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Abstract— We present a new Monte Carlo Tree Search
(MCTS) algorithm to solve the stochastic orienteering problem
with chance constraints, i.e., a version of the problem where
travel costs are random and one is given a bound on the
tolerable probability of exceeding the budget. The algorithm we
present is online and anytime, i.e., it alternates planning and
execution and the quality of the solution it produces increases
as the allowed computational time increases. Differently from
most former MCTS algorithms, for each action available in
a state the algorithm maintains estimates of both its value,
and the probability that its execution will eventually result in
a violation of the chance constraint. Then, at action selection
time, our proposed solution prunes away trajectories that are
estimated to violate the failure probability. Extensive simulation
results show that this novel approach is capable of producing
solutions better than former work, while offering an anytime
performance.

I. INTRODUCTION

Orienteering is a combinatorial optimization problem that
can be used to model numerous problems relevant to robotics
and automation, such as logistics [14], environmental moni-
toring [23], surveillance [10], and precision agriculture [20],
just to name a few. In its basic formulation, one is given
a graph G with rewards associated with vertices and costs
assigned to edges, as well as a budget B. The goal is to
find a path collecting the highest sum of rewards of the
visited vertices, while ensuring that the path cost does not
exceed the budget B. In this paper, for sake of simplicity,
we assume that B is a temporal budget, but it could as
well be energy or any other resource consumed by the
robot as it moves from location to location. Numerous
variants have been proposed and, as discussed in section II,
most are computationally intractable. In robotics applications
this model is usually adopted in scenarios where vertices
are associated with places that a robot must visit (e.g., to
pick a package, or to deploy a sensor, collect a sample,
etc.), and edges are associated with paths connecting the
different locations, with the edge cost modeling the time
or energy spent by the robot to traverse it. Most former
research in this area has considered scenarios where costs and
rewards are deterministic, and only few works have explicitly
considered cases where these are affected by uncertainty.
In most practical applications, however, the time or energy
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spent to traverse an edge (i.e., to move from one location
to another) is not known upfront, but is rather a continuous
random variable whose realization will only be known at run
time. When this is the case, it follows that for a given path the
cost is also a random variable. For example, the robot may
have to wait to traverse an aisle in a warehouse to give way
to another robot coming in the opposite direction, or it may
have to take a detour because a passage is blocked, and so on.
The variant of the problem where edge costs are stochastic
is known as the stochastic orienteering problem, and while
studied in the past [4], it has received far less attention than
its deterministic version. Obviously, the stochastic version
is not simpler than the deterministic one. Assuming that the
probability density function (pdf) characterizing the traversal
time of edges is known, some former solutions reduced the
stochastic problem to the deterministic one by using the
expected traversal time. Such solutions are in many situations
unsatisfactory, because optimizing for expectation may lead
to realizations where the robot exceeds the budget B while
executing the task. This may be a major inconvenience,
because if the robot runs out of energy and stops, it has
to be recovered and recharged.

In our recent works [16]–[18] we presented a new ap-
proach to solve the stochastic orienteering problem whereby
we introduce chance constraints, i.e., while solving the
problem we consider a constraint on the probability that
the stochastic cost of the path exceeds the assigned bud-
get. It shall be mentioned that besides our works, there is
very little former literature attacking this specific problem,
as discussed in Section II. Differently from all previous
works, our recently developed algorithms produce a path
policy, i.e., a time-parametrized schedule that, depending
on how much budget is left, determines where to move
next while ensuring that the probability of exceeding the
budget remains bounded below an assigned constant. This
approach is therefore adaptive, i.e., rather than producing
one path, it gives a policy that will result in different paths
depending on the actual realizations of the edge traversal
times. This is achieved by reducing the planning problem
to a constrained Markov Decision Process (CMDP) with a
suitable structure. This approach, while effective, has some
limitations. First, the path policy is determined using an
initial solution to the deterministic version of the orienteering
problem. This initial solution is computed using a heuristic,
and if the heuristic selects a poor path, the algorithm has no
way to move away from it. Second, in constructing the finite
CMDP, the continuous temporal dimension capturing the
time left is discretized into time intervals. This generates a



tradeoff, where a finer grain discretization generates a larger
state space for the associated CMDP, and this translates
to increased computation time. Moreover, the discretizazion
naturally leads to an approximation of the underlying tran-
sition probabilities in the state space.

In an effort to overcome these limitations of former
solutions, in this paper we present a completely different
approach to solve the stochastic orienteering problem with
chance constraints. The main idea is to repeatedly search
the space of possible paths using a Monte Carlo Tree Search
(MCTS) approach in an online fashion. Following a typical
rolling horizon approach, after an initial path has been
identified, only the first segment is executed. Then, based on
the actual time spent to execute the first motion, the budget is
updated and the method re-run. Additionally, to account for
the chance constraint, we introduce a novel backup procedure
based on Monte-Carlo sampling that allows eliminating from
the search tree the paths that would violate the budget
constraint. Moreover, the search in the tree is informed by
a novel criterion we dub UCTF (Upper-bound Confidence
for Trees with Failures) that extends the widely used UCT
formulation. The original contributions of this paper are the
following:

• we formulate the stochastic orienteering problem with
chance constraints as an MCTS planning problem;

• we introduce novel tree policies and backup policies to
incorporate and manage the probability of violating the
given constraint;

• we demonstrate that this approach is superior to our
former solutions.

The rest of the paper is organized as follows. Section II
discusses selected related work, while detailed background
on stochastic orienteering and MCTS algorithms is provided
in section III. Our new algorithm is introduced in section IV,
and then experimentally evaluated in section V. Conclusions
and future work are then presented in section VI.

II. RELATED WORK

The deterministic orienteering was first formalized in [8]
where it was also shown to be NP -hard. Consequently,
most solutions to the problem relied on heuristic approaches
[9], [19]. Exact solutions for limited size instances can be
found using integer programming formulations [7], while
approximate solutions have been proposed but have seen
limited use [5]. Stochastic variants of the problem can en-
compass stochastic costs for the edges, or stochastic rewards
for the vertices. As the deterministic orienteering problem
is a special case of stochastic orienteering, it follows that
stochastic orienteering is NP -hard, too. In [4] the authors
propose an exact solution for a special class of graphs, and
various heuristics for general graphs, but do not consider
chance constraints, i.e., bounds on the probability of exceed-
ing the buget. The works presented in [22] and [21] tackle
a problem similar to ours, inasmuch as they consider a risk-
sensitive formulation for the stochastic orienteering problem.
In [22] the authors propose an algorithm to solve it based
on local search, while in [21] the authors propose a mixed

integer program based on sample average approximation.
These solutions are fundamentally different from the one
we propose because they are formulated offline a priori,
and not updated as the mission unfolds based on the travel
costs experienced during the mission. This may lead to
excessively conservative solutions that collect less reward on
average (think for example to the case when one follows a
predetermined path where traversal times are much lower
than expected.) Our previous works [16]–[18] are the first
ones to propose the concept of a path policy while solving
the stochastic orienteering problem with chance constraints.
While the computation is still offline, rather than computing
a single path, these methods produce a set of rules that can
be queried at runtime to determine which vertex to visit next
based on the remaining budget. Therefore these solutions will
return different paths depending on the specific realization
of the stochastic processes governing travel times along the
edges.

Monte Carlo Tree Search (MCTS) encompasses a family
of any-time methods to solve planning problems using gener-
ative models. Albeit a mature technique [3], [6], [12], MCTS
gained significant popularity while being recently used in
combination with reinforcement learning, most notably in
[13]. The use of MCTS algorithms for problems with chance
constraints has been so far limited. In [1] the authors pro-
pose an algorithm for chance constrained Markov Decision
Processes that is guaranteed to return a policy satisfying the
chance constraint.

III. BACKGROUND

In this section we shortly provide the formal definition
of the stochastic orienteering problem (SOP) with chance
constraints, as well as relevant information regarding MCTS
algorithms. The reader is referred to the cited papers for more
details.

A. Stochastic Orienteering with Chance Constraints

The deterministic orienteering problem is defined as fol-
lows. Let G = (V,E) be a directed graph with n vertices,
r : V → R+ be a reward function defined over the set of
vertices, and c : E → R+ be a cost function defined over the
edges. Let vs ∈ V and vg ∈ V be the start and goal vertices,
respectively. In the following, without loss of generality we
assume G is a complete graph (when this is not the case
one can simply add all missing edges and set their costs
equal to the sum of the costs along the shortest path.) For a
path P over G connecting vs to vg , the reward of the path
R(P) is the sum of rewards for the visited vertices, with the
stipulation that if a vertex is visited more than once, then
its reward is collected just once. The cost of the path C(P)
is instead the sum of the costs of the edges along P , but in
this case if an edge appears multiple times, its corresponding
cost is charged every time. For a given budget B > 0, the
orienteering problem asks to solve the following constrained
optimization problem

P∗ = argmax
P∈Π

R(P) s.t. C(P) ≤ B



where Π is the set of all possible paths connecting vs with vg .
In the stochastic version of the problem, the cost of each edge
(vi, vj) is not a constant, but rather a continuous random
variable with a known probability density function (pdf) with
positive support and finite expectation. In general, each edge
may have a different pdf. The availability of these density
functions is essential in our method, because samples drawn
from the distributions will be used to determine the prob-
ability of violating the budget constraint. This assumption
is also consistent with MCTS literature where a generative
model is assumed to be fully known to implement the rollout
step described later on. In the following, for the stochastic
version of the problem c(vi, vj) is the expectation of the
random variable associated with the edge (vi, vj). In this
case, for a given path P the corresponding cost C(P) is
therefore also a random variable given by the sum of the
random variables associated with the edges appearing along
the path. Given a fixed failure probability Pf , the stochastic
orienteering problem with chance constraints (SOPCC in the
following, for brevity) asks to solve the following constrained
optimization problem:

P∗ = argmax
P∈Π

R(P) s.t. Pr[C(P) > B] ≤ Pf

i.e.., we now constrain the probability that the cost of the path
exceeds the budget B. When solving this problem, one can
compute the solution off-line, i.e., before its execution starts
or online, i.e., it may adapt the path based on the available
residual budget. This is the approach we followed in [16]–
[18], where we computed a path-policy that would guide the
robot through the vertices while being aware of the remaining
budget. In these works the policy is computed off-line, but
it features a family of paths and the selection of the path
to follow is done on-line. Alternatively, one can opt for an
online approach, where the path is continuously refined based
on the time spent by the robot while traversing the edges. In
this case, MCTS offers an interesting approach.

B. Monte Carlo Tree Search

MCTS is an approach to solve decision making problems
in an online fashion, where planning and execution alternate.
It belongs to the family of receding-horizon (also called roll-
out) methods [2], whereby one solves the planning problem
using a finite time-horizon, but then executes just the first
action in the plan, and then re-plans from scratch based
on the outcome of the first action. In MCTS planning, the
algorithm builds a rooted tree whose root node represents
the current state, and whose edges connect states that can be
reached through the execution of a single action. In the case
of orienteering, each state represents a vertex in the graph.
Node b ∈ V in the tree can be a descendant of node a ∈ V
if (a, b) is an edge in E. Indeed, in the orienteering problem
an action corresponds to moving from one vertex to another
one. Key elements in MCTS algorithms are the following:

1) a selection process to move from the root of the tree
down to a leaf following a so-called tree policy;

2) an expansion step executed to add leaf nodes to the tree;

3) a rollout policy to be executed from a leaf to establish
how “good” a leaf is;

4) a backup policy to be executed from the leaves back
to the root to guide the eventual selection of the best
action from the root.

After the tree is built, an action is selected among those
available in the root node. The action is executed, and the
tree is discarded and rebuilt having as root the vertex reached
after having executed the action. The reader is referred to
[15] (chapter 8 and references therein) for more details.
As pointed out in [11], different tree policies (step 1) and
backup policies (step 4) may have a dramatic impact on
the performance of MCTS based planning. In particular,
while UCT (Universal Confidence bound for Trees) [12] is
often considered the standard tree policy, it is not directly
applicable to our problem because actions yielding high
value (adding a high reward for the path in the orienteering
problem) may also increase the probability of violating
the chance constraint Pr[C(P) > B] ≤ Pf if they have
high edge cost. For this reason, we propose an alternative
tree policy based on UCT, but factoring in also failure
probabilities (we call this tree policy UCTF – UCT with
Failures). Similarly, backup strategies based on plain Monte
Carlo averaging are not applicable because they do not
consider whether constraints are violated or not. Inspired by
the complex backup strategies studied in [11], in this work
we instead propose a backup policy that explicitly considers
failure constraints.

IV. AN ONLINE MCTS ALGORITHM FOR STOCHASTIC
ORIENTEERING WITH CHANCE CONSTRAINTS

The online algorithm we propose alternates planning and
execution (see algorithm 1). Throughout its execution, the
search tree expansion is conditioned on the residual budget B
which is updated after each action is selected and executed.
Algorithm 1 sketches the overall approach. At the first
iteration the algorithm solves the SOPCC with the assigned
budget B and root node v set to vs. The solution of SOPCC
defines the first action to take, i.e., the robot moves from
vs to the vertex nextv returned by SOPCC and incurs a
random travel cost cr. The budget is then updated by setting
B = B − cr and the SOPCC is solved again with the
updated budget B and with starting vertex v set to nextv .
The process repeats until either the final vertex vg is reached,
or the budget is completely spent. In this last case, the run
is considered a failure.

A first advantage of this solution is that, differently from
our cited works [16]–[18] it is neither necessary to discretize
the temporal dimension to build a CMDP with a finite state
space, nor it is necessary to numerically approximate the
transition probabilities between states.

The MCTS algorithm to solve the SOPCC (line 3 in
algorithm 1) customizes the general MCTS approach de-
scribed in section III as follows. To each vertex v ∈ V we
associate a set of actions, i.e., the set of vertices that can
be directly reached from v. The tree T we build is rooted
at the vertex where the robot is currently positioned at, and



Algorithm 1: Alternating Planning and Execution
Data: G = (V,E), vs, vg ∈ V , B

1 v ← vs
2 while B > 0 and v ̸= vg do
3 nextv ← SOPCC(v,B)
4 move to vertex nextv and let cr be the incurred cost
5 B ← B − cr
6 v ← nextv
7 end
8 if B > 0 then
9 return Success

10 else
11 return Failure
12 end

is parametrized by the available budget B. Therefore, all
quantities stored in T are relative to the available budget B.
There is a one-to-one correspondence between nodes in the
tree T and vertices in the graph. Each node in the tree may
have from 0 to n−1 children. Vertex vj can be a child of vi
in the tree only if there is an edge connecting vi with vj , i.e.,
if there is an action from vi that leads to vj . Figure 1 shows
a tree associated with a simple graph with five vertices.

vs
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Fig. 1: The right side of the figure shows a possible MCTS tree
T associated with the simple graph on the left and rooted in vs.
Vertices v1 and v2 are children of vs because they are directly
connected to it. Executing action v1 from vs means moving from
vs to v1. Vertex v3, not appearing in the tree, cannot be a child of
vs because it is not directly connected to it. Observe that v2 appears
as a child of both vs and v1 because it is connected to both, but it
occurs along two different paths from the root. All paths in T from
vs to a leaf encode a possible path in G. In this simple example
there are two paths, namely vs, v2, and vs, v1, v2, vg . Note that
while the MCTS is being built not all paths must end at the goal
vertex vg .

For a given path from the root to a leaf, one can simulate
the time it takes to traverse it by adding random samples
drawn from the known pdfs associated with the edges along
the path. For every internal node vi, we store three attributes
for each of its children vj :

• N [vj ] is the number of times that action vj was at-
tempted from vi;

• Q[vj ] is the expected reward associated with the feasible
path of maximum reward with that selects vj from
vi, if it exists. Feasible, in this context, means that
the estimated failure probability does not exceed the
assigned bound Pf . If all paths connecting vi to vj
violate the failure probability Pf , then Q[vj ] is set to

the expected reward associated with the paths starting
from vi and going through vj .

• F [vj ] is the estimated failure probability of the path
defining the value Q[vj ] just defined. Therefore, when
the path is feasible F [vj ] ≤ Pf .

These three quantities are incrementally updated as the tree
is being built and expanded, and the specifics will be given
when discussing the backup policy. As stated formerly, the
attributes Q[vj ] and F [vj ] associated with node vi are not
absolute, but are rather a function of the budget B specified
when building the tree.

As pointed out in the previous section, there are various
elements needed to implement an MCTS algorithm. In our
algorithm these are as follows.

Tree Policy: The tree policy is used to traverse the tree
from the root to a leaf and then select a new node to possibly
add to the tree. It is implemented by applying recursively
the following strategy inspired by UCT. Assuming vi is the
current vertex, to each of its neighbors1 vj we associate the
following quantity (UCTF stands for UCT with Failure):

UCTF (vj) = Q[vj ](1− F [vj ]) + z

√
log t

N [vj ]

where t is the sum of the number of times that the descen-
dants of vi have been explored already, and z is a constant.
The node with the highest UCTF value is then selected and
this process is repeated until a vertex not yet in the tree is
selected. As commonly done in the basic UCT strategy, if
node vj has not yet been visited its N [vj ] counter is 0 and
we then set its UCTF value to ∞, to make sure all neighbors
are visited at least once. The novel term Q[vj ](1−F [vj ]) is
the expected utility of moving to vj , obtained by multiplying
the estimated utility Q[vj ] by the probability of success
(1−F [vj ]). Note that as failure is a binary random variable,
this is the expected utility. In this way, given two vertices
with similar Q values, the criterion favors the one with the
lowest failure probability. The last term in the UCTF formula
is borrowed from UCT and encourages the selection of nodes
that have been formerly selected few times.

Rollout Policy: when a new vertex vj is added as a
descendant of a node vi already in the tree it is necessary to
estimate and how much reward one will collect by expanding
the path through vj , as well as to estimate of the probability
of exceeding the available budget before reaching the end
vertex vg . These values will be stored in Q[vj ] and F [vj ],
respectively. Figure 2 shows how the rollout process is
implemented.

We generate S paths from vj using the following strategy.
The first step is to sample the time ψ it takes to proceed
from the root node in T to vj . We then set B′ = B − ψ
as the residual budget available when starting from vj . Then
we execute the following two steps:

1From the set of neighbors we exclude the set of vertices already visited,
because revisiting an already visited vertex does not give any reward and
is therefore useless. In this context the terms neighbor and descendant are
to considered synonyms.
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Fig. 2: Assuming the tree is rooted in vs and the available budget
is B, vertex vj is selected by UCTF as the action to execute from
vi. The following process is then repeated S times. First sample
the time ψ to move from vs to vj and set B′ = B − ψ. Then,
create a path from vj first adding a random node and then adding
nodes using the greedy criterion. By sampling the time to traverse
the edges from vj to vg one can then estimate the probability of
exceeding the residual budget B′.

1) first pick a random vertex among those that are neither
visited, nor among the path from the root vs to vj ;

2) next, repeatedly pick a vertex using the greedy criterion
described below until the end vertex vg is selected.

Once such a path p is obtained, one can compute its reward
as the sum of the rewards of the vertices along p. The
average of these S rewards provides an estimate for Q[vj ].
Similarly, one can use the pdfs of the edges along the
path to generate samples for the costs of the edges along
the path. If the sum of these samples exceeds the residual
budget B′, then the path is considered a failure. Dividing
the number of failures by S, we get an estimate of the
failure probability F [vj ]. The greedy strategy in step 2
above works as follows. For all vertices vk not yet visited,
compute r(vk)/c(vl, vk) where vl is the last vertex added
to the path p being built. Then, discard the vertices such
that Pr[c(vl, vk) + c(vk, vg) > B′] > Pf , and pick the one
with the highest ratio. To determine the vertices to discard,
we generate S samples for the costs of the edges use these
values to estimate the probability of exceeding the budget
B′. As the name suggests, the greedy step adds to the path
the vertex vk with the highest ratio between reward and cost,
but constrained on having estimated that the probability of
moving from vk to the terminal vg does not exceed the failure
probability Pf . Note that the greedy step may select vg as
the most suitable node to visit next. When this happens, the
rollout stops.

Backup Policy: After the S paths from vj have been
generated by the rollout procedure, one can compute the
expected return Q[vj ] and estimate F [vj ], i.e., the probability
of failure of expanding the route from vi through vj . Such
values must then be propagated backwards thorough the tree
towards the root, as the paths generated from vj are the end
points of paths starting from the root and therefore influence
the values for the labels Q and F associated with the children
of the root note. In MCTS without constraints this often done
by averaging the returns, but the case considered in this work
is different because of our need to generate actions that will
lead to paths not violating the budget. The backup step is

then applied from node vj backwards towards the root always
considering the relationship between the Q and F labels of
the newly added node vj and the Q and F labels of its
parent node vi. The step also involves the parent of vi, if it
exists (called vk in the following). We refer to figure 3 while
explaining the process.

vi
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Fig. 3: When backing up the values F [vj ] and Q[vj ] associated
with node vi, it is necessary to consider their relationships with the
values F [vi] and Q[vi] associated with vk.

First, if vi is the root then vk does not exist and the backup
step simply stores the values F [vj ], Q[vj ] and N [vj ] with vi
and stops. Next, let us assume that vk exists, and has its labels
F [vi], Q[vi] and N [vi] initialized already. We distinguish the
following cases:

• if F [vi] ≥ F [vj ] and Q[vi] ≤ Q[vj ]+r(vi) then a better
solution from vk through vi has been found. F [vi] is set
to F [vj ] and Q[vi] is set to Q[vj ] + r(vi). The update
is made because we found a new path that has higher
reward and lower failure probability.2

• if F [vi] < F [vj ] and Q[vi] ≤ Q[vj ] + r(vi), and
F [vj ] < Pf , then we also set F [vi] to F [vj ] and Q[vi]
is set to Q[vj ] + r(vi). In this case the new path from
vk to vi to vj has higher failure probability than the
former best path from vk to vi, but this is still below
the constant Pf . Since its reward is higher than the
previously best known path through vi the value is
propagated backwards.

• in all other cases, the values F [vj ] and Q[vj ] are stored
at vi but not propagated backwards.

When the values are updated, the process is repeated with the
same rules backwards towards the root, until it is eventually
reached and the process terminates, or the third case above
applies. Finally, irrespective of which of the above cases
applies, all the N values from vi backards to the root are
increased by 1 to record that those actions have been tried.

Action Selection: after the tree T has been built, the best
action available from the root node v is selected. The best
action is defined as the child node vj with the highest value
Q[vj ] subject to the constraint that F [vj ] ≤ Pf . If no such
node exists (i.e., all nodes connected to the root have an
F value exceeding the failure probability Pf ), then action
selection returns vg , i.e., it tries to move the robot to the
final vertex vg in the orienteering graph V .

Algorithm 2 shows how the components described above
are put together. As usual in MCTS algorithms, the tree is

2F [vi] may be larger than F [vj ] because if was formerly set while
exploring a node sibling to vj like for example vm in the figure.



expanded through a fixed number of iterations K. At each
iteration, the UCTF criterion is used as a tree policy to move
from the root of the tree to a node vj (line 3) that is added
to the tree it it is not already present. Then, S paths are
generated from vj (line 5) using the rollout process formerly
described (line 8). Note that at each rollout the algorithm
considers a different residual budget B′ obtained by sampling
the time ψ to move from the root of the tree to the new
node vj (line 6). After the S samples are collected, the
values Q[vj ] and F [vj ] for vj can be computed (line 10)
and propagated back to the root with the backup procedure
(line 11). Finally, the algorithm returns the action from the
root with the highest Q value among those not exceeding the
failure probability F (line 13).

Algorithm 2: SOPCC
Data: start vertex v, B

1 Initialize tree T with root equal to v
2 for K iterations do
3 vj ← UCTF (v)
4 add vj to the tree if not present
5 for S iterations do
6 ψ ← SampleTraverseTime(v, vj)
7 B′ ← B − ψ
8 path←rollout(vj , B′)
9 end

10 compute Q[vj ] and F [vj ] based on the S paths
11 Backup(vj , Q[vj ], F [vj ])
12 end
13 return ActionSelection(root(T ))

A. Properties
True to the MCTS spirit, the presented algorithm is an

anytime algorithm, i.e., by increasing the value of the param-
eters K and S the quality of the returned solution increases.
This is in contrast to our former works where a solution is
produced only after the whole state space for the CMPD has
been constructed and the associated linear program solved.
In section V we will assess how K influences the quality of
the solution and the computation time. The other relevant
parameter is S, the number of samples used to estimate
the failure probability of a path from the root to a leaf.
Obviously, the larger the number of samples, the more
accurate the estimate and the associated computation time.

Among the trajectories generated from the root, SOPCC
is guaranteed to return an action associated with a trajectory
that is estimated not to violate the failure constraint Pf .
This is ensured by ActionSelection. If none of the generated
trajectories satisfy the failure probability, for simplicity we
return the terminal action vg (move to the last vertex), but
alternatively one could further extend the tree by running
SOPCC again and extend the current tree rather than restart-
ing from scratch.

Finally, as common for these type of algorithms, the
probability of not finding the solution tends to 0 as the values
of K and S increases. The convergence velocity is influenced
by the size of the search space, i.e., by the average branching
factor in the tree.

V. RESULTS

In this section we provide two types of results. First we
assess the sensitivity of the proposed algorithm to the param-
eters K (number of iterations) and S (number of simulations
to estimate failure probability). In all our simulations we kept
the parameter z (coefficient in the UCTF formula) equal to 3.
Next, we make some comparisons with our recently proposed
algorithms. To ease the comparison with our previous work,
we consider the same setup to generate test cases. The n
vertices in graph are randomly generated inside the unit
square and rewards are sampled from a uniform distribution
with support [0, 1]. All graphs are complete, i.e., (vi, vj) ∈ E
for each vi ̸= vj . The random cost associated with edge
(vi, vj) is

αdi,j + E
(

1

(1− α)di,j

)
where di,j is the Euclidean distance between vi and vj and
E(λ) is random sample from the exponential distribution
with parameter λ. This formulation ensures that the expected
cost to traverse (vi, vj) is equal to di,j and the cost is
non-negative. In all our experiments the parameter α is set
to 0.5. Before discussing the results, it is worth outlining
that complete graphs are the most challenging to deal with
because every node in the tree has the maximum possible
branching factor, and for n vertices there are O(n!) possible
paths3 in the space of possible policies.

Figure 4 shows how the computational time grows with
the number of iterations K (red line) as well as the standard
deviation. The figure was collected for a problem instance
with 10 vertices and data were averaged over 50 independent
executions. The trend is roughly linear, as expected, and
therefore one can accordingly tune the number of iterations
based on the available time. Variations in the computation
time emerge because the produced paths may have more or
less vertices depending on the realizations of the stochastic
travel times. It is worth observing that this time is not
all spent upfront, but rather distributed along the path (see
algorithm 1).

Next, we investigate how the number of iterations K in
algorithm 2 influences the collected reward. Figure 5 shows
how the amount of collected rewards changes with K (with
all other parameters fixed.) for a graph with 20 vertices (red
line) 30 vertices (blue line) and 40 vertices (orange line).
Data is averaged over 50 runs with K varying from 1000
to 20000. In all instances the reward barely grows with the
number of iterations, showing that already with a value of
K below 4000 the algorithm displays a good performance.
For larger graphs with a larger branching factor, with larger
values of K one can expect a continued increase in the
accrued reward, but this comes at the cost of increased
computational time, as shown in figure 4. Overall, this figure
seems to indicate that the algorithm is not too sensitive to
the value of K (this would of course not be the case when
K is decreased to smaller values now shown in the figure,

3The number is less than n! because the start and final vertices are
assigned.
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Fig. 4: Computation time as a function of the number of iterations
K (red line). The green area shows the standard deviation (data
averaged over 50 trials for each value of K). The chart refers to a
graph with 10 vertices and S = 100 samples.

as it would not have the ability to sufficiently explore the set
of paths.)

0 5000 10000 15000 20000
iterations (K)

0

2

4

6

8

re
w

ar
d

Fig. 5: Reward as a function of the number of iterations K. The
orange line shoes the shows the trend for 40 vertices, the blue shows
the reward trend for 30 vertices and the red shows the trend for 20
vertices. The green area shows the standard deviation (data averaged
over 50 trials for each value of K). In all instances S = 100
samples.

Finally, figure 6 shows how the probability of exceeding
the budget B varies with the number of samples S used to
estimate the time to traverse a path. In this specific case, the
assigned failure probability was Pf = 0.1. As the number
of samples increases, the probability of failure decreases,
as expected. This will further decrease as the parameter
K increases, because a larger part of the search space is
searched (the chart was produced with K = 1000 which is
a rather low number.)

Having assessed the sensitivity of the algorithm to its
parameters, we next compare its performance with the
CMDP based planner we formerly proposed and discussed
earlier. Tables I and II compare the performance of the two
approaches. Based on the results outlined so far, in all tests
we set K = 2000 and S = 100, although one could further
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Fig. 6: Probability of failure as a function of the samples size S
for a graph with 20 vertices, K = 1000 and Pf = 0.1. The green
area shows the standard deviation (data averaged over 50 trials for
each value of S).

fine tune them using higher numbers when the number of
vertices grow or the failure probability Pf decreases. The
table displays average results (50 executions for MCTS, 20
for CMDP). Detailed time comparisons between the two
algorithms are not provided because one is implemented in
Python and the other Matlab, and therefore a comparison
would not be principled. Both are however suitable for real-
time performance, and both algorithms satisfy the given
failures probabilities, i.e., on average their failure probability
does not exceed Pf . The tables clearly show that MCTS
exceeds the performance of the CMDP algorithm and the
gain is at times notable. Gains are particularly notable for
Pf = 0.05 and B = 2 which is the hardest combination
(low failure probability, small budget). Note that for the case
n = 10 and B = 3 the two algorithms perform more or less
the same because they both manage to find the same class of
paths. Indeed, in that case it is most of the time possible for
the agent to visit all 10 vertices and collect all the reward, and
both algorithms determine that solution. In all other cases,
however, the MCTS approach is the clear winner.

Pf = 0.05 Pf = 0.1
n MCTS CMDP MCTS CMDP
10 2.4366 1.7766 2.6738 2.3187
20 2.8492 2.3127 3.0796 2.9767
30 5.3748 2.3583 5.9764 5.0151
40 7.6865 5.9890 8.3003 7.1816

TABLE I: Average reward collected for a budget B = 2 and
different failure probabilities.

Pf = 0.05 Pf = 0.1
n MCTS CMDP MCTS CMDP
10 3.0827 3.0545 3.0901 3.0802
20 4.6245 4.0613 5.1480 4.5862
30 7.7808 6.8688 7.9830 7.6081
40 10.5332 9.0803 10.6084 9.6643

TABLE II: Average reward collected for a budget of B = 3 and
different failure probabilities.



VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new algorithm to solve
the stochastic orienteering problem with chance constraints.
The main novelty is in using an MCTS approach to explore
the space of possible policies and a generative model for
the travel times across the edges to prune away realizations
that violate the assigned bound on the probability of failure.
To the best of our knowledge, this approach is novel. The
proposed algorithm offers various advantages. By being an
anytime algorithm, it can produce results within a given pre-
assigned computational time, while previous methods will
not produce any results until the associated linear program
is built and solved. In addition, we have shown that on a
variety of test cases our method outperforms our previous
solution.

There are various venues for further research. First, the
current rollout policy relies on a simple greedy strategy.
It would be interesting to explore whether different rollout
policies (e.g., policies using some of the heuristic meth-
ods fomerly proposed for the orienteering problems) would
prouce better results (either in terms of speed or collected
rewards). Next, it will be interesting to investigate whether
this approach could be extended to study other planning
problems with chance constraints where building a finite state
space is disadvantageous because of the need to discretize
continuous dimensions, such as time.
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