
Map Merging of Oriented Topological Semantic Maps

Jose Luis Susa Rincon Stefano Carpin

Abstract— In this paper we propose a solution for the
problem of merging together partial spatial models relying
on our recently introduced Oriented Topological Semantic
Maps (OTSM). This problem arises when a group of robots
cooperatively explore an environment, and each one indepen-
dently builds a partial map that must be combined with the
others into a full map. Our methodology is inspired by the
Warrington’s Object Recognition Model, a cognitive model
hypothesizing two post-sensory categorical stages working to-
gether for object recognition. Accordingly, we use two stages
to compare different maps and match them together based on
their mutual resemblance. Our method is complemented by
a scoring system to measure the likelihood that two vertices
in different OTSMs correspond to the same vertex, despite
possible errors in labeling, orientation, or topological structure.
Our methodology is validated in a simulation informed by an
ongoing real robot implementation, thus allowing us to perform
various experiments with carefully controlled error sources.

I. INTRODUCTION

Multi-robot research has been on the rise because in
many instances multiple robots offer inherent advantages
over solutions relying on a single robot. As a classic example,
a group of coordinated robots would explore an unknown
environment much faster than a single robot. This is a
specific problem where the multi-robot solution introduces
new challenges not found in the single robot approach. For
individual robots, continuous progress in SLAM research
has generated sophisticated solutions and in some instances
this can be considered to be a solved problem. However,
when a group of robots cooperatively explore and map an
unknown environment, two approaches can be undertaken
to combine the partial results. The robots can either jointly
build a spatial model “on the fly,” or they can individually
build a single map, and then combine their partial models
together a posteriori. This last problem, known as map
merging, is not a direct extension of a single robot problem
and is tackled in this paper. Map merging relates to other
problems such as structural graph matching or sub graph
isomorphism, depending on the type of model considered
[7]. The most common practice is to create metric maps and
use different techniques to merge them together [4], [10],
[18], [3]. However, when the maps utilize a topological or
semantic representation, a different approach is needed. In
our recent work [17], we introduced a new type of maps
called Oriented Topological Semantic Map (OTSM), and in
this paper we study how multiple partial OTSMs can be
combined when a team of robots cooperatively explore a
common indoor environment. Our solution is inspired by

J.L. Susa Rincon and S. Carpin are with the Department of Computer
Science and Engineering of the University of California, Merced.

the Warrington’s object recognition model [19], a cognitive
model that describes how humans recognize objects using a
two layer system of perceptual and semantic categorization.

In their everyday activities, humans do not rely on metric
maps to complete any of their tasks. Instead, a more concise
representation to store the structural organization of buildings
or other relevant structures is computed quickly and shared,
arguably with little effort, with other humans for immediate
use. Even in the absence of visual information, humans can
still use the same efficient representation and interact with
their environment and peers [11]. As we expect robots to
operate side-by-side with humans, it makes sense to envision
the same capabilities for robots, both for robot-robot inter-
operation, and to smooth the human-robot interface. In the
past, some attempts to merge topological maps have been
considered, but to the best of our knowledge this is the first
bio-inspired model used to merge a topological map enriched
with semantic information and without the use of any metric
data. The contributions of this paper are three: 1) we propose
a new two-stage method to compare vertices in different
OTSMs and measure their resemblance; 2) we present a new
merging technique to stitch OTSMs using a semantic and
perceptual categorization; 3) we study (in simulation) four
different types of errors that affect OTSMs and their impact
when merging together partial maps.

The paper is organized as follows. Selected related work
is introduced in section II. In section III we present the
OTSM models, and then we focus on the algorithm to merge
this type of maps. Simulations of our algorithm and its
performance are shown in the results section V, and we
finalize with conclusions and future work in section VI.

II. RELATED WORK

The vast majority of SLAM related research embraces
a single-robot approach. When increasing the number of
robots, several challenges arise, like estimating relative poses
of the robots, uncertainty of the relative poses, concurrent
updates of maps and poses, communications, and others.
Saeedi et al. [15] present a complete review for multi-robot
SLAM research in the past years.

Early works in map merging aim at combining multiple
grid maps into one global map using metric features. Our
former work [4] used Hough features for the bidimensional
case and the Radon transform for the three dimensional case
[5]. Blanco et al. [1] use computer vision techniques to
extract features and compare them, in what they call multi-
hypothesis RANSAC stage, to match them later to the grid
map. Paulik [13], on the other hand, merges a hybrid, feature-
metric map finding a transformation matrix to match the



pieces of maps. A function to measure the overlap between
pixels is proposed and used to calculate the quality of the
matching. Park et al. [12] use geometric information to match
shapes and geometric features to find overlapping points
between maps. This approach gives an important advantage
when eliminating the need of knowing the relative position
of the robots. Another method, implemented by Karpov [9],
includes communication between the robots and a landmark
system to localize the robots and find matches between the
sections of map that each robot builds. For improving vehicle
positioning, Rohani et al. [14] merge road maps between
vehicles in a VANET network. The GPS error from each
individual is taken into account to find the matches, and
then a dynamic base station is used to help other vehicles to
improve their location when they are not part of the network.

Merging topological maps is related to the problem of
graph merging, because of the underlying graph represen-
tation. When trying to merge these graphs, we have some
examples of how we can obtain a global map by combining
topological with metric information. For example, Bonanni
et al. [2] extract a graph from a 3D metric map and try to
match the vertices of the graph. This is the opposite of the
common approach of applying geometric transformations to
each of the map sections to find the match between them.
In our work, we do not need to know the global or the
relative pose of the robots to merge the maps. Similarly, when
merging topological maps for rectilinear worlds, Huang et al.
[8] generate hypotheses of how two graphs match depending
on the number of outgoing edges. Then, they augment the
topological map with metric information (like local distance)
while in our work we do not use any concept of distance.

Finally, there are works showing the advantages of using
hybrid maps to encapsulate, at once, more information.
Shahbandi et al. [16] propose a multi-modal map alignment
where multiple maps of different types can be combined
into a global model that contains occupancy grid maps,
3D meshes and also semantic information. Dichtl et al. [6]
introduce a new type of map called PolyMap, where an
environment is decomposed in polygons that stay in the
middle of a grid map and a vector map, taking advantage of
the strengths of both, and allowing efficient communication
and sharing for multi-robot missions.

III. BACKGROUND ON ORIENTED TOPOLOGICAL
SEMANTIC MAPS AND WARRINGTON’S MODEL

A. Oriented Topological Semantic Maps

We here present a short review the Oriented Semantic
Topological Map. Our recent work presents a more detailed
insight about the OSTM as an extension to classic topological
maps [17], as well as exploration algorithms to incrementally
build them. The general idea of an OTSM is to define a
semantically structured environment as a topological map
whose edges connect the different locations (e.g. rooms and
corridors) and can be traversed using human-like commands
to turn ”to the right of”and ”to the left of,” and follow
actions like walk through a corridor and get inside/outside
rooms. A topological map is modeled as a directed graph

G = (V,E), where vertices represent a location in a building
(room, corridor), and directed edges connect the places with
a direction to traverse them (hence the term oriented in the
name). It is because of these relationships that we assume
edges are directed (a feature will be on the right, or on the
left, depending on the direction with which an edge will
be traversed). Starting from the observation that in most
human inhabited buildings walls and features are arranged
orthogonally (as noted and exploited in [12]), we classify
vertices based on the their degree, i.e., on the number of
other vertices they are connected to: degree 1 are rooms,
or corridor dead ends; degree 2 are corridors with only two
ways; degree 3 are T intersections between corridors/rooms;
and degree 4 are cross intersections.

Edges keep track of the direction in which they are located
in relation to the robot orientation. Without loss of generality,
we assume that walls and corridors (end therefore edges)
are aligned along the four cardinal directions (indicated as
N/S/E/W in the following). Every edge is then associated
with a label like N-S or E-W to indicate their orientation.
Two vertices are along the N-S (north-south) direction if
the edge connecting them has the N-S label, and a similar
reference is used for E-W direction. Accordingly, we assume
the robot has access to a sensor (e.g., compass, IMU, or a
combination) to determine its heading, and therefore assigns
directions to edges while they are being discovered during
the exploration. Navigation between vertices is built upon the
concept of “to the right/left of.” To define the relationships
“to the right/left of” for elements aligned along the N-S
direction, we assume that the robot faces W, whereas for
elements along the E-W direction we assume the robot faces
N. This distinction makes the OTSM more akin human-like
spatial models. Robots can then receive instructions to move
through the vertices in the same way a human receives or
gives directions to reach a target location. For example, when
one person gives instructions to a second person about how
to go from a room to the closest elevator, a sequence of
commands will be given, to turn right or left depending on
of the topology of the building and the direction of motion.

Definition 1: An OSTM is defined as M =
(V,E,L,D,S) where:

• (V,E) are the vertices and edges of a directed graph;
• L : V → L is a function that associates a unique

semantic label to each of the vertices; in this work we
assume that L includes just two labels, i.e., room or
corridor;

• D : E → {E-W,N-S} associates a direction to each of
the edges (east-west or north-south);

• S : E → {L,R} assigns a label L (to the left of) or
R (to the right of) to each edge; the meaning is that
the oriented edge is to the left/right of the vertex it
originates from.

The functions S and D are subject to the following consis-
tency constraints:

• If e = (vi, vj) ∈ E is an edge from vi to vj and
S(e) = L, then e′ = (vj , vi) ∈ E and S(e′) = R.



And, e(vi, vj) ∈ E ∧ S(e) = R ⇒ e′ = (vj , vi) ∈
E ∧ S(e′) = R.

• For each pair of adjacent vertices, D(vi, vj) =
D(vj , vi).

During map creation, each vertex can be associated with
the direction from where it was discovered. Although this di-
rection is only a reference of the robot’s moving direction, we
add this extra element to the map representation to increase
the amount of information available about a location, apart
for the label and the information about the edge’s direction.
To this end, we introduce

• VD : V → {E-W,N-S} is a function that links a
direction to each of the vertex from where they were
discovered.

B. Inverse Warrington’s Object Recognition Model
(IWORM)

The model presented by Warrington [19] inspires our
strategy for merging together two or more OTSMs. War-
rington hypothesized two post-sensory categorical stages that
work together for object recognition. This research showed
evidence of how different patient groups presented a deficit
in recognizing objects because of left-posterior and right-
posterior cerebral lesions. These patients were suffering from
different levels of visual agnosia, defined as [19], “the
inability to recognize or identify common objects that cannot
be accounted for by sensory impairment or more general-
ized cognitive deficits.” Warrington’s hypothesis of how the
human brain processes the visual information proposes that
although both sides of the brain do a visual analysis, the
right side of the brain’s job is to judge the matching as
same or different stimuli, while the left side’s function is to
match objects to pictorial representation for an a posteriori
word matching. Visual stimuli are interpreted by the brain
to form a shape/contour of an object. This shape can match
with at least one shape already stored in the memory that
will eventually receive a semantic label that corresponds to
a word that has a meaning or significance.

Starting from this work, we posit that in order to effec-
tively evaluate and measure the similarities between two sub-
maps and find their matching vertices, we require a two-
sided function that can sequentially process their perceptual
and semantic information. Inspired by how our brain finds
the match of shapes/contours and assigns semantic labels to
them, we propose to match the shapes and labels of different
sub-maps to score their resemblance. Then, we will use the
quality of the resemblance to then merge them together.
Since OTSMs embed semantic information in our graphs, we
propose to invert the information flow from a semantic to a
perceptual categorization, instead of perceptual to semantic
as the original Warrington’s work proposes for humans.
Specifically, we will take the semantic categorization as
the comparison of labels and orientations, followed by the
perceptual categorization, that will compare the shape of the
graphs, analyze the number of neighbors and their respective
connections with other vertices in the map.

IV. IWORM INSPIRED MAP MERGING OF OTSMS

When considering spatial models featuring topological
components, map merging can be referred to problems like
graph structural matching, and sub graph isomorphism. How-
ever, for our problem these approaches cannot be applied
directly due to the fact that OTSMs extend the basic graph
structure embedding semantic information into the topologi-
cal map. When merging topological maps, the objective is to
obtain a better map of an environment by stitching together
multiple sub-maps. We now describe how multiple OSTMs
can be consolidated into a unique map.

Definition 2: A sub-map is represented by a graph gi =
(Vi, Ei) ⊆ G = (V,E), whose vertices V and edges E
can be compared with vertices and edges of other sub-maps
using a scoring function called IWORM. This will serve to
determine the likelihood that a vertex vi in gN corresponds
to a vertex vj in gM (with N 6= M ).

Without loss of generality, in the following we consider
the case where just two sub-maps must be merged. When
three or more maps must be combined, subsequent pairwise
mergings can be used. Definition 2 establishes that two sub-
graphs can be compared and the IWORM function (to be
define later) can help to determine correspondences between
common vertices. We say that two sub-maps overlap if they
share one or more common vertices. These shared vertices
are then used to establish a fully connected map. As for other
map merging problems, if there is no overlap between the
two sub-maps, then no merging can occur and this situation
must be properly detected and handled. While an initial
analysis of this case will be presented in the results section,
it is still a research topic to find a robust way to deal with
this problem.

As presented in section III-B, we aim to find a map
matching algorithm following a method inspired by the same
cognitive process that our human brain does. IWORM is a
pattern classifier that uses two types of inputs to match two
given sub-graphs. The first layer, called Semantic Catego-
rization, compares two sub-graphs g1 and g2 in terms of the
semantic label and the orientation of each of the vertices.
This is a high level matching providing only a limited level
of differentiation between vertices. However, as it will be
presented later, there are different sources of errors that make
it too brittle to rely only on these two features to classify and
match vertices. To mitigate this limitation, a second layer
is introduced. Perceptual Categorization compares the local
structure of the sub-graphs. The structure we are looking
to match will be the topological properties describing the
connections between vertices. Specifically, we examine how
many neighbors a vertex has, and how these neighbors, in
turn, are connect to others. This structure can be described
in terms of degrees of depth, where level one corresponds
to the immediate neighbors of a certain vertex, level two
corresponds to the neighbors of the immediate neighbors,
and so on. Algorithm 1 describes the process to merge two
sub-maps g1, and g2. The main process iterates over each
of the input sub-maps. First, it tries to find correspondences



1: Algorithm mergeGraphs(g1, g2)
2: for all Vertices vi from g1 do
3: for all Vertices vj from g2 do
4: Get [matchingPairsg1 , scoresPairsg1 ] from

IWORM(vi, vj)
5: for all Vertices vj from g2 do
6: for all Vertices vi from g1 do
7: Get [matchingPairsg2 , scoresPairsg2 ] from

IWORM(vj , vi)
8: mergeMaps(g1, g2);

Algorithm 1: Merging OTSMs

1: Algorithm IWORM(vi, vj)
F {Semantic Categorization}

2: ScoreL ← L(vi) is semantically similar to L(vj)
3: ScoreV D ← VD(vi) is equally oriented to VD(vj).

F {Perceptual Categorization}
4: ScoreNE ← ∀ ei ∃ ej Number of edges comparison.
5: ScoreED ← ∀D(ei) = D(ej) Edge’s direction compar-

ison.
6: for all Vertices vik do
7: for all Vertices vjl do
8: if maxDepth is reached then
9: Create matching pairs with the maximum scores.

10: return matchingPairs, scoresEdges
11: else
12: Get scoresEdges from IWORM(vik, v

j
l )

Algorithm 2: IWORM scores the resemblance of a pair
of vertices vi, vj .

between vertices. To this end, it makes a complete pairwise
comparison between all vertices1 . Note that the first vertices
of g1 are matched against vertices of g2 and then vertices
of g2 are matched against vertices of g1. This is because
the IWORM function is not symmetric, i.e., for vi 6= vj in
general IWORM(vi, vj) 6= IWORM(vj , vi).

Because we assume that in the acquisition of each map
there may be errors, the labeling, orientation and neighbors
cannot be assumed to be error free. Consequently, we first
create pairs of possible matching vertices and for each pair a
score is assigned. To do this, the IWORM function performs
the local analysis in the graphs to give a value for each
correspondence found when comparing labels, orientation,
number of neighbors for a certain degree of depth, that will
be studied in the numerical validation section. If the semantic
label is the same for both vertices, the score will be K, and if
the label is different it will be −K, where K is a preassigned
positive constant (Algorithm 2, Line 2). A similar binary
score is assigned when comparing the orientation between
the two vertices. This will be K when both vertices share the
same orientation or 0 otherwise (Algorithm 2, Line 3). In this
case a mismatch receives a 0 score, rather than −K because

1This step is typically not time-consuming because topological represen-
tations are compact and maps have a small number of vertices.

as we established previously, the orientation of each vertex
is relative to the robot’s orientation and will only be used
to add a bias component that will increase the score when
two vertices were discovered the same way. For the number
of edges outgoing from a vertex, the score is assigned with
the following function ScoreED(vi) where diffEdges is the
absolute value of the difference between the outdegree of the
vertices. The effect of changing the K function will be the
subject of future research:

K if diffEdges = 0(
1− diffEdges+1

K′

)
·K if diffEdges ≤ 2

−K otherwise

Finally, for line 5 of algorithm 2, a score of K is assigned
if the number of edges and orientations are the same in
both vertices. From line 6, for each of the vertices vi and
vj we score their neighbors recursively calling the same
function IWORM on the neighbors k and l from vertices vi
and vj , noted as vik and vjl , respectively. The recursive calls
to IWORM stop after a fixed number of recursive levels to
ensure that the analysis remains local.

After scoring the vertices of each sub-graph, the next step
is to validate if a label is found in two different locations,
understanding the location as where the vertex is in the
topological map and its neighbors.

Finally, we need to merge the two sub-graphs, in line 8
of Algorithm 1. For this purpose, we need to chose which
pair of vertices have the same resemblance and in this case
decide which information to accept. When we obtain the
scores matching g1 to g2 (lines 2 and 4), and g2 to g1 (lines
5 to 7), we are adding each of the individual K values after
comparing label, direction and edges of each pair of vertices,
that will result in a final score that is compared with the
highest possible score of K. If the final score corresponds to
more than 80% of the highest K we assume that those two
vertices are the same. By the contrary, if a pair of vertices is
matched with less than 80% of the highest score, it means
that the semantic and topological information between those
two vertices has some discrepancies (it can be the labels,
directions, or the edges). In the case where the semantic
labels are different, we cannot be certain which one is the
correct one, so we arbitrarily pick the label from g1 and save
the label from g2 as an optional label. This optional label list
will be used when merging new maps to the existing final
map that, perhaps, can confirm which label is most likely the
correct one. If the direction differs between vertices, again,
we pick the direction from g1 and save the direction from g2
as optional. For the edges we combine the information from
g1 and g2 together, where the outdegree of the vertices from
v1 defines how many possible vertices can be connected. We
then complete this list with the available information about
the visited vertices that connect with v1 and v2.

A. Sources of error
There are at least four different types of errors that can

happen when building OSTMs. Because we are not using



metric maps, there are no errors associated with rotation,
alignment, or scale. However, we still have a possible transla-
tion problem: the location of the same vertex can be different
due to an incorrect labeling.

1) Error type 1: A semantic labeling error, i.e., a vertex
is assigned the wrong label when it is visited for the
first time, or when it is revisited it is not recognized
as the same vertex and assigned a different label.

2) Error type 2: An error with the compass will lead to an
incorrect assignment of the direction of a vertex/edge.

3) Error type 3: A vertex in a sub-graph can be mistak-
enly associated with a wrong degree. For example, the
vertex v1 in g1 is a four way intersection, but the same
vertex in g2 is detected a three-way intersection due to
a wrong intersection detection.

4) Error type 4: A vertex v1 in a sub-graph g1 can be
missing, but appear in a second sub-graph v2. This
happens when the vertex is recognized like a previous
vertex (error type 1), that already exists in the sub-
graph or because the robot passed by the location and
never identified it. This is one of the most serious
types of error. If the robot misses a vertex, this means
that the neighbors will be connected incorrectly, their
directions will not match, or we may have unconnected
graphs.

V. SIMULATIONS

A. Setup

To evaluate the solution we proposed, we studied the
problem in Gazebo, so that numerous tests with controlled
error conditions could be performed. Consistent with the
hypotheses that we operate in an environment with orthog-
onal walls, we start with the CAD models of one of the
buildings in our university (see Figure 1). We defined five
start locations in the building as shown in figure 1. Each
one represents an initial position for a robot, and at each
location the robot used the exploration algorithm described
in our former work [17] to build a a partial map. To assess ro-
bustness, the formerly identified four different types of errors
were introduced while building the partial maps. To evaluate
the the IWORM algorithm we chose a very high error rate,
where each of these errors had an independent 20% chance
of occurring. Consequently, each vertex could be affected by
more than one error at once. At each of the five locations
we ran the exploration algorithm 20 times and obtained 20
sub-maps. Since the full map contains 40 vertices in total
and we have 5 different regions, we chose maps with more
than 8 vertices in order to have overlapping regions. For this
reason, in each case the exploration algorithm was stopped
when 11 vertices were added. Colored regions in figure 1
show the areas within which each robot wandered (red area
for red start point, and so on). For each subgraph we exported
seven different versions: one without any errors and four
with the four type of errors, plus two with all the errors
combined with and without error type 4. A good merging
would mean that the topology of the resultant merged map

closely resembles the ground truth. Similar to what we did in
[4], to assess the quality of a merging, we developed a score
function to compare the similarities of ground truth and the
merged maps. The function assigns one point to a quality
value in four cases:

1) 1 point for each vertex that exists in the ground truth
map and also exists in the merged map and both have
the topological label;

2) 1 point for each vertex that exists in the ground truth
map and also exists in the merged map with the same
name and direction;

3) 1 point for each vertex that exists in the ground truth
map and also exists in the merged map with the same
name and number of edges;

4) 1 point for each vertex that exists in the ground truth
map and also exists in the merged map with the same
name and the direction of all edges is the same;

5) 0 for every other case.

Fig. 1: Left: start locations. Right: overlapping regions.

B. Results

We first tested the merging algorithm with two non over-
lapping maps to show how much a map can be affected by
the four types of errors when trying to merge them. In this
case we took the maps produced by the robot starting in
position A and tried to merge them with maps from position
D (see figure 1 for the non overlapping footprints). Figure
3 compares the final map when merging non overlapping
error-free maps against maps with errors 1,2,3, and 4. Blue
and orange circles correspond to discovered corridors and
room locations, yellow circles indicate open edges that lead
to new undiscovered locations and green arrows correspond
to the edges that connect a pair of vertices. After merging
a map from region A and D, we show how the merging
algorithm kept the correct structure of the sub-maps with
little impact on the vertices. On the left of the figure we
observe how the algorithm correctly merged both pieces
of maps without misplacing, or incorrectly connecting the
vertices, and on the right, we can see that, despite adding
errors, the final map did not suffer drastic changes. Only
3 vertices were affected by the errors (blue circles with



red letters). Since the final map was qualitatively correct,
we quantitatively analyzed the performance of the merged
maps for each type of error. Figure 2 shows a blue line,
labeled Max, representing the maximum score obtained with
the error-free maps. As we can observe, the maps with only
errors in the direction have a very close quality score to the
error-free maps; results that validates the theory about the
small impact of this type of error when defining an OTSM
that does not affect the topology fundamentally. The maps
that contained errors type 2, 3 directions, edges remain close
to the maximum. However, we see how the label error gives
the lowest score, together with the map of combined errors
1+2+3. This is due to how we score the maps based on the
label. This also corresponds to the idea that semantics plays a
main role when differentiating a vertex from others. It is also
expected that the maps with the lowest quality corresponds
to the ones with error type 4 and all the errors combined
1+2+3+4.

Fig. 2: Comparison of quality from 20 full maps with
different errors when maps do not overlap A+D.

Fig. 3: Left: OTSM Error Free No Overlapping. Right:
OTSM Errors 1+2+3+4 No Overlapping

Figure 4 shows again the seven versions of the maps, but
this time when we combine all the regions. Similarly, as the
previous case for no overlapping maps, we observe that for
errors 2, and 3 the quality is close to the maximum. The
map built in figure 5 shows a fully connected map. Once
again, for error-free maps the final map is perfectly merged,
showing how the IWORM function recognized correctly
the overlapping vertices and the matching score adequately
served to correctly stitch them together. When trying to
merge the maps with all errors, we note that the algorithm
can merge the graphs, although as shown in Figure 5, there

exist some errors in the final map, when we compare it
with the error-free map. Red arrows show an incorrect edge
between two nodes. These issues come mainly from errors
type 1 and 4; a missing vertex affects heavily the connection
between vertices and this impacts the map’s connectivity.

Finally, we did a quantitative analysis when conducting the
IWORM from 1 degree up to 4 degrees of depth search. We
found that there is no significant difference between degrees
1 and 2, and only 2.19% difference between 2 and 4 for only
the maps with all errors. For all our tests we chose degree
3 to prove the intrinsic iterative capacity of our algorithm,
even when a degree of 2 would have been enough. However,
we believe this degree can play a more significant role when
dealing with bigger environments where there are locations
in different parts of the map with similar topologies and
semantics that require more detailed differentiation.

Fig. 4: Comparison of quality from 20 full maps with
different errors when maps overlap A+B+C+D+E.

Fig. 5: Left: Final OTSM error-free. Right: Final OTSM with
errors 1+2+3+4

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a new algorithm to merge
OTSM that is inspired by the Warrington’s object recognition
model [19]. The method was tested using overlapping and
no-overlapping pieces of a full map that contains four
different type of errors and we showed that it is possible to
merge maps with errors in the labels, directions, number of
edges detected, and missing vertices. The proposed technique
proved to be robust to multiple concurrent errors, even
when error rates are much higher than what we observed
in practice. For future work, we will explore how different
exploration strategies, similar to the ones presented, affect
the overall quality of the merged maps and how to assess
how partial errors in map merging affect the robots’ ability
to use the combined map for autonomous navigation.



REFERENCES

[1] J. L. Blanco, J. González-Jiménez, and J. A. Fernández-Madrigal. A
robust, multi-hypothesis approach to matching occupancy grid maps.
Robotica, 31(5):687–701, 2013.

[2] T. M. Bonanni, B. Della Corte, and G. Grisetti. 3-D Map Merging on
Pose Graphs. IEEE Robotics and Automation Letters, 2(2):1031–1038,
2017.

[3] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider. Coordinated
Multi-Robot Exploration. IEEE Transaction On Robotics, 21(3), 2005.

[4] S. Carpin. Fast and accurate map merging for multi-robot systems.
Autonomous Robots, 25(3):305–316, 2008.

[5] S. Carpin and A. Censi. An experimental assessment of the hsm3d
algorithm for sparse and colored data. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
3595–3600, 2009.

[6] J. Dichtl, L. Fabresse, G. Lozenguez, and N. Bouraqadi. PolyMap: A
2D Polygon-Based Map Format for Multi-robot Autonomous Indoor
Localization and Mapping. In Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 10984 LNAI, pages 120–131, 2018.

[7] B. Gallagher. Matching structure and semantics: A survey on graph-
based pattern matching. AAAI FS, 6:45–53, 2006.

[8] W. H. Huang and K. R. Beevers. Topological map merging. Interna-
tional Journal of Robotics Research, 24(8):601–613, 2005.

[9] V. Karpov, A. Migalev, A. Moscowsky, M. Rovbo, and V. Vorobiev.
Multi-robot exploration and mapping based on the subdefinite models.
In A. Ronzhin, G. Rigoll, and R. Meshcheryakov, editors, Interactive
Collaborative Robotics, pages 143–152. Springer International Pub-
lishing, 2016.

[10] H. Li and F. Nashashibi. A new method for occupancy grid
maps merging: Application to multi-vehicle cooperative local mapping
and moving object detection in outdoor environment. 12th Inter-
national Conference on Control, Automation, Robotics and Vision,
2012(December):632–637, 2012.

[11] Q. Liu, R. Li, H. Hu, and D. Gu. Building semantic maps for blind
people to navigate at home. Proceedings of the 8th Computer Science
and Electronic Engineering Conference, pages 12–17, 2017.

[12] J. Park, A. J. Sinclair, R. E. Sherrill, E. A. Doucette, and J. W. Curtis.
Map merging of rotated, corrupted, and different scale maps using
rectangular features. Proceedings of the IEEE/ION Position, Location
and Navigation Symposium, pages 535–543, 2016.

[13] M. J. Paulik, J. Overholt, M. Krishnan, Y. Alnounou, and G. Hudas.
Occupancy Grid Map Merging using Feature Maps. In IASTED
Technology Conferences, pages 10.2316/P.2010.706–074., 2016.

[14] M. Rohani, D. Gingras, and D. Gruyer. A novel approach for
improved vehicular positioning using cooperative map matching and
dynamic base station DGPS concept. IEEE Transactions on Intelligent
Transportation Systems, 17(1):230–239, 2016.

[15] S. Saeedi, M. Trentini, M. Seto, and H. Li. Multiple-Robot Simultane-
ous Localization and Mapping: A Review. Journal of Field Robotics,
33(1):3–46, 2016.

[16] S. G. Shahbandi, M. Magnusson, and K. Iagnemma. Nonlinear
Optimization of Multimodal Two-Dimensional Map Alignment With
Application to Prior Knowledge Transfer. IEEE Robotics and Automa-
tion Letters, 3(3):2040–2047, 2018.

[17] J. L. Susa Rincon and S. Carpin. Time Constrained Exploration
Using TopoSemantic Spatial Models: a reproducible approach. IEEE
Robotics and Automation Magazine, 2019 (accepted for publication).

[18] E. Tsardoulias, A. Thallas, and L. Petrou. Metric map merging using
RFID tags & topological information. CoRR, abs/1711.06591, 2017.

[19] E. K. Warrington. The selective impairment of semantic memory. The
Quarterly journal of experimental psychology, 27(4):635–657, 1975.


