienteering path P remains fixed for a given
set of parameters across each of the methods introduced
in Sections IV and V so that a fair comparison can be
made. The fraction of collected reward is E[RP,π ]

R(P) , or the
expected reward collected by the policy divided by the total
reward collected by the deterministic orienteering path. In
every scenario, expected rewards account for failures as well,
where rewards stop accruing when the budget is exhausted
(no extra penalty is incurred since failures are already limited
by Pf ). Afterward, the route is discarded, a new graph G is
generated, and the processes is repeated until the methods
have been compared over 10 instances. The results computed
using a particular set of parameters are averaged for all
routes. We show reward results where the number of time
steps is varied while the length of P is fixed (Figure 4), and
results where the length of P is varied while the number
of time steps is fixed (Figure 5). We also show the average
computation times for each experiment in Figure 6.

Some patterns begin to emerge when analyzing how the
number of time intervals |T| changes the effectiveness of
each discretization method, seen in Figure 4. Firstly, we
see that the adaptive-resolution method performs favorably
compared to the fixed-resolution method when the number of
time steps is lower, however when |T| increases it becomes
worse. This is because the adaptive-resolution is based on
the arrival time distribution of the original path, without
considering shortcuts, and therefore lacks flexibility normally
afforded to path policies. Since ∆ gets smaller as |T| gets
larger, fixed intervals become increasingly useful. When

Fig. 4: Legend: Green indicates Pf = 0.01, red indicates Pf =
0.05, black indicates Pf = 0.1, solid lines indicate fixed-resolution,
dashed lines indicate adaptive-resolution, and dotted lines indicates
fixed-adaptive resolution. Top: Average rewards when |T| is varied
and α = 0.75. Middle: Average rewards when |T| is varied and
α = 0.5. Bottom: Average rewards when |T| is varied and α is a
uniform random variable on the interval (0, 1).



looking at the combined fixed-adaptive resolution method,
the results change. The combined method is much better
at maximizing reward collection, and it beats the other two
methods in every case. Additionally, the reward curve flattens
out early on, suggesting that the combined method reaches
the optimum reward collection quicker than the others and
less time intervals can be used for the same effectiveness,
increasing computation efficiency. When α is random for
each edge and Pf = 0.1, the fixed-adaptive resolution
method with |T| = 15 collects 83.62% of the total reward
in P , while the fixed-resolution method needs |T| = 30
to collect 83.57% of the reward. If using Pf = 0.05 or
Pf = 0.01, a nearly identical performance gap is achieved,
again with the fixed-adaptive resolution method needing half
as many time intervals as the fixed-resolution method. The
results are similar when α = 0.5 or α = 0.75.

Analyzing how the results change when varying the num-
ber of vertices in the original path |P|, seen in Figure 5,
reveals more patterns. For these tests, |T| was fixed to 15 and
the budget was adjusted for the desired |P|. The adaptive-
resolution method performs worse than the fixed-resolution
method with smaller |P|, however it gets better as this
number increases. This suggests that adaptiveness is more
useful as P gets longer, since arrivals at vertices further in
the path use less of the entire time range from 0 to B and
most of the fixed-resolution intervals become useless. Again,
the combined fixed-adaptive resolution method performs the
best in all cases. We also see a diverging pattern where the
gap between this method and the others increases as |P|
increases, again suggesting it is useful to use the ratio of |P|
to |T| as a performance metric. This makes sense since we
expect the resolution of each time interval to become more
critical as the length of the initial path increases, due to the
variation in arrival times at different vertices.

Lastly, we can analyze how |T| changes the computation
time needed for each method, seen in Figure 6. The com-
putation times shown are averages for every trial, including
time to simulate the initial route (adaptive and combined),
build state transition tables (all methods), and solve CMDPs
(all methods). These trials were run on an Intel 6700k
processor with 32GB ram and implemented using Matlab
with CPLEX to solve each CMDP linear program. Between
the three methods, the fixed-resolution approach is slightly
faster when keeping the time steps and number of vertices the
same, as it does not require simulation of the original path
or calculating how to split the time intervals (seen as the
gap in computation time). However, this does not account
for the increased reward when using the combined fixed-
adaptive resolution approach. Indeed, when comparing the
fixed-resolution method at |T| = 30 to the fixed-adaptive
method at |T| = 15, the combined method performance is
equal to the fixed method in reward collection, yet takes less
than half computation time to obtain solutions (average times
of 0.9165s and 2.211s, respectively). Overall, the presented
results clearly show the proposed algorithm combining fixed
and adaptive resolution time intervals offers a compelling
tradeoff between performance and computational effort.

Fig. 5: Legend: Green indicates Pf = 0.01, red indicates Pf =
0.05, black indicates Pf = 0.1, solid lines indicate fixed-resolution,
dashed lines indicate adaptive-resolution, and dotted lines indicate
fixed-adaptive resolution. Top: Average rewards when |P| is varied
and α = 0.75. Middle: Average rewards when |P| is varied and
α = 0.5. Bottom: Average rewards when |P| is varied and α is a
uniform random variable on the interval (0, 1).



Fig. 6: Average computation time when |T| is varied and α is a
uniform random variable in (0, 1). Legend: Green indicates Pf =
0.01, red indicates Pf = 0.05, black indicates Pf = 0.1, solid lines
indicate fixed-resolution, dashed lines indicate adaptive-resolution,
and dotted lines indicate fixed-adaptive resolution.

VII. CONCLUSIONS

In this paper we studied the stochastic orienteering prob-
lem where travel times between vertices are continuous
random variables with known pdfs. The objective is to
compute a policy that collects the maximum expected reward
while ensuring the probability of missing the deadline is
bounded. Our proposed solution builds upon our recent
work with CMDP based planners and exploits a carefully
designed MDP structure to associate failure probabilities
with occupation measures of ad-hoc added states. Starting
from the fixed-resolution CMDP implementation, we derived
a fixed-adaptive resolution extension that achieves the same
results in a fraction of the time, enabling us to solve much
larger problems. There are many venues for further research
on the proposed approach, and we mention two. First, it
would be interesting to better understand the theoretical prop-
erties of the proposed algorithm and how its performance
varies with the parameters governing its behavior. Second,
it would be interesting to derive an online version of the
algorithm whereby the adaptive temporal segmentation is not
computed offline, but rather at run time, thus capturing the
characteristics of the run being executed. These will be the
subject of future work.
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