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Abstract—Robotics is playing an increasingly important role
in precision agriculture and agricultural technology because it
allows to tackle some important problems at scale at a time when
the agricultural workforce is declining. Robots can collect data
that can better inform farmers on the best course of actions for
their crops. Robots can also perform tasks that are too labor
intensive for workers. Despite increased availability, however,
these technologies will not become as so pervasive that each
problem instance will be taken care of by robots and it is therefore
important to carefully select which ones should be addressed and
which ones can be deferred. Starting from these premises, in this
overview paper we discuss a series of scheduling problems we
developed that is pervasive in these applications.

Index Terms—Precision agriculture, robotics, optimization.

I. INTRODUCTION

The National Research Council defines precision agriculture
as “the application of modern information technologies to
provide, process and analyze multisource data of high spatial
and temporal resolution for decision making and operations
in the management of crop production” [8]. This definition is
related to the emerging term ”AgTech” (agricultural technol-
ogy), which is loosely defined as the use of (sophisticated)
technologies in agriculture, with objectives such as higher
crop yield, increased efficiency and reduced environmental
impact [15]. In this space, robotics and artificial intelligence
(AI) can play a crucial role in addressing some of the most
pressing societal needs. Robotic technologies, in particular,
can help in mitigating the problem of a dwindling workforce
in agriculture which is emerging in countries such as the US
and has been further exacerbated by the COVID-19 pandemic
[5]. The steady growth of scientific publications in this domain
is a testament to the growing awareness of the importance
of robotics in AgTech. As pointed out in Section II, robots
are being developed for a variety of tasks including both
actuation (e.g., harvesting and weeding), as well as more
efficient sensing (see e.g., figure 1)

An interesting area of application is related to water ef-
ficiency. Draughts are a problem that has gained much at-
tention in recent years, especially because of their increased
recurrence in the American southwest [9]. With agriculture
consuming an estimate of 70% of managed freshwater in the
US and abroad [17], there is a strong interest in developing
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AgTech systems that can mitigate this problem. Contributions
may include improved approaches for more accurate soil mois-
ture measurements or stem water potential, as well as systems
for implementing irrigation adjustments matching local condi-
tions. In response to these problems we have are developing
different systems combining robotics and AI to improve water
delivery efficiency and soil moisture assessment.

Fig. 1. An autonomous robot equipped with a soil moisture sensor can
autonomously perform measurements at a set of preassigned locations.

A recurrent problem in numerous robotic applications in
AgTech is resource optimization and scheduling. Indeed, while
in the future one can anticipate that autonomous vehicles
will be deployed in fleets, the sheer scale of operations in
commercial agriculture is such that the problem of selecting
the best subset of operations to perform will remain relevant
for a long time because brute force approaches where all
tasks are executed would be inefficient. For example, in
sampling applications one is often given a large set of locations
where samples could be collected. Based on prior available
information, it is often the case that not all tentative locations
have the same anticipated value. Therefore, given that an
autonomous robot can only visit a subset of these places
(for example, because the limited power autonomy limits the
distance it can travel), which sampling locations should be
prioritized? And in which order? Another complicating feature
is that due to the semistructured nature of orchards, the effort
to perform certain operations (e.g., reaching a certain tree
and collect a leaf) may be subject to substantial variability
and therefore iterative replanning is often necessary. This is
one of the numerous venues outlining how practical problems
driven by farmers need are associated with hard computational



problems requiring advanced algorithmic solutions. The rest
of this overview paper is organized as follows. In section II
we provide selected pointers to relevant literature. In section
III we discuss routing problems relevant for robots operating
in agtech, and provide pointers to our recent works in this
domain (algorithmic details are omitted for brevity). Finally,
conclusions are offered in section IV.

II. RELATED WORK

Robot use in agriculture is quickly expanding and has a
very promising future, with a multitude of heterogeneous
applications gaining in popularity [27]. Remote sensing for
information gathering is a typical utilization, where Unmanned
Aerial Vehicles gather images from the sky of grow sites
providing unique insights not visible from the ground [3], [14].
Another growing trend is the deployment of robots (usually on
the ground) to capture images of fruit on plants for use in yield
estimation [2], [16]. Fruit harvesting [18] and plant pruning
[7] are other utilizations of robots that interact directly with
the plants themselves. Still, some other robots are specifically
built to help with logistic problems, such as moving fruit bins
to and from human harvesters within fruit orchards to promote
optimal labor time usage [28]. Other robotic applications are
built on top of the already mechanized farm processes, such as
spraying of pesticides and fertilizer from tractors in minimal
travel distance and working time [6]. Regarding irrigation
optimization, literature review did not uncover any preceding
work related to robotic tools in this domain, except for our few
selected works related ot the USDA funded RAPID project
[13], [20], [21], [23]–[25].

III. OPTIMIZATION OF ROUTING AND SCHEDULING

In this section we provide an overview of a class of opti-
mization problems that is pervasive in AgTech applications,
i.e., scheduling and routing. In numerous instances, precision
agriculture require the implementation of spatially distributed
activities over large areas. The dynamic nature of the natural
phenomena being tracked combined with the necessity of
refining on the fly the action strategy often prevents the de-
ployment of stationary structures to perform these tasks (e.g.,
a set of sensors permanently placed at certain locations). In
addition, some activities like specimen collection and retrieval
requires robots to physically visit certain locations to complete
their tasks. Figure 2 shows an aerial view of a commercial
vineyard located in Firebaugh, CA. This block alone, part
of a much larger ranch, has more than 50,000 vines. Red
crosses indicate locations where soil moisture samples should
be collected. Because of the existing irrigation lines under the
trellises, it is not possible to move along straight lines between
any two points, and to switch tree row it is necessary to exit
from either end of the vineyard. These motion constraints
mean that a ground robot1 moving in the vineyard to complete
the task will have to spend additional energy to move around

1While an aerial platform like a drone would not be affected by these
constraints, their use in collecting specimens is limited because of the limited
payload and energy availability.

because of the motion constraints and will be unable to visit
all desired locations.

Fig. 2. Aerial view of a vineyard located in Firebaugh, CA.

From an abstract standpoint, this general optimization prob-
lem can be formulated as follows. Let S be the finite set
of assigned target locations, i.e., the places where activities
should take place (e.g., collecting a sample.). In general
each location si ∈ S has a different utility or reward r(si)
representing how important it is to perform a task at that
location. This reward or importance is assumed to be known
and part of the input. For a subset of activities Sc ⊂ S, let
π(Sc) be a path that visits all the locations in Sc, and let c(π)
be the cost of path π. Typically, the cost of a path is its length
or the energy spent to travel along the path. Let r(π) be the
sum of the rewards of the target locations visited by path π.
The following constrained optimization problem can therefore
be formulated:

S∗ = arg max
Si⊆S

r(π(Si)) s.t. c(π(Si)) ≤ B

where B is a preassigned budget representing the maximum
distance a robot can travel or the maximum energy it can
consume in between two charges. Essentially, the problem is
to determine a subset of locations that can be visited with the
assigned travel budget and that maximizes the sum of collected
rewards. This formulation is related to a graph optimization
problem known in literature as orienteering that is NP-hard
[11] and APX-hard [4]. Because of its intrinsic computational
complexity, exact solutions can be found only for instance
of moderate size, e.g., graphs with less than 1,000 vertices
[10], [26] and heuristic methods are therefore extensively used
[12]. Problem instances associated with agricultural problems
generate much larger instances. For example, one may asso-



ciate to an orchard a graph where every tree is a vertex, thus
easily having tens of thousands of vertices. This renders exact
methods impractical. General purpose heuristics can be used,
but they may be not competitive because they miss the specific
motion constraints associated with navigating in a vineyard,
i.e., certain vertices must be visited in a sequence, or long
detours must be taken when moving between vertices.

The basic version of the problem described above can also
be extended or refined to include other aspects emerging when
working on the field. For example, multiple ground vehicles
may be simultaneously deployed to expedite operations and
their motion should be coordinated to avoid wasted efforts
(e.g., two robots performing the same operation), or negative
interference (e.g., robots getting on each other’s way or
colliding with each other). This problem, known as team
orienteering problem has received some attention in the past
but is less studied than the single agent version. Another class
of problems that is instead significantly less investigated is the
stochastic orienteering problem that emerges when one more
realistically considers that many of the involved quantities
are only known with uncertainty. For example, the reward
r(si) associated with executing a task at location si may be
uncertain, and the cost c(π) of a path may also be uncertain
because of unforeseen circumstances emerged while the robot
moves, like for example the necessity to take a detour because
a pathway is blocked.

For the deterministic single agent version of the problem, we
recently proposed [23] different heuristic algorithms that factor
in the specific motion constraints associated with vineyards
when selecting the subset Si. Using the common greedy
approach that iteratively adds new vertices to the solution
without ever reconsidering past choices, the key insight is in
considering the benefit/cost ratio of each possible added loca-
tion where the cost is informed by the constraints associated
with moving in a vineyard. Figure 3 shows how the structure of
a vineyard can be abstracted into a graph, where every vertex
is associated with a tree and could also be an element of the
target set S. In this case, once the robot enters a tree row, if it
needs to move to a different row it has to consider from which
end to exit and whether it makes sense to spend additional
budget to collect more samples or perform more tasks in the
same row before exiting (algorithmic details are skipped and
the reader is referred to [23] for details). In our work we
show that if the cost is re-formulated to consider the motion
constraints imposed by the environment, the custom designed
heuristic can be used to solve large problem instances with tens
of thousands of vertices and it outperforms formerly proposed
general purpose methods that do not consider the associated
motion constraints. This solution raises an important point,
namely that for robots performing AgTech tasks, it may be
necessary to re-design existing heuristics or design new ones
informed by domain specific knowledge associated with the
task being solved.

The single robot solution can then be used as a building
block to determine how multiple robots can coordinate their
motions, as we discussed in [22], [24]. If N robots are

given, a simplistic approach consists in splitting the working
area into N subregions, each approximately having the same
amount of reward to be collected. Each robot then operates
exclusively inside the assigned area using the single robot
solution described above (see figure 3).

Fig. 3. With three robots given, a simple approach consists in splitting the
work area in three subregions, and then let every robot run the single-robot
algorithm on the assigned subregion. Subregions shall not necessarily have
the same size, but should rather be sized based on the amount of available
reward.

While this approach is simple, it has the drawback that if
a robot is assigned to a sub-region with limited rewards, it
cannot move to a different region and help other robots. A
better strategy, instead consists in allowing each robot to move
to any location of interest, provided that suitable coordination
is added to prevent the aforementioned problems. In particular,
given that tree rows are narrow, one should avoid having two
robots traveling at the same time in opposite directions in
the same tree row. This requires the implementation of so-
called space/time coordination – a well known paradigm in
robot motion planning. Two solutions embracing this approach
are presented in our works [22], [24], which build upon the
findings presented in [23]. The main difference is that in one
case planning is done sequentially (i.e., the complete schedule
for the first robot is completed before the scheduling for the
second robot is comptued, and so on), while in the other
case the planning is done in parallel. This second approach is
generally better, but more complicated.2 Extensive simulation
results presented in the cited papers show that the speedup of
these two last strategies is almost linear, i.e., the best one
can hope for. One drawback, though, is that the planning
approach is centralized and this is known to be problematic
because if the central planner fails, then the entire system
will not perform. Additionally, robots do not communicate
with each other. While this may be advantageous as it does
not require any communication infrastructure, the drawback
is that replanning cannot be triggered on demand to address
unforeseen circumstances.

2Note that even though planning may be done sequentially, at run time, all
robots move at the same time and not one at the time.



A final class of scheduling problems that emerge in this
domain and that has broad applicability is risk-averse planning
and planning under chance constraints. With robots moving in
semistructured environments such as vineyards and orchards,
the cost of executing operations or moving between two
locations is generally a stochastic variable. Henceforth, for
a given subset Si ⊂ S, the associated cost to execute the path
c(π(Si)) is a random variable. The optimization problem can
then be reformulated as follows:

S∗ = arg max
Si⊆S

E[r(π(Si))] s.t. Pr[c(π(Si)) > B] < Pf

The constraint is now formulated in terms of a failure prob-
ability Pf and it imposes that the probability that the cost to
execute the path exceeds the assigned budget B is less than
the acceptable failure probability. This approach inherently
requires replanning, because if a robot is running behind
schedule then it will have to skip some locations to make
sure it ends its mission before the budget B is spent. For
this reason, the objective function is now formulated in terms
of expectation, because the number of visited locations (and
associated sum of rewards) is now a random variable, too.
This problem has been scarcely studied in literature, and
outlines how activities related to AgTech may require the
solution of novel optimization problems. In [19]–[21] we took
a first stab at the problem by introducing the idea of path
policy. A path policy formalizes the intuition that if a robot
is scheduled to visit in sequence locations s1, s2, . . . , sk to
perform certain tasks, it may have to adjust its route if it
happens to be “running late” due to the stochastic nature of
the motions between locations. To this end, it is necessary
to track the amount of consumed budget (time, energy, etc.)
and contrast it with the available budget B. In [19]–[21]
the authors formulate a solution to this problem using a
constrained Markov Decision Process (CMDP) [1]. The reader
is referred to the cited papers for the numerous technical
details necessary to solve this problem. An important finding,
however, is that planning methods that specifically consider
these failure constraints are much more robust in practice, and
it appears that when robots are used for this type of problems
an approach explicitly factoring in failure probabilities is a
must.

IV. CONCLUSIONS

After having briefly motivated the use of robotic technolo-
gies in the area of precision agriculture and agricultural tech-
nology, we provided an overview of our proposed solutions for
a class of routing and scheduling problems that is pervasive to
numerous applications in this domain. Solving these problems
at a scale relevant to commercial operations prevents the use
of exact solutions and requires the development of heuristic
approaches. Embedding domain specific knowledge driven
by the agricultural domain helps in formulating solutions
that are more performing than general purpose approaches.
Finally, because vineyards and orchards are semistructured

environments, planning methods explicitly featuring failure
probabilities have been introduced and discussed.
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