
Quantitative assessments of USARSim accuracy
S. Carpin, T. Stoyanov, Y. Nevatia

School of Engineering and Science
International University Bremen

Bremen, Germany

M. Lewis, J. Wang
Dept. of Information Sciences and

Telecommunications
University of Pittsburgh

Pittsburgh, USA

Abstract— Effective robotic simulation depends on accurate
modeling of physics and the environment as well as the robot,
itself. This paper describes validation studies examining feature
extraction, WaveLan radio performance, and human interaction
for the USARSim robotic simulation. All four feature extrac-
tion algorithms showed strong correspondences between data
collected in simulation and from real robots. In each case data
extracted from a well lit scene produced a closer match to data
extracted from a simulated image than to camera data from
a poorly lit scene. The radio simulation also performed well
in validation showing levels of attenuation due to intervening
walls that were similar to signal strengths measured in the
modeled environment. The human-robot interaction experiments
showed close correspondence between simulator and robots in
performance affected by robot model, control mode and task
difficulty.

I. INTRODUCTION

USARSim is a high fidelity robot simulator built on top of
a commercial game engine [1] with a wide range of possible
applications. USARSim is currently being used to investigate
human robot interfaces (HRI), to develop and tune robot
algorithms, and to study cooperative behaviors. USARSim has
recently been adopted by the Robocup Federation [2][3] as the
software infrastructure for a new Urban Search and Rescue
(USAR) competition that models robots and environments
from the USAR Robot League. It joins an earlier Robocup
Rescue simulation that focuses on a higher level of logistics
and emergency management. Although robot simulators have
been widely used since the field’s inception there remain
widespread reservations about their usefulness. There are a
variety of reasons behind these concerns. First, robot simu-
lators have often offered application program interfaces that
were inconsistent with those found on real robots. This made
it difficult to move software between robot and simulator
for code development and debugging which was often the
primary purpose for using simulation. This problem has been
largely overcome by hardware neutral middleware such as the
widely used player/stage software [4][5]. A more damaging
criticism concerns discrepancies that may be found between
results obtained from simulation and those obtained with real
robots. A prime tenet of modern behavior-based robotics [6] is
that effective systems can be designed by eliminating internal
representations and focusing instead on the direct relation
between stimulus and action [7]. From this perspective a good
simulation must simultaneously supply an accurate model
of the robot’s geometry and kinematics, accurate models of

sensors, an accurate model of the environment, and an accurate
model of the robot’s interaction with that environment. If
any one of these constituents breaks down the simulation can
no longer provide an adequate model of the process being
studied. Simulation requirements were far more relaxed for an
earlier generation of robots that relied on planning and many
robot simulators still provide only schematic or 2D models
of the environment and pay little attention to the physics of
the interaction between robot and environment. USARSim, by
contrast, provides detailed models of both the environment
and the physics of interaction making accurate simulation for
behavior-based robotics a possibility.

In this paper we provide a quantitative evaluation of the
accuracy of USARSim, paying particular attention to the
validation of robot performance, as well as the perceptual
processes. Specifically, we define a set of perceptual tasks to
be studied both in simulation and in reality, as well as metrics
to compare the obtained results. The goal is to provide quanti-
tative indices that indicate to which degree it is possible to ex-
trapolate results obtained in simulation. Additional validation
data are reported for disruption of radio communications and
human control of robots. The overall USARSim architecture
is described in section II, with an emphasis on the specific
components devoted to perception and action. One of the tasks
more relevant in mobile robotics is visual perception. Section
III presents a set of algorithms commonly used for robotics
oriented image processing, as well as performance indices.
In multi-robot systems, inter-robot communications based on
wireless channels play a relevant role, but up to now few
simulators explicitly model aspects like signal degradation and
the like. These topics are addressed in section IV. Section V
presents data for two robots controlled by operators using two
control modes showing correspondences in behavior between
simulated and real robots. Finally, conclusions are offered in
section VI.

II. USARSIM SOFTWARE ARCHITECTURE

USARSim uses Epic Games’ UnrealEngine2 to provide
a high fidelity simulator at low cost. The current release
consists of models of standardized disaster environments,
models of commercial and experimental robots, and sensor
models. USARSim also provides users with the capability of
building their own environments and robots. Its socket-based
control API was designed to allow users to test their own
control algorithms and user interfaces without additional pro-



gramming. USARSim includes detailed models of the NIST
Reference Test Arenas for Autonomous Mobile Robots [8] and
offers the possibility of providing more realistic challenges and
significantly larger disaster environments.

The official release of USARSim available from
(www.sourceforge.net/projects/usarsim) currently provides
detailed models of eight robots including both experimental
and commercial robots widely used in USAR competition.
These models were constructed using the Karma physics
engine [9], a rigid body simulation that computes physical
interactions in realtime. A hierarchy of sensor classes have
been defined to simulate sensor data. Sensors are defined
by a set of attributes stored in a configuration file, for
example, perception sensors are commonly specified by
range, resolution, and field-of-view.

The scenes viewed from the simulated camera are acquired
by attaching a spectator, a special kind of disembodied player,
to the robot. USARSim provides two ways to simulate camera
feedback: direct display and image server. Direct display
uses the Unreal Client, itself, for video feedback, either as
a separate sensor panel or embedded into the user interface.
While this approach is the simplest, the Unreal Client provides
a higher frame rate than is likely to be achieved in a real
robotic system and is not accessible to the image processing
routines often used in robotics. The image server intermittently
captures scenes in raw or jpeg format from the Unreal Client
and sends them over the network to the user interface. Using
the image server, researchers can tune the properties of the
camera, specifying the desired frame rate, image format, noise,
and/or post processing needed to match the camera being
simulated.

III. VALIDATION OF VISION IN USARSIM

Vision is one of the richest perceptual sources for both
autonomous and remotely operated robots. A realistic simula-
tor cannot therefore omit a realistic and quantitatively precise
video simulation component. Within USARSim, video input is
produced by directly grabbing images from the scene rendered
by the visualization component of the game engine. Frames are
provided to the robotic controller encoded as jpegs of different
quality and with different resolutions. We have implemented
four different image processing algorithms that require the fine
tuning of several parameters. The parameter fine tuning phase
has been performed exclusively in simulation and then the
same algorithms have been run on real world images, to outline
similarities and differences in performance.

A. Feature extraction algorithms

The four visual tasks implemented are described in the
following subsections.

1) Edge detection: Edge detection has been implemented
using the well known Canny edge detection operator. Given a
grey scale picture, the image is first filtered with a Gaussian
filter to remove noise. Then, a Sobel operator separates regions
of high horizontal or vertical frequencies. Finally, the Canny
operator is applied, leaving lines with a 1 pixel thickness, and

Fig. 1. System Architecture

a thresholding final pass provides a black and white image.
Figure 2 illustrates these four steps.

2) Template matching: Template matching consists in find-
ing whether (and where) a known given target template ap-
pears within a wider image. Template matching is very useful,
for example, when beacons are scattered in the environment
to help the robot recover from localization errors. For this
operation, a simple template correlation was used. First, the
two dimensional Fourier transform of the image is computed.
Then the template image is transposed and padded to the size
of the image. Next, the Fourier transform of the template
is taken and multiplied with the transform of the image.
The inverse transform of the result provides an image of the
template convolution. We take the transpose of the template
instead of the template itself because the algorithm needs
to obtain the correlation of the two images and not the
convolution. An example is show in figure 3. On the left is
the template, followed by the inverted Sobel of the image and
the final result. The darker regions are the locations in the
image where the template is most probably located. In this
example there are two distinct peaks, close to each other.
Such variations occur when the size of the template does
not exactly match that of the feature in the image, as this
algorithm is not scale invariant. The usual practice to obtaining



Fig. 2. The steps of the Canny edge detection operator

a scale invariant implementation involve generating a pyramid
of possible templates of different sizes. A similar technique is
used for obtaining rotation invariance, although in this case the
problem is more complicated, due to the interpolation errors
that occur when a digital image is rotated.

Fig. 3. Template matching. Picture of template (left), image with target
feature(middle) and correlation(right)

3) Snakes: Active contours, also known as snakes, are one
of the best performing feature extraction techniques available.
The idea is the following: start with a number of points that
encompass the target feature. The points form a contour with
total energy

Esnake =

1∫
s=0

Eint(v(v)) + Eim(v(v)) + Econ(v(v))ds (1)

where Eint is the internal energy of the contour, Eim is the
energy component from the image and Econ is the constraint
energy. The internal energy is implemented as the average
distance between each two neighboring snake points, the
constraint energy is the curvature of every three consecutive
snake points and the image energy is proportional to the value
of the pixel that the snake point is currently occupying. On
each iteration of the algorithm the snake points are moved to
minimize the snake energy and eventually shrink the contour
to that of the targeted feature. There are several methods to
solve rigorously and implement the continuous solution of the
snakes algorithm in a discrete space. We have embraced the
solution known as the greedy snakes algorithm, that performs

a greedy search on points in the vicinity of each snake point.
It computes a discretized version of equation 1 for each pixel
in a 3 by 3 neighborhood and moves the snake point to the
pixel that has the lowest value for Esnake. For the purposes
of this algorithm the image energy is computed as the value
of every pixel in a normalized, inverted Sobel edge transform
of the original image. This implementation has a few inherent
problems that sometimes lead to a complete failure of the
algorithm. The first, and most serious shortcoming is that
the snake points can get stuck at local minimums and stop
moving. In general this is not that frequent, as if only one
point moves this will likely trigger motion of other points and
thus move the whole snake. To prevent cases when all points
are stuck we have increased the size of the search window
from 3 by 3 to 9 by 9 pixels, which has no considerable
effect on the execution time, as the number of snake points
is generally low. The second problem concerns the choice
of weighting coefficients for each of the three components
of the snake energy. Choosing a high value for the image
energy makes snake points migrate to the closest edges and
distort the original shape of the contour. Choosing too low a
value on the other hand makes the contour static, because
even small changes in the spacing between points and in
the curvature have a huge impact on the total energy. Thus,
choosing the proper constants becomes a tedious process that
is specific for each image analyzed. Over a few tests constants
that have a stable performance on the simulated images were
chosen, again with the purpose of testing how well the tweaked
algorithm would later perform on the real images.

4) Optical character recognition: Optical Character Recog-
nition (OCR) is the problem of extracting text from raster
images of text. There exist different algorithms to perform
OCR. The one described here starts by properly aligning the
text, so that all rows are parallel to the horizontal axis. This
is achieved by computing the Hough transform of the text
image and rotating it around an angle, equal to the most
frequent Hough angle. Assuming we have a long enough text,
all parallel lines that belong to characters will intersect in
Hough space and thus the angle of rotation can be determined.
The next step is to compute the vertical projection of the image
and separate each element. This is possible, because of the
white spaces between rows which are distinctly visible on the
vertical projection of the image. Using a similar argument, we
can compute the horizontal projection of each row and separate
letters, also called glyphs. Individual letters are then cropped
to ensure there are no extra white spaces. This algorithm
is first performed on a learning image, which contains the
whole character set to be recognized, in a known order.
Thus, a database of characters and their respective glyphs is
created. Subsequent text images are processed in the same
way and for each character glyph a template matching is
performed to find the character from the database that has
the greatest similarity. An example is shown in figure 4: the
orignal image, the image after thresholding and inverting,
after rotation and after applying the noise reduction filter
are displayed in sequence. This algorithm achieves a 100%



accuracy on images grabbed from the screen, but is susceptible
to noise, as stray pixels, unless filtered, will be recognized as
glyphs and matched against the database. The noise reduction
filter was implemented to reduce salt and pepper noise and
stray single pixels, but that has no effect on groups of noisy
pixels. Filtering out such noise is very hard, as it is sometimes
impossible to differentiate between a cluster of noisy pixels
and a valid character.

Fig. 4. The stages of Optical Character Recognition

All the above described algorithms have been implemented
in Matlab closely following the descriptions found in [10] and
[11].

B. Experimental setup and results

In order to compare the algorithm performance on corre-
sponding simulated and real images, we have developed within
USARSim a detailed model of a room environment and we
have successively taken pictures from corresponding points
of the virtual and real world. In order to test the algorithms
under different boundary conditions, images with different
light conditions were used.

Figure 5 presents the correlations between the edge images
for eight test images. The autocorrelations of the simulated
image in column 1 (dark blue) are comparable with those
from the correlation between a well lit real world image and
a simulated image (column 2, light blue). The same is true in
most cases about the correlations of the simulation and the bad
lit image, compared to the correlations of the well lit and bad
lit image (columns 3 and 4, yellow and brown respectively).
The slight deviations are mainly due to minor deviations of
the positions of the camera when taking the images. It should
be observed that the precise numerical value of the correlation
is not the main aspect of this experiment. The relevant aspect
is rather the gross scale similarity or discrepancy in the values.

Figure 6 presents the results for the distances (in pixels)
between the actual position of the target feature (IUB logo
displayed in figure 3 on the left) and the position estimated
with template convolution. Except for the third and the seventh

Fig. 5. Results for edge detection metric

image, the distances are below 100 pixels, which is about one
and a half times the template size and a very good result. In
most of the cases the results on the three images are very close,
with the noticeable difference of image 6, where the well lit
real image shows a much worse behavior than the other two.
In most cases however, the performance is almost identical, as
visual inspection of figure 7 (test image 1) confirms.

Fig. 6. Results for template convolution metric for simulation (blue), well
lit conditions (green) and bad lit conditions (brown).

Figure 8 shows the average distance in pixels between snake
points and target features for the three sets of images. The
results show a maximum deviation of about 11 pixels, which
is a good result, as well as some excellent performances on
images 4 and 6 with average distance of about 3-4 pixels. The
results for Image 6 are also presented in figure 9 (simulation)
and figure 10 (real-world). Again, the performances on the
three sets are comparable, and although the constants have
been tweaked for the simulation, the real images sometimes
outperform the simulated ones.



Fig. 7. Template convolution performed on simulator(left) and real
world(right,middle)

Fig. 8. results for the Active Contours metric

Finally, figure 11 presents the results of testing optical
character recognition on two sets of images - one from the
real model and one from the simulation. The figure measures
roughly the percentage of recognized characters in each case.
The success rate in both cases is pretty low, and noticeably
lower in the case of the real world images. Inspecting the
sample image in figure 12 gives a very good explanation for
these low figures, i.e. the high level of noise. The figure shows
the original images on the top - simulation on the left and
real image on the right, as well as the images after filtering
and rotation on the bottom. The bottom images exhibit a low
quality and high fragmentation on the characters. This is due
to the rigorous filtering that has removed most of the noise, but
also parts of the characters. As the images from the real camera
exhibit higher level of noise, they also have a lower quality
after filtering and thus a lower success rate of recognition.

IV. WIRELESS SIMULATION

An important factor in the performance of multi robot teams
is the communication between the agents. In complex environ-
ments offering little or no opportunity for implicit information
exchange, explicit communication can greatly improve the per-
formance of multi-agent teams. USARSim currently does not
provide any kind of simulation of communication mechanism,
thus allowing all robots to freely communicate regardless of
their position in the environment. To include a more realistic
scenario in future USARSim releases, we have developed and
validated a preliminary software module that mimics wireless

Fig. 9. Snake algorithm performed on simulated image

Fig. 10. Snake algorithm performed on real image

communication within simulated environments. As nowadays
most robots use WaveLan cards to send messages to each other
over wireless channels, the implementation of a WaveLan
simulator for USARSim will greatly improve its accuracy as a
tool to develop multi robot teams, hence making it even more
attractive for the research community.
The simulation system consists of three modules. A so called
parser component provides the infrastructure to compute the
strength of a signal received by a receiver. A server component
is used to dispatch messages from transmitters to receivers.
Therefore if a the process controlling the simulated robot
A desires to send a message to the process controlling the
simulated robot B, it does not directly talk to it, but it
rather asks the server to deliver a message. The server, upon
inspection of the receiver signal strength, decides whether the
message should be passed on or not. The third component,
which will not be extensively described here, provides a one-
to-one simulation of the socket API, so that communication
software written within the simulator can be easily moved to



Fig. 11. Results of OCR metric

Fig. 12. OCR performed on simulator(left) and real world(right)

real robots.
A fundamental step for the simulation of wireless signals is
the selection of a propagation model, i.e. a model describing
how signals are propagated in the environment. Among the
different ones proposed in the literature, we have selected the
one presented in [12], also known as RADAR model. The
model best predicts propagation within floors, accouting for
the attenuation of the transmitted signal due to distance and
traversed walls. The signal strength at a point at distance d
from the emitter is modeled by the following equation

P (d) = P (d0)−10n log
(

d

d0

)
−

{
nW ∗WAF nW < C
C ∗WAF nW ≥ C

(2)
P (d0) is the reference signal strength in dBm, nW is

the number of obstructions between the transmitter and the
receiver, and WAF is the so called Wall Attenuation Factor, i.e.
an empirical factor accounting for the attenuation experienced

by the signal while traversing a wall. C is the maximum
number of obstructions up to which the attenuation factor
affects the path loss. Finally, n is a factor indicating the rate
with which the path loss increases with distance. It is therefore
evident that if one wants to use equation 2 to predict the
received signal strength, it is necessary to know the relative
positions between the transmitter and the receiver, as well as
the number of walls. This later number, needed to determine
the right nW value, is not computed on the fly every time
the value for P (d) is needed, but is rather deducted from a
data structure obtained by preprocessing once the map of the
environment. The preprocessing operation is performed by the
parser subsystem. According to the technical specifications of
commercially available wireless devices the minimum receiver
sensitivity is -92dBm. Therefore when the server receives a
request for a message to be dispatched, it passes it on only if
the received signal strength is above this value.

A. Testing and validation

In order to evaluate the performance of the proposed
wireless simulation system we have developed within Unreal
the model of an existing building. The environment features
three fixed base stations that can be modeled as well within
the proposed framework. A preliminary step has been the
experimental determination of the parameters in equation 2.
These values are displayed in table I.

Parameter Value
Wall attenuation factor (WAF) 7

Maximum number of obstructions (C) 4
Path Loss factor (n) 1

Reference distance (d0) 2
Signal strength at d0 (dBm) -50

TABLE I
EXPERIMENTALLY DETERMINED PARAMETERS

Next, for different placements of transmitters and receivers
we have

• measured the actual signal strength in the environment
• computed the value predicted by equation 2
• computed the signal strength with the simulation system.
The results of these measurements and predictions are

displayed in tables II, III and IV respectively.

Name No of Walls Average Median 3rd Quartile
[m] [dBm] [dBm] [dBm]

rtest1 1 -71.43 -71.2 -69.03
rtest2 1 -74.2 -74.05 -71.52
rtest3 0 -66.65 -67.04 -64.18
rtest4 2 -78.48 -77.7 -75.91

TABLE II
WIRELESS SIGNAL STRENGTH PREDICTED BY WAF MODEL

It can be observed that there is in general a good cor-
respondence between the two predictions and the measured
signals, although there are some obvious fluctuations. Large



Name Average Std Dev Median 3rd Quartile
[dBm] [dBm] [dBm] [dBm]

rtest1 -72.18 6.37 -68 -67
rtest2 -70.85 2.47 -71 -70
rtest3 -66.97 7.44 -63.5 -61
rtest4 -73.95 1.34 -74 -73

TABLE III
EXPERIMENTAL VALUES FOR WIRELESS SIGNAL STRENGTH

Name Average Median 3rd Quartile
[dBm] [dBm] [dBm]

rtest1 -71.33 -71.09 -68.93
rtest2 -81.12 -80.42 -78.29
rtest3 -73.76 -73.6 -71.12
rtest4 -78.25 -77.46 -75.71

TABLE IV
WIRELESS SIGNAL STRENGTH VALUES FROM THE SIMULATOR

discrepancies between the results predicted by the simulator
and those forecasted by the RADAR module are explained by
the approximations introduced by the parser module.

V. HUMAN ROBOT INTERACTION

Validating USARsim for human-robot interaction (HRI)
presents a complex problem because the performance of
the human-robot system is jointly determined by the robot,
the environment, the automation, and the interface. Because
only the robot and its environment are officially part of the
simulation, validation is necessarily limited to some particular
definition of interface and automation. If, for example, sensor-
based drift in estimation of yaw were poorly modeled it would
not be apparent in validation using teleoperation yet could still
produce highly discrepant results for a more automated control
regime. Our validation efforts for HRI, therefore, sample two
widely used control schemes [13], teleoperation and point-to-
point control for two robots, the experimental PER [14] and
the commercial Pioneer P2-AT (simulation)/P3-AT (robot) in
order to provide an indication of the likely validity of the
simulation for HRI across a range of configurations.

We have completed validation testing at Carnegie Mellon’s
replica of the NIST Orange Arena for the PER robot using
both point-to-point and teleoperation control modes reported
in [15] and have collected teleoperation data for the Pioneer
reported in [3]. In these tests robots were run along a narrow
corridor in either the simulation or the Orange Arena with
three types of debris (wood floor, scattered papers, lava rocks)
while the sequence, timing and magnitude of commands were
recorded. In the first three trials, participants had to drive
approximately three-meters, along an unobstructed path to an
orange traffic cone. In the next three trials, obstacles were
added to the environments, forcing the driver to negotiate at
least three turns to reach the cone yielding a between groups
design pairing each surface type with straight and complex
paths.

The paper surface had little effect on either robot’s opera-
tion. The rocky surface by contrast had a considerable impact,
including a loss of traction and deflection of the robot. This
was reflected by increases in the odometry and number of turn
commands issued by the operators even for the straight course.
A parallel spike in these metrics is recorded in the simulator
data. As expected the complex course also led to more turning
even on the wood floor. Figure 13 shows task times for real
and simulated robots. Differences within conditions were low
particularly for complex paths which are more likely to be
influenced by human control suggesting that USARSim is
likely to provide a valid tool for investigating HRI.

Fig. 13. Task Duration

The one metric on which the simulation and the physical
robot consistently differed was proximity to the cone when
teleoperating the PER (14). Operators using the physical robot
reliably moved the robot to within 35cm from the cone, while
the USARSim operators were usually closer to 80cm from
the cone. It is unlikely that the simulation would have elicited
more caution from the operators, so this result suggests that
there could be a systematic distortion in depth perception,
situation awareness, or strategy.

Fig. 14. Approach to Cone for Teleoperated PER



VI. CONCLUSIONS

This paper describes validation tests for feature extraction
from simulated images, a radio propagation model, and tests
involving human control. The feature extraction tests are
especially important to validating the simulator because of
the complexity of the visual imagery. The underlying game
engine was explicitly designed to generate imagery that would
appear realistic to human perception. This is, however, no
guarantee that the information extracted from synthetic images
would correspond to that extracted from real camera views.
In fact, the clarity and lack of naturally occurring distortion
in synthetic images might be expected to yield perfectly
formed extractions where nothing might be found even in
clear appearing real images. Our results are very encouraging
because they show a close correspondence between infor-
mation extracted from real and computer generated images
at least under well lit conditions. Further validation will be
required to determine whether this correspondence will extend
to other illumination levels and extraction algorithms. The
radio simulation, by contrast, provides a validated tool for
approximating communications difficulties at USAR tasks for
use with the simulator but does not reflect on the validity
of the simulator itself. The driving tests showed that robots
in simulation behaved in much the same way as real robots.
The correspondence in performance for robots and simulation
between control modes, terrain type, and task complexity
suggest that the simulation is both physically accurate and
presents similar challenges to human operators making it an
appropriate tool for HRI research.

To draw valid conclusions from robotic simulations it is
important to know the metrics which are consistent with the
operation of the actual robot and those which are not. By
collecting validation data for all entities within the simulation
we hope to create a tool with which researchers can pick
and choose manipulations and metrics that are likely to yield
useful results. As our library of models and validation data
expands we hope to begin incorporating more rugged and
realistic robots, tasks and environments. Accurate modeling
tracked robots which will be made possible by the release of
UnrealEngine3 would be a major step in this direction.

REFERENCES

[1] J. Wang, M. Lewis, and J. Gennari, “Usar: A game-based simulation for
teleoperation,” in Proceedings of the IEEE International conference on
systems, man and cybernatics, 2003, pp. 493–497.

[2] S. Carpin, J. Wang, M. Lewis, A. Birk, and A. Jacoff, “High fidelity
tools for rescue robotics: results and perspectives,” in Robocup 2005:
Robot Soccer World Cup IX, ser. LNCS, 2006, pp. 301–311.

[3] S. Carpin, M. Lewis, J. Wang, S. Balakirski, and C. Scrapper, “Bridging
the gap between simulation and reality in urban search and rescue,” in
Robocup 2006: Robot Soccer World Cup X, ser. LNCS.

[4] R. Vaughan, B. Gerkey, and A. Howard, “On device abstractions for
portable, reusable robot code,” in Proceedings of the IEEE/RSJ IROS,
2003, pp. 2421–2427.

[5] “Player/stage project,” http://playerstage.sourceforge.net, 2005.
[6] R. Brooks, “A robust layered control systems for mobile robot,” IEEE

Journal of Robotics and Automation, vol. RA-2, no. 1, pp. 14–23, 1986.
[7] ——, “Intelligence without reason,” in Proceedings of the International

Joint Conference on Artificial Intelligence, 1991, pp. 569–595.

[8] A. Jacoff, E. Messina, and J. Evans, “Experiences in deploying test
arenas for autonomous mobile robots,” in Proceedings of the 2001
Performance Metrics for Intelligent Systems (PerMIS), 2001.

[9] Mathengine, Karma User Guide. [Online]. Available:
http://udn.epicgames.com/Two/KarmaReference/KarmaUserGuide.pdf

[10] M. Nixon and A. Aguado, Feature extraction and image processing.
Newnes press, 2002.

[11] J. Parker, Algorithms for image processing and computer vision. Wiley
Computer Publishing, 1997.

[12] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based
user location and tracking system,” in INFOCOM (2), 2000, pp. 775–
784.

[13] J. Crandall, M. Goodrich, D. Olsen, and C. Nielsen, “Validating human-
robot interaction schemes in multi-tasking environments,” IEEE Trans-
actions on Systems, Man, and Cybernetics-Part A: Systems and Humans,
no. 33(3), pp. 325–336, 2003.

[14] I. Nourbakhsh, E. Hamner, E. Porter, B. Dunlavey, E. Ayoob, T. Hsiu,
M. Lotter, and S. Shelly, “The design of a highly reliable robot for un-
mediated museum interaction,” in 2005 IEEE International Conference
on Robotics and Automation (ICRA’05), 2005.

[15] J. Wang, M. Lewis, S. Hughes, M. Koes, and S. Carpin, “Validating
usarsim for use in hri research,” in Proceedings of the Human Factors
and Ergonomics Society 49th Annual Meeting (HFES’05), 2005, pp.
457–461.


