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Abstract— In this paper, we consider the problem of main-
taining and restoring connectivity among a set of agents
(humans or robots) by incrementally redeploying a team of
mobile robots acting as communication relays. This problem
is relevant in numerous scenarios where humans and robots
are jointly deployed for tasks like urban search and rescue,
surveillance, and the like. In this case, as the humans move in
the environment, connectivity may be broken, and consequently,
robots need to reposition themselves to restore it. We study
the computational complexity of the problem, also in terms of
approximation hardness, and present an Integer Linear Pro-
gramming formulation to compute optimal solutions. We then
analyze the performance of the proposed resolution approach
against a heuristic algorithm taken from the literature, and we
demonstrate how our method favorably compares in terms of
solution quality and scalability.

I. INTRODUCTION

The ability to install and maintain a resilient communica-
tion infrastructure among a set of cooperating mobile agents
is one of the fundamental building blocks in many situations
requiring to maintain situational awareness. It is known
that mobile multirobot teams can be employed to solve
this task. For example, in search and rescue scenarios, first
responders search the environment for victims, while robots
are dynamically redeployed to provide them with a com-
munication infrastructure to support their operations [18].
Similar settings can be found in exploration of dangerous
environments and surveillance, just to name a few.

Despite significant efforts in this area, effective rede-
ployment of robots for communication maintenance still
represents and open problem characterized by significant
theoretical and practical challenges. Usually, it is tackled
in heuristic ways and/or by over-provisioning the commu-
nication infrastructure. Among its leading complications is
the fact that estimating the presence of communication links
between locations of an environment is a complex task.
Indeed, signal propagation in the physical world is subject
to countless sources of uncertainty (scattering, multipath,
fading, etc.), and analytic models fall short of being accurate
or useful in most practical scenarios [9]. Consequently,
incrementally deployed communication infrastructures are
often subject to loss of connectivity, and the problem of
recovering connectivity once it is lost is therefore of great
practical importance.

In this paper, motivated by the above scenarios, we tackle
the problem of maintaining and restoring connectivity among
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a set of agents (humans or robots) by incrementally rede-
ploying a team of mobile robots acting as communication
relays. This problem, introduced by Stump et al. in [26],
was originally investigated in the context of line-of-sight
communication maintenance and only addressed by means
of a heuristic method. Starting from this prior work, three
novel contributions advancing the state of the art are provided
in this paper:
• we propose a more general problem formulation that

efficiently leverages recently proposed methods for
communication links estimation [7], [21], [23];

• we perform a rigorous characterization of the computa-
tional complexity of the problem;

• we provide an exact resolution method, showing how
Integer Linear Programming (ILP) and state-of-the-art
separation techniques [11] can be leveraged to compute
optimal solutions in realistic instances with moderate
computational efforts.

To corroborate the practical impact of our findings, an
experimental comparison between our exact approach and
an heuristic method adapted from [26] is presented as well,
and we demonstrate how our method favorably compares in
terms of solution quality and scalability.

The remainder of the paper is organized as follows.
In Section II we discuss selected related literature in the
area of robot-networks and algorithmic matters related to
the combinatorial structure of the problem at hand. The
problem is formally introduced in Section III together with its
complexity characterization, with solving techniques given
in Section IV. The formerly proposed heuristic solution is
shortly presented in Section V along with a simple enhance-
ment, and then compared against our method in Section VI.
Finally, in Section VII we discuss the lessons learned, and
outline venues for future research.

II. RELATED WORK

The problem we consider in this work was originally
introduced in [26] as a possible heuristic for maintaining
communication among a set of mobile agents operating
in an environment. The proposed solution exploits a team
of robots acting as communication relays. The underlying
motivation is intuitive: instead of maintaining the agents
connected at all times, the continuous connectivity constraint
is relaxed in favour of a sequence of connected agents’
deployments. In such deployments, the agents can exploit an
additional set of robots to convey information in a multi-
hop fashion. The problem objective is therefore to form
connected relay chains that minimize the robots’ total travel



cost. The authors’ intuition related to the need of simplifying
a continuous communication requirement was appropriate
because the discrete multiagent connected path planning
problem (MCPP) [16] was recently shown to be PSPACE-
complete under a generic communication model [27].

From a more general perspective, we point out that the
study of the impact of different types of communication
constraints in multirobot information-gathering missions has
become a trending research topic in the last few years.
In a very recent survey [2], the connectivity requirement
of [26] (and hence the one investigated in this paper) is
classified as event-based. In the same class, [2] includes
also periodic connectivity (“be connected each T time
steps”) [16] and recurrent connectivity (“be connected when
new information is acquired”) [3], [8], [20]. Noticeably, the
already mentioned continuous connectivity has also been
investigated in information gathering settings [19], [22]. To
ensure these kinds of communication requirements without
renouncing robust long-term planning, it is common to resort
to conservative link-detection mechanisms capable of safely
predicting the availability of a communication link between
pairs of locations. For example, this can be done offline
either by exploiting some a priori communication model
(like limited-distance line-of-sight [4], [26]), or by devoting
an additional team of robots to a systematic mapping of the
communication characteristics of the environment [17], [23].
The latter task can also be carried out in an online fashion
using a regression framework such as Gaussian Processes [7],
[21], but in this case additional effort must be devoted to
keeping the prediction confidence into account. To cope with
possible false positives in the link-detection mechanism, [6]
proposes optimal and heuristic algorithms for computing
backup plans.

The problem we consider in this work is related to two
well-known combinatorial optimization problems, i.e., the
Steiner Tree Problem (STP) and the Linear (Sum) Assign-
ment Problem (LAP). The former is an NP-Hard optimiza-
tion problem [13] that can be informally stated as follows:
given a subset of “terminal” vertices in an undirected,
edge-weighted graph, find the sub-tree connecting them at
minimum cost. In spite of the general intractability of STP,
very good results can be achieved by leveraging suitable
ILP formulations, like [11]. In LAP, instead, one is given
n “persons”, n “jobs’, and a n× n matrix of costs for each
person/job assignment. The objective is to assign each person
to exactly one job so as to minimize the total assignment cost.
This problem can be instead solved in polynomial time. The
Hungarian method is one of the most famous algorithms for
LAP, and has complexity O(n3) [10].

The connection between the above combinatorial problems
and the communication maintenance problem, which was
already noted in [25], is as follows. In a graph whose edges
represent the availability of communication links between
any two locations, we need to connect a set of agents, which
can be thought as the STP terminals, by occupying a number
of locations equal to the number of robots at minimum
cost. However, contrarily to the STP, in the connectivity

maintenance problem such minimum cost is not given by
some weights on the edges. Instead, this is equal to the value
that is obtained by solving a LAP on an n × n cost matrix
where the cost cij represents the distance that robot i needs
to travel to reach location j.

III. PROBLEM FORMULATION

We model the environment with a multigraph G =
(V,E,C) with a set of vertices V and two set of edges
E and C describing both its physical and communication
features. The set of vertices V represents the set of possible
locations and can be obtained either by manually discretizing
the environment, or with automated techniques (see, e.g., the
experimental section of [26]).

The first edge set E models the physical topology of the
environment. Each physical edge (u, v) ∈ E with u 6= v
is associated with a positive integer number d(u, v) ∈ Z+

denoting the cost for traveling from u to v1. With a slight
abuse of notation, given any two vertices u, v ∈ V , we denote
with d(u, v) ∈ Z+ ∪ {0} the minimum cost for traveling
between them. Note that in this case we add 0 to the set
of possible costs, because we define d(v, v) = 0. To ease
notation, we call GE = (V,E) the physical graph and we
assume it is connected2.

The second edge set C encodes the communication topol-
ogy. If (u, v) ∈ C, a communication link is available between
the locations represented by u and v, and any two robots
occupying those locations are assumed to be capable of
exchanging data by means of some protocol. As commonly
assumed in literature, we assume that the set C is not affected
by false positives and that it is time invariant. Similarly
to what we did for the set E, we call GC = (V,C) the
communication graph.

A team of agents A = {ai} and a team of robots R =
{ri} are located in G, with starting locations denoted by the
function s : A ∪ R → V . We assume that the function s(·)
induces a connected subgraph on GC , meaning that agents
and robots are all connected at their starting locations, either
directly or indirectly. The team of agents is then relocated
to a new and possibly disconnected set of target vertices
t : A → V such that the subgraph induced by {t(a) : a ∈
A} ∪ {s(ri) : r ∈ R} on GC is not connected. With a
slight abuse of notation, we denote by t(A) the set of all
the target vertices occupied by the agents. The connectivity
maintenance problem can then be stated as follows:

Problem 1: Given 〈G,A,R, s, t〉, compute the robots’ re-
deployment goal locations g : R→ V such that:

1) the subgraph of GC induced by t(A) ∪ {g(r)|r ∈ R}
is connected;

2) the total distance traveled by the robots∑
r∈R d(s(r), g(r)) is minimized.

1Integer (or rational) numbers are usually preferred to reals in the
definition of combinatorial optimization problems to avoid representation
issues.

2Since GE represents a physical environment, it can also be assumed that
the cost d(u, v) associated with a physical edge (u, v) ∈ E is not greater
than that of any other (u, v)-path computed on GE .



A. Some Observations

Some remarks about Problem 1 are in order before con-
tinuing the discussion of its properties. First, we note that
the problem formulation of [26] considers an additional cost
term, scaled by a factor µ, in the objective function. Such cost
favors the mutual proximity of the goal locations of robots
in direct communication. In this work, we instead choose to
adopt an objective function based only on the distance. We
deem that the distance cost should have a prominent role
while other minor cost terms can be mitigated during the
problem modeling phase. For example, with respect to the
additional cost term of [26], the maximum robot-robot and
robot-agent communication distance can be enforced by a
suitable construction of the communication graph GC .

Second, the reader might have noticed that the agents’
starting positions, as well as the connectedness of the starting
deployment, do not play any role in the definition of the
objective function: therefore, it could be possible to omit
them from the definition of Problem 1. However, the heuristic
method of [26] (primarily designed for settings where the
agents’ locations do not change much between s(·) and
t(·)) requires them to prune the search space. We will show
that such a pruning rule can indeed work well when the
agents’ target positions are close to the corresponding start
positions, but it is not suitable when the agents’ redeployment
is substantially different from the previous one.

Finally, we note that Problem 1 does not contain any
constraints about the possible concurrent occupancy of the
same vertex by more than one agent/robot. In general,
enforcing each vertex to be occupied by at most one entity is
a requirement that should depend on the chosen environment
discretization. Regardless of such considerations, the follow-
ing proposition shows that, under two very mild assumptions,
it is always convenient to force each robot to occupy a vertex
on its own in the final connected deployment.

Proposition 1: Consider a generic instance of Problem 1
where:

(A1) all the robots’ starting positions are different and such
that {s(r)|r ∈ R} ∩ t(A) = ∅;

(A2) for any u, v ∈ V , there exists one shortest path between
them on GE s.t. if the physical edge (i, j) ∈ E is
traversed along the path, then (i, j) ∈ C too.

Then, in any optimal solution g(·) no robot occupies a vertex
already occupied by another agent/robot.

Proof: Any solution where at least one robot shares
its goal vertex with another agent/robot can be improved by
means of the following iterative procedure. At any iteration,
consider an arbitrary robot r still sharing its goal vertex g(r),
and relocate it along the shortest path to its starting position
s(r) corresponding to assumption (A2) until either (a) s(r)
is reached, or (b) an empty vertex v is encountered. Each
time a robot is relocated, the objective function improves
and the subgraph induced by the solution remains connected.
Moreover, each robot can be relocated at most |V | times,
since it will eventually reach its starting position. This
implies that the procedure will always terminate in a finite

number of steps. At the end of the procedure, each robot
will either be the unique robot on a vertex, or at its starting
position. By assumption (A1), this will not be shared with
any other agent/robot.

Since assumption (A1) often holds in practice (at worst,
it can be easily enforced by slightly modifying G) and
assumption (A2) should hold in any reasonable environment
discretization, throughout the rest of the paper we assume
that these two hypotheses hold.

B. Complexity

The next theorem shows that even finding a feasible so-
lution of a generic instance of Problem 1 is computationally
hard in the general case.

Theorem 1: Deciding whether a generic instance of Prob-
lem 1 admits a feasible solution is NP-complete, even when
GE is a tree with unitary edge costs and E ⊂ C.

Proof: The above decision problem is clearly in NP,
since the robots’ goal function g(·) (serving as certificate)
can be stored in polynomial space w.r.t. the input size and
the connectedness of the subgraph of GC induced by t(A)∪
{g(r)|r ∈ R} can be checked in polynomial time. For what
concerns NP-hardness, it is possible to build (in polynomial
time) from a generic decision instance of STP (see Section II)
with equal edge weights, which remains NP-complete [13],
a particular instance of Problem 1 such that the former has
“yes” answer if and only if the latter has a feasible solution.
Let S and B be the STP terminal vertices and the upper
bound on the STP edges available to connect the terminals,
respectively. One can map the STP graph to GC , the STP
terminal vertices S to t(A), and any spanning tree of the
STP graph to GE . Robots’ starting positions can be added
as dummy vertices suitably connected on GE and GC to
any STP vertex. Finally, the cardinality of R is set equal to
B + 1− |S|. We can assume that B is less than the number
of STP vertices and s.t. B + 1 > |S| since otherwise the
original STP instance is trivial.

Note, however, that the feasibility of instances where GE
is a tree and such that C = E (or even C ⊂ E), which are
usually treated with particular attention from a theoretical
point of view [24], can be decided in polynomial time. Since
in this paper we focus on a resolution approach for generic
problem instances, we leave for future work the study of
optimal algorithms for these special classes of graphs, as well
as a more precise characterization of the complexity profile
of the problem. For now, we just observe that Problem 1 is
an optimization problem belonging to the NPO class3, which
can be classified according to the existence of polynomial-
time algorithms with specific approximation guarantees [5].
The reader may be familiar with the APX complexity class,
namely, the class including problems for which there exist
constant-factor approximation algorithms. Since any feasible
solution of an NPO problem has a performance ratio bounded

3Informally, this is the class of optimization problems such that (a) the
set of instances is recognizable in polynomial time, (b) feasible solutions
have polynomial size and can be recognized in polynomial time, and (c)
the objective function can be computed in polynomial time [5].



by h2n
k

for some h and k (n denotes the input size), as a
corollary to Theorem 1 we have the following result.

Corollary 1: Unless P=NP, Problem 1 does not belong to
the exp-APX complexity class, namely, the class of NPO
problems for which there exists a O(2nk

)-approximation
algorithm for some k ≥ 0.

IV. OPTIMAL RESOLUTION

Despite the problem’s hardness, in this section we show
how to tackle its optimal resolution using an Integer Linear
Programming (ILP) formulation combined with state-of-
the-art separation techniques that leverage our problem’s
combinatorial structure.

We build upon the parallelism that, as outlined in Sec-
tion II, relates our setting to the Steiner Tree Problem. The
optimal resolution of STPs was recently addressed in [11].
Precisely, the work presents an ILP-based resolution method
for STPs with uniform edge costs and, more in general,
problems involving the optimization of a linear objective
function defined on the vertices of a connected subgraph.
We take inspiration from this recent result and build an
ILP model for Problem 1 exploiting the concept of node
separators, formally defined as follows:

Definition 1: For two distinct nodes u, v ∈ V , a subset of
nodes N ⊆ V \ {u, v} is called (u, v) node separator if and
only if after eliminating N from V there is no (u, v) path
in GC . A separator N is minimal if N \ {w} is not a (u, v)
separator, for any w ∈ N . Let N (u, v) denote the set of all
(u, v) separators.

We also define δv = {u ∈ V |∃(v, u) ∈ C} as the set
of all the neighboring vertices of v in GC . Our ILP model
encodes the optimal robots’ goal locations g(·) with a set
of binary variables xrv assuming value 1 iff robot r ∈ R is
placed in vertex v ∈ V \t(A). Moreover, an additional set of
binary yv variables is used to indicate whether vertex v ∈ V
is occupied by an agent or a robot in the solution. To ease
the notation, we use V ′ to denote the set V \ t(A). The ILP
reads as follows:

minimize
∑
r∈R

∑
v∈V ′

d(s(r), v) · xrv (1)

subject to ∑
v∈V ′

xrv = 1 ∀r ∈ R (2)∑
r∈R

xrv = yv ∀v ∈ V ′ (3)

yt(a) = 1 ∀a ∈ A (4)∑
n∈N

yn ≥ yi + yj − 1 ∀i, j ∈ V, i 6= j, (5)
∀N ∈ N (i, j)

yv ∈ {0, 1} ∀v ∈ V (6)
xrv ∈ {0, 1} ∀r ∈ R, v ∈ V ′ (7)

The objective function (1) minimizes the sum of the
robots’ redeployment costs4. Constraints (2) ensure that each

4The model can easily be adapted for the minimization of the maximum
traveled distance; see [6].

robot is placed in a single vertex not already occupied by
an agent, while Constraints (3) make sure that each vertex
is assigned to at most a single robot. Constraints (4) force
agents’ target vertices to be part of the final connected
subgraph. Finally, Constraints (5) make sure that the vertices
occupied by agents and robots induce a connected subgraph
on GC . This happens for the following reason: if vertex i
and j are occupied, then at least one vertex from any node
separator N ∈ N (i, j) must also be part of the solution in
order to ensure the existence of a path between i and j.

In order to solve ILP models with such an exponential
number of constraints, the customary approach prescribes
to gradually add them to the model as soon as the solver
provides a fractional or integer solution violating them. In
this work, we follow the suggestion of [11] and focus on
cutting off only infeasible integer points enumerated by the
solver. In particular, let ŷ be the integer solution vector
corresponding to y variables, and let Gŷ = (V,Cŷ) be a
graph where Cŷ = {(i, j) ∈ C|ŷi = ŷj = 1}. If ŷ is
infeasible, there exist at least two connected components
in Gŷ , Vi and Vj , such that i ∈ Vi, j ∈ Vj , and ŷi =
ŷj = 1. Let δ(Vi) be the set of the neighbor vertices of
Vi, i.e. δ(Vi) = {v ∈ V \ Vi|∃(u, v) ∈ C, u ∈ Vi}.
The algorithm below shows how to obtain a minimal node
separator N ∈ N (i, j), and can be implemented to run in
O(|C|) [11]. Note that we are interested in finding minimal
node separator inequalities (5) since they dominate the other
ones. In our current implementation, given an infeasible
solution, we add a violated Constraint (5) for each pair of
distinct, disconnected (i, j) vertices.

Algorithm 1 Detecting a minimal node separator between
two components Vi and Vj in Gŷ
Delete all edges in C[Vi ∪ δ(Vi)] from GC
Find the set Rj of nodes reachable from a vertex in Vj
Return N = δ(Vi) ∩Rj

To speed-up the model resolution, we also initialize the
model with the following additional valid inequalities:∑

u∈δv

yu ≥ yv ∀v ∈ V (8)

Constraints (8) express the following simple fact: if a vertex
is occupied, then so must be one of its neighbors.

Now, consider Constraints (2)-(3). For any integer feasi-
ble y vector, the corresponding constraint matrix is totally
unimodular: therefore, it is possible to relax the integrality
requirement on the x variables (7) while being ensured that,
among the set of all the optimal solutions, there will always
exist one where they all take integer values [10]. In fact, we
are precisely solving a LAP between the robots R and the
vertices in v ∈ V ′ such that yv = 1, while the xrv variables
associated with vertices such that yv = 0 all take value 0.

Consider also the following fact: if a feasible solution
with total cost U is available, then it is possible to re-
duce the number of xrv variables by creating them only if
d(s(r), v) ≤ U and feed the model with such a feasible



solution. Constraints (2)-(3) have to be slightly modified to
keep this variable pruning rule into account, but the total
unimodularity property still holds.

To conclude, we mention that different ways of enforcing
connectivity through a set of ILP constraints exist, resulting
either in compact formulations, such as those based on
single- and multi-commodity flows [14], or in non-compact
ones, such as those enriching the above model with an
additional set of binary variables modeling a “root vertex”,
or those explicitly modeling connections among vertices by
means of additional binary edge variables [1]. Evaluating
such formulations in our context is an interesting venue for
future research.

V. HEURISTIC RESOLUTION

As formerly discussed, the method proposed in [26] by
Stump et al. can be used to heuristically solve Problem 1.
We shortly recall some its salient aspects to contextualize
the experimental comparisons with our exact method that
we present in the next section. The formalization we report
here is the result of the adaptation of the algorithm to our
problem setting, and we refer the reader to [26] for a detailed
description.

In [26], the authors leverage the fact that any deployment
satisfying connectivity induces a connected topology among
agents and robots. This is represented by a tree where
vertices are given by A ∪R and edges correspond to direct
connections between them. The method, based on a dynamic
programming approach, deploys robots at minimum cost with
respect to a given candidate topology T . The cost function
Qb,v quantifies the cost of deploying a robot or an agent b
to vertex v, under the requirement of forming the topology
described by T . If b is an agent, then Qb,v is initialized to
0 if v = t(b) and to ∞ otherwise. Conversely, if b is a
robot Qb,v is initially set to d(s(b), v) for any v ∈ V . The
algorithm selects a root vertex b in T and, for any vertex
k, calls NT (k) the set of k’s children. Then, it computes Q
with the following recursive formula, where the superscript
(0) denotes the initial values:

∀v ∈ V, Qb,v = Q
(0)
b,v +

∑
k∈NT (r)

min
q∈V
{Qk,q +Kv,q}

In the above formula, Kv,q is an additional cost term
that, as we anticipated in Section III-A, is a trade off with
the distance cost, In [26], this cost was set to ∞ for non
connected pairs of locations. Since in this work we only
consider the distance cost, in our implementation we set
Kv,q = 0 if (v, q) ∈ C and ∞ otherwise.

To avoid an exhaustive enumeration of all the |V ||V |−2
tree topologies, the authors start from an initial topology
associated with s(·), and proceed by single-edge edits relying
on the underlying assumption of limited movement by the
agents, thus preferring topologies that are “close” to the
previous one.

Consider now the simple example instance show in Fig. 1,
where the agents “swap” their locations in t(·). In this case,
proceeding as suggested in [26] by single edge edits results in

𝑠(𝑎1) 𝑠(𝑟1) 𝑠(𝑎2)𝑠(𝑟2)

t(𝑎2) t(𝑎1)g(𝑟1)g(𝑟2)

Fig. 1: A simple example instance with GE = GC and
unitary edge costs. The robots’ goal function was obtained
with the algorithm of [26].

a suboptimal robots’ redeployment (having cost 4) where the
final topology is the same as the (unique) one associated with
s(·). Clearly, an optimal solution would have been obtained
by simply “swapping” the agents’ connections, i.e., having
a2 connected with r1 and a1 with r2. However, this would
have required to edit two edges. This example shows that
there are simple cases where the algorithm of [26] does not
return the optimal robots’ allocation on the selected vertices
of g(·). To ensure this useful property, we can enhance the
dynamic programming algorithm by simply solving a LAP
between the robots’ and the selected locations in g(·). In the
example, this allows to obtain the optimal solution whose
associated cost is 2.

VI. EXPERIMENTAL EVALUATION

In this section, we compare our proposed ILP based so-
lution with an implementation of the dynamic programming
algorithm of [26] in its “enhanced” version, as discussed
above (called DP from now on). Our tests were run on a
desktop computer equipped with an i7-7700K 4.2GHz pro-
cessor and 64 GB RAM. The code of DP was implemented
in MATLAB, while the ILP was solved with GUROBI [15]
(vers. 7.5.1) with default settings5. Preliminary experiments
on a restricted set of instances showed that, in general, it
is convenient to relax the integrality requirement on the
x variables. We remain consistent with this choice in all
the experiments. The separation procedure was implemented
through the GUROBI-Python interface, and all the graph-
related computations were performed using the freely avail-
able igraph C library [12]. In all cases, if the algorithm did
not terminate within one hour of computation, we stopped it
and returned the best solution found (if present).

A. Square grid graphs

To assess the scalability of our approach against DP in
a significant number of instances, we start by considering
randomly generated robots’ and agents’ deployments in
multigraphs G where GE is a square (4-connected) grid
graph, and GC approximates a limited-range communication
model. In particular, we considered square grid graphs of size
N×N , with N ∈ {10, 20, 30, 40}, with the distance between
two vertices being the Manhattan distance. For what concerns

5The code used in our experiments is open-source and available at
https://github.com/jacoban/rdcm.



Fig. 2: A randomly-generated C-type instance (grid size
30 × 30, |A| = 5, |R| = 15). Blue and red: start and target
agents’ locations. Green: start robots’ locations. Magenta:
initial topology provided to DP. The communication edge
set of a single vertex is also shown in black (D = 5).

the communication model, each vertex v ∈ V is assumed
to be in communication with all the vertices lying within
a square of side length 2D centered in v, where the value
of D depends on the particular set of experiments (see the
top-right corner of Fig. 2 for an example).

In the first set of experiments, we compare our approach
(ILP) with the heuristic method DP. To do this, we run both
algorithms on instances where the agents’ target locations are
close to their starting ones. This choice provides a fair com-
mon ground for the two methods, by generating instances
satisfying the agents-proximity assumption required by the
DP heuristic.

Specifically, we build a random dataset of instances as
follows. Starting locations, that is s(·), are obtained by ran-
domly sampling a subset of vertices of G and keeping only
those inducing a connected subgraph on GC . Agents’ goal
locations, instead, are chosen by uniformly drawing from
vertices that are connected to their starting locations (that is,
within the boundaries of the square of edge 2D centered at
the starting location) and such that (i) the subgraphs induced
on GC by t(A) and (ii) t(A) ∪ s(R) are not connected. We
set D to {2, 3, 5, 7} for N = {10, 20, 30, 40}, respectively,
and we consider two robots/agents configurations: |A| =
2, |R| = 7, as done in [26], and |A| = 5, |R| = 15. The
initial connected topology for DP is obtained by computing a
spanning tree on the subgraph induced by the vertices in s(·).
For each configuration we generate 20 random instances.
We dub these instances C-type (Close-type), and show an
example in Fig. 2.

The results of the comparison are shown in Fig. 3,
where we plot the heuristic gap value computed as (DP −
ILP )/ILP (algorithms names here denote the solution cost
they provide). For this set of instances ILP was able to
terminate with the optimal solution in all cases within 1

minute. The gaps show an increasing trend when dealing
with more agents and robots and demonstrate how DP is
able to actually find the optimal solution, although in a
limited number of cases. The overall assessment, however,
proves that the suboptimalities introduced by the heuristic
can be at times very large, with instances where the heuristic
solution is more than 20 times worse than the optimal one.
No significant trend can be observed as the grid edge size
becomes larger.

We do not provide a quantitative comparison between
the time spent by the two algorithms because they are
implemented using two languages with intrinsic performance
differences. Just to give a qualitative idea, ILP always
terminated with the optimal solution within 1 minute while
DP reached the 1 hour deadline approximately 60% of the
times, although this could be improved with a more efficient
implementation.

In the second set of experiments, we assess the scala-
bility of our approach in terms of the size of V and of the
number of agents/robots. We consider the same multigraphs
G of the previous set, but generate more challenging agents’
target functions, which will correspond to vertices lying far
from the starting locations. To build such instances, we start
from coordinate (0, 0) in the grid and place all the agents’
starting locations at (i, 0) for ai ∈ A. As soon as the
first row is completely filled, we change the y coordinate
and iterate this procedure until all the agents are deployed.
Robots’ starting positions are then placed according to the
same pattern, starting from the last agent. The agents’ target
function is selected by randomly drawing |A| vertices of
the grid while respecting the same constraints on t(·) of
the previous set of experiments (we make sure that such
instances admit at least a feasible solution). We dub these
instances F-type (Far-type).

First, we consider a fixed N = 20 (with D = 3) and
study how the computation times of ILP vary as a function
of the number of agents/robots. In particular, we consider
combinations ranging from 2/7 to 25/75. The box plots are
shown in Fig. 4(a) and highlight two interesting facts. First,
ILP is always able to obtain an optimal solution in less than
1 minute, except for an instance with 2 agents and 7 robots.
Second, the median trend assumes a bell shape. This is easily
explained by noticing that higher densities of agents/robots
result in instances where it is very easy to find connected
subgraphs inducing feasible solutions (recall that we are not
varying the communication range).

Then, we consider the same two combinations of
agents/robots of the first set of experiments, and study how
the compute times vary as a function of N . The results are
shown in Figs. 4(b)-(c). As expected, increasing the size
of the multigraph results in larger computation times. The
trend, however, shows a moderate growth and ILP is able
to compute an optimal solution within the deadline most of
the times. Precisely, in all the experiments reported in Fig. 4
ILP was always able to find the optimal solution except from
three distinct cases observed with |A| = 2, R = 7 where the
solver returned a solution with MIP gap not larger than 0.2.



Fig. 3: Comparison between DP and ILP: heuristic gap.

(a) (b) (c)

Fig. 4: Scalability analysis for the ILP. (a) Varying agents and robots (for fixed N = 20, D = 3). (b) Varying N (for fixed
|A| = 2, |R| = 7). (c) Varying N (for fixed |A| = 5, |R| = 15).

B. Real environment

To conclude, we present the results obtained on the same
real environment used in [26] and shown in Fig 5, whose
approximate size is 100m ×80m. We consider a simple grid
discretization in cells with side length ≈ 0.7m, resulting
in |V | = 1198. GC encodes a line-of-sight communication
model, with |C| = 101573. As observed in [26], such a fine-
grained grid discretization is not strictly required to obtain
good results in such a structured environment. Therefore,
it is reasonable to assume that, if ILP works well in this
case, it will also work well with discretizations resulting
in substantially less vertices, provided that they are able
to capture the environment topology (for instance, those
based on a polygonal decomposition of the environment). We
consider a setting where |A| = 2 and |R| = 7. Agents’ and
robots’ starting positions are chosen by randomly drawing
a subset of vertices inducing a connected subgraph on GC ,
while agents’ target positions are chosen randomly on V
(while respecting the same conditions discussed in the first
set of experiments of Section VI-A). Fig. 6 shows the results
obtained on 19 random instances6 in terms of time and
MIP gap after 1h of computation, confirming the viability of

6We generated 20 random instances, but one of them was actually
unfeasible. ILP was able to detect this fact in a few seconds.

the proposed approach on real environments. On the same
instances, DP was able to provide a solution in only 9 out
of 20 instances (approx. 47%), but with a fairly satisfactory
heuristic ratio whose median was approx. 0.74.

Fig. 5: A real environment. Dots and stars represent starting
and goal locations, respectively, of an example optimal
solution where robots are depicted in red and agents in blue.



Fig. 6: Compute time and MIP gaps obtained by ILP on the
real environment instances.

VII. CONCLUSIONS

In this paper we have presented a novel, exact solution
for the connectivity maintenance problem formerly studied
in [26]. Our method is based on an ILP formulation ex-
ploiting a connection with the STP and LAP optimization
problems. By leveraging recent state-of-the-art methods to
solve STP instances, we obtain a viable method capable of
solving problem instances with sizes compatible with real
world applications. Our experimental comparison with the
heuristic method given in [26] identifies instances where
the gap between the two methods can become arbitrarily
large and, moreover, shows that under certain scenarios the
heuristic scales very poorly with the problem size. Venues
for future work include the extension to situations where the
underlying graphs change over time, with the consequent
necessity of repeatedly solving various instances over time.
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weight connected subgraph problem. In Michael Jünger and Gerhard
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