UNIVERSITY OF CALIFORNIA, MERCED

Robot Planning with Constrained Markov Decision Processes

by

Seyedshams Feyzabadi

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

n

Electrical Engineering and Computer Science

Committee in charge:
Professor Stefano Carpin, Chair
Professor Marcelo Kallmann
Professor YangQuan Chen

Summer 2017



© 2017 Seyedshams Feyzabadi

All rights are reserved.



The dissertation of Seyedshams Feyzabadi is approved and it is acceptable in quality and form for
publication on microfilm and electronically.

Stefano Carpin, Chair Date
Marcelo Kallmann Date
YangQuan Chen Date

University of California, Merced

©Summer 2017



For a while in childhood we attended a master

for a while we were happy with our own mastery

at the end of the story see what happened to us

like water we entered, and like the wind we departed
”Omar Khayyam”



Dedicated to my father
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Abstract

Robotic technologies have advanced significantly that improved capabilities of robots. Such robots
operate in complicated environments and are exposed to multiple resources of uncertainties. The
uncertainties causes robots actions to be non-deterministic. Robot planning in non-deterministic
environments is a challenging problem that has been extensively discussed in the literature. In
this dissertation, we tackle this class of problems and are more particularly interested in finding
an optimal solution while the robot faces several constraints. To do so, we leverage Constrained
Markov Decision Processes (CMDPs) which are extensions to Markov Decision Processes (MDPs)
by supporting multiple costs and constraints. Despite all the capabilities of CMDPs, they are not
very popular in robot planning. One of our goals in this work is to show that CMDPs can also be
used in robot planning.

In the first part of this dissertation, we focus on optimizing CMDPs to solve large problems
in a timely manner. Therefore, we propose a hierarchical approach that significantly reduces the
computational time of solving a CMDP instance while preserving the existence of a valid solution.
In other words, the Hierarchical CMDP (HCMDP) guarantees to find a valid solution for a specific
problem if the non-hierarchical CMDP is able to find one. Although, the experimental evaluation
shows that the HCMDP and the non-hierarchical CMDP generate comparable results, we do not
provide any guarantees in terms of optimality.

In the second part, we aim for more complicated constraints represented as tasks. Tasks
are usually specified by Linear Temporal Logic (LTL) properties and determine a desired temporal
sequence of states to be visited by the robot. For instance, an autonomous forklift may be tasked
to go to a pick-up station, load an object, drive toward a delivery point and drop it off. As seen
the order of states is critical. Thus, we propose a planner that finds a plan to satisfy multiple tasks
with given probabilities while having various constraints on its cost functions. The proposed solver
utilizes the theory of LTL properties to define tasks, and the theory of CMDPs to find an optimal
solution. We also present a special form of product operation between LTL properties and CMDPs
that is repeatable. This repeatability lets us apply the product operation several times to take all of
the tasks into account. The proposed approach is extensively tested in Matlab, robot simulation and
on a real robot.

This solver runs the product operation many times which results in increasing number of
states. Therefore, it is crucial to reduce the number of states in order to have a faster solver. In part
three of this thesis, we aim for optimizing the solver in part two. We propose two improvements.
The first improvement considers the order of product operations. Although the product operation
is commutative and the order of operations does not influence the final result, it affects the com-
putational time. Thus, we present an algorithm to find the best order of operations. The second
improvement runs a pruning algorithm to reduce the number of states by removing the states that
play little or no role in the final product. As opposing to the first improvement, it may change the
final solution. However, we analyze different cases that may appear and show the effects.



Chapter 1

Introduction

Starting from the first general purpose mobile robot', Shakey, in 1966, robots have signif-
icantly changed. While early robots were primarily designed to showcase some future function-
alities, today’s robots are truly capable and functional at the time being. Some advanced robots
such as the Mars rover Curiosity are equipped with numerous sensors and actuators together with
extraordinary computational power to perform very complex missions. Such robots are able to ac-
complish difficult tasks involving accurate perception, localization, planning, etc. while operating
in environments with significant uncertainties.

One of the most fundamental requirements to operate a robot in an environment is to convert
a human specified task into a sequence of low-level control inputs, representing how to move. The
terms of motion planning, trajectory planning or mission planning usually address these type of
problems. However, the term planning refers to a wider range of algorithms by considering any
form of automation of any mechanical system equipped with sensors, actuators and computation
capabilities [111].

One major question that arises is what is a plan? The answer to this question heavily depends
on the application. In the context of robotics, we consider a plan to be a set of rules computed by a
planner or decision maker which imposes a certain behavior for the system [111]. A plan is defined
as a sequence of actions which is either computed by a machine or calculated by a human. If the
plan is computed by a machine, the algorithm is referred to as the planner.

Planners can be categorized into two classes; online and offline planners. An online planner
checks the current state of the system and creates a plan to reach the current goal at the present
time. Therefore, online planners are required to compute a new plan (replan) every time that the
system evolves and changes its state. On the contrary, offline planners calculate a plan before the
system starts to evolve, and then generate a list of actions for every possible state of the system.
At execution time, a robot determines the state and performs the pre-computed action at any state.
In general, online planners are preferred when the environment is dynamic and the robot requires
immediate change of the plan, while offline planners are chosen when the environment is static.
However, in a real scenario, a mixture of both planners is more popular. Such algorithms work
on two layers. On the top layer, they run an offline planner which finds optimal solutions without

Thttps://www.sri.com Accessed on 06/12/2017



considering any dynamical behavior in the environment. The online decision makers are applied on
the lower layer where the dynamical behavior is visible to the robot. Thus, the real time planner
takes care of small dynamic changes around the robot while receiving intermediate goals from the
offline planner. Throughout this dissertation, we also leverage hybrid planners, and utilize them in
most of our experiments.

Imagine a Mars rover on a mission. A robot is sent to a planet which is either unknown
or partially known. The robot is assumed to perform long term missions, and survive on its own
without any external help. The amount of noise on the sensors is non-negligible, and the surface of
the planet is not convenient for any mobile robot, then how can the Mars rover work. Moreover, the
robot is sent there to explore the unknowns and accomplish numerous complicated missions.

Here is an example mission. The robot is asked to drive and read some sensory data from
multiple points on the planet. The robot runs on a battery which has a limited life and if the robot
drives too fast, the battery life shrinks. On the other hand, if it slows down to save some energy
while the solar cells recharge the battery, it increases the total time of the mission which might have
influences on validity of data. Similarly, the robot might be required to perform few sub tasks while
driving to its primary goal such as picking up an object on the way and dropping that off at the
destination.

As seen in the aforementioned example, a planner needs to take multiple factors into account
in order to complete a mission. It is almost impossible to optimize all given factors for any type
of planning problems at once. Therefore, most of the planners select one or few of the factors that
are more critical for the operations and optimize them only. Meanwhile, good planners keep an eye
on non-critical parameters as well to avoid complications [44]. Tailoring this concept to our former
example, such planners may optimize the time to reach the goal while applying an upper bound on
the battery consumption which prevents unexpected failures.

Uncertainties also play a key role in this scenario. If the sensors are so noisy that the robot is
not able to localize itself on a given map, planning will be extremely challenging. Similarly, uneven
or slippery surfaces reduce maneuverability of the robot which is another form of uncertainty for the
planner. In such situation, it is evident that the planner has to account for the non-determinism from
these uncertainties to propose an optimal plan. Otherwise, numerous replanning steps are required
to complete a simple task.

Throughout this dissertation, we only focus on planning under uncertainties where the out-
come of an action is not fully predictable, but a probabilistic distribution of that is known.

We start with risk-aware planners in chapter 4. The necessity of having such planners lies on
the increased interactions of human and robots. Nowadays, robots perform a wide variety of tasks
from mopping floors to doing precise and complicated surgeries. Therefore, interactions between
robots and humans are unavoidable. The safety of such interactions is the most important factor for
the planners which cannot be compromised in any sense. According to the reports from department
of labor in the united states, 20 fatalities were caused by robots since the year 2000?. Therefore,
we chose the risk to be the primary factor for our planner. However, we did not aim at defining
risk metrics where several books and standard documents have already discussed that topic from
different aspects.

Zhttps://www.osha.gov/ Accessed on 06/12/2017



Although it is not a novel idea to consider risk as the primary objective, as in [122], we
present a new approach and consider multiple factors. We focus on minimizing the total risk along
the path while having a bound on total path length. Moreover, our approach is flexible and can be
extended to consider multiple additional factors such as limiting energy consumption, time or any
similar metric. We present a planner which can find such plans in a reasonable time with limited
computational resources. The proposed planner is not tied or limited to risk-aware planning only.
It can be applied to any similar scenario where there is a primary objective to be minimized or
maximized and a set of additional factors to be bounded.

Next in Chapter 5, we introduce robot tasks. For a human being, tasks have different meanings
and multiple approaches exist to accomplish a task. Imagine a simple task of closing a door. It can
be performed in multiple ways by different people. It could be done with right or left hand. Some
people may prefer to lock the door, too. The route to approach the door may also be different.
Robots are not that flexible and smart, and they require precise definition of every aspect. The
definition of a task should then contain all the details. It also needs to consider the capabilities of
the robot which is assigned to that task. Sometimes, a large task has to be broken down into smaller
sub-tasks to be performed.

On the other hand, tasks have to be universally defined which means a unified language has
to be used to sketch any form of tasks, regardless of the application or type of robots. Therefore,
we propose a planner in Chapter 5 which utilizes the standard task definition methodologies and
includes that in the planning phase to extract plans that satisfy a set of predefined tasks. The planner
is capable of solving a problem with the following criteria:

e The robot operates in non-deterministic environments.

e The planner optimizes over one primary parameter (also known as primary cost function,
explained in 3.3.2).

e The planner can include several additional factors to be bounded (also known as additional
cost functions, explained in 3.3.2).

o It considers multiple tasks to be satisfied (expressed as LTL properties, described in 3.2.2).
o Every task is satisfied with a target probability (explained in 3.4).

The planner can solve general purpose problems and easily be used in completely different
scenarios as long as the new problem fits in the above criteria. As shown in the experiments sec-
tion of the same chapter, we have already applied this planner into different applications such as
autonomous navigation, rapid deployment, factory forklift scenarios and there are still many more
unexplored areas. Another area of focus in this dissertation, and more specifically in Chapters 6
and 5 was to provide the optimal plans in a timely manner. To achieve this goal, we applied differ-
ent types of optimization such as pruning the graph and reordering the commutative operations to
reduce the processing times.



1.1 Dissertation Contributions

In this dissertation, we focus on planning mobile robots in environments with existing uncer-
tainties. We leveraged Constrained Markov Decision Processes (CMDPs) as the primary method-
ology to solve such problems. Our contributions can be listed as following:

1. In the first step, we use CMDPs to find an optimal path when multiple constraints exist.
Besides that, we drive robots along the path to verify the constraints.

2. One of the major drawbacks of CMDPs is their computational time. Accordingly, our next
contribution is to propose a hierarchical solver for CMDPs which reduces the computational
requirements while showing comparable results.

3. Even though, hierarchical solvers reduce the computational time, they might eliminate some
valid solutions. Therefore, we propose a new type of hierarchical CMDP (HCMDP) which
provides guarantees about existence of solutions. In other words, HCMDP guarantees to find
a solution, if the non-hierarchical CMDP is able to find one. However, we do not provide any
assurance about the optimality of such solutions. However, extensive experimental results on
Matlab, robot simulation and real robot showed that the results are comparable to the optimal
outcomes by the non-hierarchical CMDP.

4. In the next step, we consider more complex missions or tasks. As commonly used in robotics,
we use Linear Temporal Logic (LTL) properties to define tasks. Then we included LTL prop-
erties in CMDP planners to find optimal solutions for CMDPs while satisfying some tasks as
well as some costs and constraints. To do so, we have the following sub-contributions:

(a) We define Labeled CMDPs (LCMDPs) which are the model sustaining our solver.
LCMDPs bring labels into the context of CMDPs.

(b) We introduce Extended Total Deterministic Finite Automata (DFAs). By converting
LTL properties into extended-total DFAs, we are able to connect the theory of LCMDPs
with LTL properties.

(c) We define a new product operation between an LCMDP and an extended-total DFA
which is iterable. This repeatability plays a critical role in applying the product between
multiple LTL properties and an LCMDP. In other words, this addition lets us propose a
planner for a mobile robot which can simultaneously take multiple tasks into account.

(d) We propose a principled way to solve an LCMDP with a linear program which consid-
ers all costs, constraints and tasks.

(e) Finally, we validate our findings on Matlab, robot simulation and on a real robot. All
of the experiments confirm our theory by satisfying all the constraints in expectation.

5. Including multiple tasks into a planner requires applying the product operation multiple
times. This increases the size of the LCMDP, and may create unsolvable problems. There-
fore, we propose a set of optimization steps to reduce the size of the problem and then de-
crease the computational time.



6. After developing our theory, we implement it in an open source toolbox. It consists of an
offline planner which generates the table of rules, and also an online planner to drive the real
or simulated robot along the desired path.



Chapter 2

Literature Review

In this chapter we introduce some related research work. In Section 2.1, we discuss discrete
planning. Then, in Section 2.2 we briefly describe the state of the art in motion planning and present
different approaches to solve motion planning problems including their strengths and weaknesses.
Subsequently, in Section 2.3 we provide some insights of task specifications, and how to universally
define them. Finally, we present some research works that integrate tasks into motion planning
algorithms.

2.1 Discrete Planning

In a discrete planning problem, every distinct situation of the world is referred to as a state,
and denoted by s. Then state space, denoted by §, is defined as the set of all possible states.
Discrete planning is the simplest type of planning where the state space is finite or it is countably
infinite [111]. Since the real world is not discrete, it is required to convert a continuous world into a
discrete environment. This step is referred to as the abstraction step [119] which is one of the very
important steps in any discrete planning approach.

Another key concept in planning is actions, which are denoted by u. Actions can change the
state of a system from s to s”. In many cases, the set of viable actions in different states are different.
Usually the set of all the actions is represented by U, and the set of feasible actions in a specific state
s is referred to as U(s). The set of all actions can be calculated by taking the union of individual
action sets as follows:

U = Uses U(s)

The transition function defines the outcome of actions at every state. If a transition function is
indicated by f we have:

s = f(s,u)

In discrete planners, we use the terms of initial and goal states to indicate which state the system
starts from and where it must end. A simple example of discrete planning can be finding the shortest
path in a 2D environment. A small example is shown in Figure 2.1. Standard graph search algo-
rithms such as A* [78], Dijkstra [131], Breadth-First-Search [131], and others can be used to find
the shortest path or exploring all the reachable states.
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Figure 2.1: An example of discrete planning where S is the initial and G is the goal state. The green
path shows a feasible trajectory from the initial state to the goal state. White cells are traversable
while black area is blocked.

2.2 Motion Planning

We next consider continuous spaces where the problem is more complicated and classic graph
search algorithms cannot directly solve the problem. The key concept in motion planning is a
configuration. A configuration specifies positions of all the points in a system at a given time.
Consequently, configuration space refers to the set of all possible configurations. The configuration
space is split into two subsets; free space, C .., and obstacle space, Cops. Cops contains all the
configurations where the robot intersects any obstacle. On the contrary, Cy,.. represents the set of
configurations where the robot does not collide with any obstacle.

The piano mover’s problem is a classical problem for robot motion planning where the models
for a house and a piano are given. The idea is to look for an algorithm which takes these inputs and
determines how to move the piano between two configurations without hitting any object [111].
The problem in motion planning is to find a sequence of robot configurations from the starting
configuration to the goal configuration where all of these configurations are contained in Cpye,
only [111]. An example is shown in Figure 2.2.

Even though nowadays robots have changed significantly in shape, sensing, and other fea-
tures, the basic problem of driving a robot safely in complex situation has not changed. The
problem of motion planning has been widely discussed in the literature, and there are numer-
ous studies to tackle the same problem from different perspectives. There are several classic text
books describing motion planning with many details and under different conditions and constraints
(See [37,109,111]). On the other hand, motion planning algorithms have also been popular in other
fields such as, computer animations and computational biology [6,90, 110].

Among all these works, the classical survey of gross motion planning by Hwang and Ahuja,
[89], is one of the overview publications in early 1990s. They classified motion planning algorithms
in the following ways: the environment can be either stationary or time-varying which means that
the environment does not change in stationary domains but it some objects in the platform might
move, appear or disappear in time-varying environments. Motion planning is either constrained
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Figure 2.2: An example of motion planning from start to goal by selecting configurations from C /.
only

or non-constrained where the robot motion model has some limitations such as max/min speed in
the constrained form, but there is no limits in non-constrained case. Similarly, the motion planning
can be static or dynamic where static refers to finding a plan in offline manner. On the contrary,
the motion plan has to be continuously updated in dynamic model. The solvers are either exact or
heuristic which means they either find the exact solution or to find a solution which is good enough
using some heuristics. Similarly, solvers can be classified as global vs local in order to find a plan
for the global or a local problem. Throughout this document we focus on stationary, constrained,
static, exact and global solvers.

When uncertainty is added to motion planning, the problem changes, and many extra consid-
erations need to be taken into account. Uncertainty generally exists in the real world. However, to
simplify the problem, some planners do not take that into account. As a result, a replanning step is
activated as soon as uncertainty is detected. There are two known sources of uncertainties [111]:

e State evolution: If the outcome of an action is not fully predictable. Uncertainties can cause
failure of actions or deviation from the trajectories.

o Perception: If the current state is not precisely known, the current state is usually estimated
by starting from a known initial state using sensors and the history of previous states/actions.

In the following subsections 2.2.1 and 2.2.2, we present some of the existing approaches to solve
motion planning problems in deterministic and non-deterministic situations.
2.2.1 Deterministic Planning

Given an initial and a goal configuration, the simplest planning approach finds a sequence of
intermediate configurations that leads the robot to the goal state if it assumes that every configuration



is reachable from its neighboring configurations in the sequence and the initial state is unique.
These two assumptions imply that the state of the system is exactly predictable after following any
sequence.

Deterministic planning is divided into two main categories of sampling-based and combina-
torial motion planning. The focus of sampling-based approaches is to avoid building a complete
configuration space, and rely on collision checking tools. Sampling based planners are very bene-
ficial when the number of parameters involved in planning is high. On the contrary, combinatorial
planners emphasize precise solutions by complete geometric modeling of the environments. There-
fore, they build a complete representation of the configuration space, and seek an exact solution. As
a consequence, the complexity of the problem increases significantly which require great computa-
tional resources to solve a moderate problem.

2.2.1.1 Sampling-based Motion Planning

Since the introduction of Probabilistic Road Maps (PRMs) by Kavraki et al. in [95, 96],
there has been increased use of sampling-based methods in motion planning, and they became the
dominant paradigm in the field. In short, PRM based approaches construct a graph, or roadmap, of
the state space by connecting configurations that are sampled randomly. PRM works in two phases:
construction followed by query. In the first phase, PRM picks a set of random configurations. Then
a collision checker algorithm is used to verify the selected random point is in Cpy,. If verified, the
node is added to the graph. After having a set of nodes in the graph, it is needed to build the edges.
Therefore, PRM iteratively checks all the nodes in its graph, and finds the closest n nodes to every
node. Then a local planner is used to verify the existence of a collision free path between the pairs.
If such path exists, the edge is added to the graph.

In the phase of querying, the shortest path from every start and goal state pairs are extracted
from the graph. They are, therefore referred to as multiple query methods [94]. PRM has proven to
be probabilistically complete, meaning that the probability of failure approaches zero as the number
of samples increases. An example of PRM is illustrated in Figure 2.3. There have been numerous
PRM variants proposed by many researchers in order to improve the approach for specific reasons,
such as [7,23,86,121]. Geraerts and Overmars presented a comprehensive comparison study among
most popular PRM variants in [72].

The popularity of sampling-based methods increased after the introduction of Rapidly ex-
ploring Random Trees (RRTs) by Lavalle and Kuffner [112]. PRM and RRT both rely on the same
concept of graphs (trees in case of RRT) and random sample selection. But there are some funda-
mental differences between them. 1) RRT builds the tree incrementally while PRM generates the
graph all at once. Therefore, RRT is more suitable for online planning applications. 2) RRT can
include robot motion models into the planner, but PRM lacks this feature. It makes RRT a better
candidate planner for robots with differential drive constraints [125].

RRT works in only one phase. The algorithm starts by building a tree at the start configu-
ration, then randomly selects some points in the configuration space. A similar collision checker
toolbox is called to ensure that the new random configuration is not in C,ps. If this condition is
satisfied, the closest point in the tree is chosen to be expanded toward the new point. In the event
that the motion is possible, and all constraints are satisfied, we can add the node to the tree until the
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Figure 2.3: An example of PRM approach with a highlighted path

Figure 2.4: An example for RRT where two different paths in the same tree are highlighted to the
goal area which is marked in green.
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goal configuration is reached. An example of RRT is shown in Figure 2.4.

As in PRM, RRT is probabilistically complete. However, it does not provide any benefit
in terms of optimality of the solution. Lavalle and Kuffner improved RRT by taking advantage
of growing two trees from start and goal states, and proposed RRT-connect in [100]. The idea of
connecting two trees reduces the calculation time significantly, but it is hard to connect the trees
when the motion model has some constraints such as differential drive. RRT* is another popular
extension for RRT [94] which focuses on optimality of paths. The idea is to find multiple paths to
the goal area and rewire the tree several times until the optimal solution is reached. Similar to PRM,
there are many variants for RRT, such as [20,30,69]. Likewise, Karaman presented a comprehensive
survey on different types of incremental sampling-based approaches in [92].

2.2.1.2 Combinatorial Motion Planning

Combinatorial motion planning algorithms are referred to as exact algorithms which look
for paths through the continuous configuration space without approximations. Almost all such
algorithms are complete in the sense that they either find the exact solution, or report that there is
no feasible solution for a problem. In contrast to that, sampling-based approaches are resolution
and probabilistically complete. The most critical step in combinatorial planning is to represent the
environment precisely. Almost all of the algorithms rely on the geometric representation of the
world, and calculating a roadmap to the goal. They use methods from computational geometry to
decompose the configuration space into geometric entities. Then the planner selects a set of optimal
cells, and builds the roadmap on top of it [111].

The algorithms can provide an elegant solution if the problem is simple (i.e. low dimensional
and convex models). Consequently, it may be unreasonable to use combinatorial motion planning
to solve a high dimensional problem. Despite the variety of existing methods, only a few of them
are efficient and easy to implement [111]. A dated and comprehensive survey of such approaches
was presented by Schwartz [133]. Lindemann and Lavalle published a work to compare sampling-
based approaches with combinatorial algorithms in [113]. For examples and popular studies in
combinatorial planning, see [31, 116, 137]. Figure 2.5 shows an example of a feasible path with a
combinatorial planning algorithm.

2.2.2 Planning under Uncertainty

As explained earlier in this section, there are various sources of non-determinism. Therefore,
it is very beneficial to have planners that include uncertainty while solving problems.

Markov Decision Processes (MDPs) are one of the most popular planning tools in non-
deterministic environments where the state of the system is observable. Even though we provide
some background information about MDPs in Section 3.3.1, we refer the readers to [19, 128] for
comprehensive references. We also refer the readers to [142] for applications of MDPs in robotics.

MDPs provide a mathematical foundation for sequential stochastic decision problems where
the output of actions is random with a known distribution. MDPs are offline algorithms which
generate optimal policies. A policy informs the action that must be taken at each state of the state
space. In other words, policies are computed before the system starts to evolve. Later, the plan is
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Figure 2.5: An example of combinatorial planning with triangulation. The picture is inspired by
Figure 6.17 in [111].

used to read the pre-computed policy and operate the robot accordingly. We will elaborate more
about MDPs in section 3.3.1. An example of a policy is shown in Figure 2.6.

Literature on MDPs is vast, and it has been tackled from several view points. There are multi-
ple solvers for an MDP such as value iteration, policy iteration, linear programming and etc. [111].
There are also many variants of MDPs such as factored MDPs [25,26]. The motivations behind
proposing factored MDPs comes from high-dimensional MDPs which are composed of multiple
parts that are weakly interconnected. Therefore, factored MDPs are introduced as structured MDPs
which define them in a compact form. In factored MDPs, the state space is decomposed into multi-
ple parts, and every part has its own state space, cost function, action set and transition probabilities.
Thus, solving one part does not require considering the entire problem in one phase. It eases propos-
ing efficient solvers. For any variant of MDP there are many proposed solvers to find the optimal
solution, e.g. [49, 74] for factored MDPs.

Solving MDPs is computationally expensive. Therefore, many researchers put a lot of effort
to improve the timing by using different approximation tools. One of the popular approaches is to
approximate the solution for MDPs by using hierarchical models. In a hierarchical approach, the
original MDP is decomposed into smaller MDPs and every small MDP is resolved independently.
The decomposition can be applied on states, actions or transition functions. Here we describe some
of these approaches.

MAXAQ is one of the classical approaches which was proposed by Dietterich [50] as a general
purpose methodology which computes hierarchies in multiple layers and solves the problem recur-
sively. MAXQ builds a hierarchical model of the actions where it builds a graph of dependencies
of different actions. The nodes in such graph are either Max node or Q node. In this model, Max
nodes which have no child are primary actions, and the ones with children are imaginary aggregate
actions. The children of Max nodes are Q nodes, and they represent subgoals. Imagine a taxi driv-
ing scenario where the actions of the taxi are East, West, North, South, Pickup and DropOff. The
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Figure 2.6: An example stationary policy for an MDP. The policy drives the planner to the goal area
which is painted in green.
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MAXQ hierarchical model for such planner is shown in Figure 2.7.

Another paper by Hauskrecht et al. [80] defined the term of macro-actions which relies on a
technique called region-based decomposition to partition states and actions. It is very efficient if the
environment is composed by some specifically separated areas such as rooms. The algorithm looks
for entrances to the rooms and builds a set of new actions “macro-actions” which can be extracted
from primary actions (e.g. enter and exit are sample macro actions.).

As explained earlier factored MDPs represent MDPs in compact form. More precisely, they
change the representation of value functions by using binary decision diagrams (BDD) and alge-
braic decision diagrams (ADD) [8,32]. This structured or symbolic representation helps the MDP
replace its lookup table such as transition, cost or value functions with decision diagrams. In ad-
dition to reducing the size of the problem, it naturally clusters the states with similar behavior.
Therefore, it does not require to keep numerous redundant copies of all of such states. Instead it
processes the whole subset once, and applies the result to all of the states.

Algebraic decision diagrams (ADDs) are binary trees. Each internal node has a label which
corresponds to a state in the MDP. The labels for leaves are real numbers. Figure 2.9 shows the
example of an ADD and how it helps to reduce the size of state space. It is very efficient when the
underlying state space is structured by itself e.g. some variables influence only a specific part of the
state space, and can be ignored in others. The difference between ADD and BDD is on leaf level
where the leaves are binary values in BDDs, and real numbers in ADDs.

Factored MDPs take advantage of ADD and BDDs in order to represent the state space. Two
major solvers for factored MDPs are Symbolic LAO* [62] and Stochastic Planning using Decision
Diagrams (SPUDD) [83]. SPUDD provides methods to convert value, transition and cost functions
into ADDs, then they reduce the size of ADDs without any loss. At the end SPUDD presents a
value iteration function which solves the problem. Symbolic LAO* is an extension to LAO* [77]
which is tailored for factored MDPs. It uses ADDs with some heuristics in order to exclude a set
of unreachable states. Similarly there are many other approaches to solve factored MDPs; e.g. with
policy iteration as in [26,27].
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Figure 2.7: MAXQ hierarchical model for taxi driving problem. Rectangular nodes are Max nodes
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Figure 2.9: The left side picture shows a standard lookup table. The picture on the right side
illustrates the ADD representation for the same lookup table. The picture is inspired by Figure 5.1
in [98].

Most of the mentioned hierarchical solvers for factored MDPs, focus on improving ADDs
and reducing the size. More recently, Barry et al. looked at the problem from another perspective.
They tried to reduce the size of state space by building aggregate states from primary states as
seen in Figure 2.8. The idea is to provide a guarantee on the existence of a solution, i.e. if there
is a solution on the non-hierarchical MDP, there has to be a solution on the hierarchical MDP as
well. Their first attempt in [11] was to use the theory of strongly connected components [45] to
build the partitions in a way that any state in a partition is connected to every other state in the
same partition. However, the partitioning itself was computationally expensive. Therefore, they
simplified their partitioning methodology in [12] by defining a set of rules, and excluded the usage of
strongly connected components. The new algorithm, DetH*, provided the same type of connectivity
guarantee, but was superior in performance.

Even though all the mentioned approaches provided an approximation for the optimal solu-
tion, Dai et al. [46] pioneered a new method by proposing Topological Value Iteration (TVI) which
is a hierarchical model that guarantees the optimality of the solution. In other words, it saves time by
solving a hierarchical model without sacrificing optimality of the solution. The intuition is to start
building the hierarchical model from the goal state. Then it incrementally builds the partitions layer
by layer. Anytime a new partition is generated, TVI runs a value iteration on that partition until it
completely converges. At that time, the values in the value function will not change anymore. Then,
these values will be propagated and used in running the value iteration on the next layer/partition.
This process is repeatedly applied until the optimal values for the entire state space are calculated.

The same authors improved TVI, and proposed Focused TVI (FTVI) which takes advantage
of the initial state, and focuses only on calculating values for the required subset of states [47].

All the above approaches are only a sample of hierarchical solvers for MDPs while there are
many other methods such as [9,28, 145] to solve MDPs hierarchically. There is an extensive survey
by Kolobov which takes a look at different MDP optimization algorithms [98].

All the aforementioned MDP variants and solvers have one limitation i.e. they all have a
single objective function which has to be minimized or maximized in expectation. Constrained
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MDPs (CMDPs) emphasize multiple cost functions where one of them is the primary cost function
which has to be minimized and the rest of them are additional cost functions which have to be
bounded. Altman provides an extensive introduction to CMDPs in [5]. There were some efforts to
include multiple cost functions into a single objective function of an MDP [70, 120]. However, their
resulting objective function is an artificial measure and can not be easily interpreted or extended.
On the contrary CMDPs provide an easy-to-define and easy-to-extend method to solve planning
problems under uncertainty with multiple cost functions.

Despite the strength of CMDPs, they have not been very popular in robotics. CMDPs are
usually solved with linear programming and even a small problem may result in a large number of
variables in the linear program which makes CMDPs computationally expensive, esp. in robotics
where robots have limited resources for calculations.

Among the limited number of researches which used CMDPs in robotics applications, we
briefly present some of them. Ding and coauthors have been particularly active in this domain.

Ding et al. have used CMDPs in some instances to solve motion and mission planning prob-
lems. More specifically, they proposed a hierarchical mission planning solver where a very small
CMDP is the high level mission planner, and a PRM-based method runs on the low level to drive
the robot. In this study they used the theory of model verification to satisfy some subgoals [51].
This specific work will be further discussed later in Section 2.3.2, because it bridges the two topics
of CMDPs with linear temporal logic. They also used similar approaches to solve mission planing
problems as in [52,53].

El Chamie and Acikmese proposed a new solver for finite-horizon CMDPs which is based on
linear programming as well. They managed to control swarm robots by using this approach [35].
Boussard and Miura used CMDPs in search problems where the objective is to find as many objects
and possible in a limited time frame [24].

Carpin and his coauthors solved rapid deployment problems with CMDPs where robots have
to maximize the probability of reaching the goals with some limits on time [34,39]. Dolgov lever-
aged CMDPs to describe the constraints on the architecture of autonomous agents [56]. CMDPs
have also been used in other fields of science such as in communications [139, 140].

2.3 Motion Planning with High-Level Task Specifications

As robots become more sophisticated, they are gettin capable of accomplishing complex
missions with constraints (for example see Figure 2.10). Therefore, the problem in motion planning
is not only to find a feasible path from one point to another, but also to complete some other tasks
along the path. This raises two important questions:

e How to formally and universally define tasks in robotics applications?

e How to compute a plan to solve such complicated problems without being application-
specific?

The rest of this section reviews literature related to these questions.
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Figure 2.10: A robot is tasked to drive to point A, pick up the blue object then drop it off at point B.
The planner has to avoid the risky area painted in yellow as much as possible. At the same time, the
entire mission should be completed in a prescribed amount of time.

2.3.1 Task Specification

Robot tasks vary significantly based on many factors such as the type of the robot, its ap-
plication and capabilities, the environment, etc. Consider a simple manipulator robot in a factory.
The robot has very limited capabilities and its sample task can be defined as picking up an object,
turning 90 degrees and dropping that off. On the contrary, a Mars rover equipped with many sensors
and actuators is a robot with high capabilities. Its mission could be to go to a specific location, read
some sensory data, perform a drilling action, collect some samples, go back to the station, analyze
the samples, and send the results back to the base. It is obvious that this second task includes many
subtasks. The challenge is to offer a methodology that specifies tasks without being tied to any
specific application.

There are many ways to define tasks in robotics. As an example, Rodriguez et al. tried to de-
fine tasks in a positioning problem where the position of an object in 3D world should be calculated
from some relative positions [129]. They proposed a specific task definition framework to satisfy
their needs based on symbolic geometric constraints. Their method is applicable to positioning
applications only.

A very similar problem was tackled by De Schutter et al. for calculating the absolute motion,
based on a set of relative motions [48]. They also interpreted the task in a customized form which
was tailored toward their own applications. Ulem et al. stepped further and developed their own
customized C++ code to handle tasks for their specific application [143]. They suggested their code
to be used as a framework for task specifications.

MissionLab is also a toolbox providing the user with a graphical interface to describe tasks
in multi agent systems and generating the required C++ code to specify the tasks [118]. There are
many other instances of task specifications for a limited set of applications as in [3,97,132]. The
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Figure 2.11: An example for sequence of states in a run. The circles show the state of the system
and the boxes above them represent which properties are true. If the box is empty, it means that
none of the properties are true. Last but not least, the blue labels on edges are actions. The robot
starts at state S 1 where none of the properties is true. Then it performs the move action to go to
S2. In this state the property P is true which indicates that it is a pickup station. It operates pickup
action which results in the robot being loaded while still at pickup station. The next move action
drives the robot to the delivery station S4. After performing the Dropoff action, it unloads at the
delivery station. Finally, it moves to the goal state S 6.

main drawback of these approaches is that they are not easily extendable to neither new tasks nor
new applications.

In recent years, formal languages have been used more and more often to define general-
purpose tasks in robotics applications. Belta et al. proposed one of the first utilizations of Linear
Temporal Logic (LTL) in robot task specifications [17]. Even though the primary purpose of formal
languages was to analyze strings and sequences of symbols [130], the temporal nature of LTL
formulas is its main strength to define tasks that evolve over time [17]. The literature about formal
languages and model checking is very rich and the reader is referred to Baier’s book [10] for a
complete reference.

Here we will briefly elaborate the connection between robot motion planning and LTL prop-
erties. While the robot is running, the system traverses a set of states where every state has a set of
properties. Thus, the status of the system is recognized by a sequence of states. Let us consider an
example of a forklift in a factory that performs pickup and delivery tasks. Suppose there are three
possible actions of move, pickup and dropoff. Figure 2.11 shows an example sequence of states.
Every state of the system can have three properties as following:

e Loaded, denoted by L: This property shows whether the robot has already loaded an object
and carries that or no.

o At pickup location, denoted by P: This property indicates if the robot is at the pickup location.
Only in this location the pickup action can be applied.

e At delivery location, denoted by D: Similarly, it indicates that the robot is at the delivery
location. The action of dropoff is only valid if both L and D properties are true.

Having such a system, we can define desirable behaviors. LTL properties are used to dif-
ferentiate between desirable and undesirable behaviors. In other words, LTL properties accept the
sequences of states that are desirable and reject otherwise. Figure 2.12 illustrates a task which en-
sures the system loads only in a loading zone, and unload in a delivery location. It also checks to
avoid loading or unloading multiple times.
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Figure 2.12: An example of acceptable behavior of a robot. It ensures that the loading only happens
in the loading zone, and the delivery is performed in the delivery station.

2.3.2 Planning with Formal Methods

Planners exist for deterministic or non-deterministic environments. Consequently, task speci-
fication should be applied to both types of planners as well. Linear Temporal Logic (LTL) formulas,
referred to as LTL properties as well, are constructed by a set of atomic boolean propositions and
a set of operators which are either logical or temporal [73]. The temporal operators play a critical
role in task specifications and represent the desirable sequence of atomic propositions where every
atomic proposition may be a distinct subgoal to achieve.

The first step is to convert the task into an LTL property or one of its variants such as syn-
tactically co-safe LTL (sc-LTL) properties. The next step is to use the LTL formulas in one of the
following two ways:

e LTL formulas as runtime verification tools: A planner calculates a plan and the LTL proper-
ties are used to verify whether the plan satisfies the task or not [60, 108, 127].

e LTL formulas in planners or controllers: The LTL property is included in the planning phase
which makes the output policy correct-by-design as in [36, 115, 124].

In robot applications, the second approach is more popular, and there have been multiple studies in
that area. Plaku and Karaman provide a comprehensive survey about robot motion planning with
LTL specifications where they consider numerous different scenarios [126]. They also analyzed the
use of LTL properties in different layers of controllers. Among the vast literature in this context, we
only present a handful of related work. We focus on correct-by-design policies in both deterministic
and non-deterministic environments, and also considers a selected runtime verification tools.

2.3.2.1 Runtime Verification

Model checking algorithms analyze every possible state of the system to predict any possible
failure. Such algorithms usually require a huge amount of memory. Therefore, state space explosion
is a common problem in those methods [42]. Thus, runtime verification tools were proposed as a
limited alternative solution. Runtime verification is a lightweight technology to verify whether
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the current state of the system satisfies a predefined property or violates that [16]. Among these
approaches, we mention few of them.

Cini and Francalanza proposed a proof system that checks the current state together with the
trace of the system to verify or reject certain LTL properties [41]. The proof system is also capable
of determining why and when the finite undesirable trace happens. They also claimed that their
approach can be used as a unifying framework to check other systems against runtime verification
tools.

Fainekos et al. go one step further [61]. They not only verify the boolean values of LTL
properties, but also check some metric values and the topological information regarding distances
from unsatisfiability by taking advantage of Metric Temporal Logic (MTL) properties [99]. MTL
properties are extensions to LTL properties where one can define a time limit in which a property
becomes true. This addition makes MTL properties suitable for real time monitoring [141].

Since Robot Operating System (ROS) is becoming the dominant framework to develop robotics
softwares, Huang designed a ROS package, ROSRY, for runtime verification of robot behavior [87].
This toolbox is planned to be general purpose and easy to plug into any planner. Moreover, there
are many general purpose runtime verification tools which can be applied to robotics applications
as well [13-15,71,134].

2.3.2.2 Correct-by-design Planners

The primary use of LTL properties in motion planning algorithms is to drive the robot away
from some specific regions without eliminating those points from the configuration space.

Starting from deterministic planners, there are two ways of using LTL properties in sampling-
based algorithms:

o Type I: Apply LTL formulas while building the graph or roadmap.
o Type II: Run sampling-based planner and LTL in separate layers.

The number of approaches from type I is very limited while there are several studies em-
phasizing type II planners. It is also very popular to use type II planners in non-deterministic
environments. We briefly present some works in both categories, starting from Type 1.

One of the early works by Plaku [124] included LTL properties in RRT algorithm. He pro-
posed a discretized planner focusing on high dimensional environments. He applied LTL properties
during the expansion step of building the tree. Therefore, the planner grows the tree toward the area
which satisfy the predefined LTL properties.

The same author published another work to include LTL formulas into PRM algorithms [123].
The fundamental difference between using LTL properties in PRM and RRT is that PRM graphs are
not built incrementally from a starting state as opposed to RRT trees. Moreover, it is vital for LTL
properties to have the exact sequence of states starting from the initial state. Because of the tree
structure of RRTs, the starting state is always the root of the tree. Therefore, such sequences are
easily calculated for every node in the tree by traversing back to the roots. On the contrary, PRM
approaches rely on graphs where the starting node is not specified. Besides that, PRM algorithms
are multi-query approaches which means a trajectory segment can be accepted by an LTL property
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but be rejected by the same LTL property if the starting state is different. In short, it is impossible
to validate or invalidate an LTL formula when building the PRM graph. Thus, they proposed a
different query method from the standard PRM algorithms. Their proposed algorithm takes LTL
properties into account while finding a path on the graph. More precisely, it only adds vertexes to
the solution that satisfy the LTL properties.

Similarly, Karaman and Frazzoli proposed a general framework which utilizes sampling-
based approaches and focuses on LTL properties that require recursions [93]. They proposed to
use Rapidly-exploring Random Graphs (RRGs) instead of Rapidly-exploring Random Trees to re-
place trees with graphs. The graph nature of RRG enables the approach to consider recursive LTL
properties.

We next consider planners of type II. As mentioned before, type II planners are more pop-
ular than type I planners. Such planners are usually hierarchical where the high level planner nor-
mally works on a discrete model of the environment, and takes care of satisfying LTL properties.
Sampling-based approaches are used on the low level to plan in continuous domain where the mo-
tion model of the robots has to be considered. Most of the approaches that we will explain in the
rest of this section follow this type of planning, and the difference appears in what type of high level
planners they use. Some approaches use deterministic planning on high level such as combinato-
rial planning, but more frequently non-deterministic planners such as MDPs are used as high level
solvers.

As an example, Bhatia et al. worked on a hybrid approach where the high level planner
is a geometric approach which emphasizes satisfying the tasks and the low level planner uses a
sampling-based approach to drive the robot [21]. Their focus is on creating an abstraction of the
system by utilizing geometric properties of obstacles and the propositions. The high level planner
performs a graph search in this specific instance. Later on, they extended their work and provided
that as a software package [22].

Task specification during planning under uncertainty has also been widely discussed in the
literature. The theory of Markov Decision Processes (MDPs) is the dominant toolbox in such plan-
ners, similar to standard planners in non-deterministic situations. The general approach for planning
with MDPs and LTL properties which is commonly used, consists of the following steps:

1. Step I: Set up an MDP from a discretized model of the environment.

2. Step II: Build a Deterministic Finite Automaton (DFA) for each LTL property.

[O8]

. Step III: Compute a product between MDP and DFAs.

N

. Step IV: Run an optimization algorithm to find a policy.

|91

. Step V: Pass the policy to a sampling-based approach to drive the robot.

The product calculation between an MDP and a DFA is a standard approach which can be
found in [10]. We will also explain it with more details in Section 5.3. We present some of the work
in this area and explain their pros and cons.

Among all the studies, Lacerda et al. utilized MDP and its combination with LTL proper-
ties to satisfy a single task for a mobile service robot [103]. Their emphasis was on finding a path
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with lowest possible cost which satisfies the task. They also tried to automatically generate the re-
quired DFAs by using Probabilistic Real-time Systems (PRISM) [101] in order to translate the LTL
properties into deterministic finite automaton (DFA) [82]. Since the planning happens in uncertain
environments, it is very probable that the robot deviates from the original path, and falls into an
unexpected state which does not satisfy the required task. When the path is optimal, there is not a
defined boundary of satisfying the task which can be considered as the most important weakness of
this approach.

In another study, Wongpiromsarn et al. used MDPs and LTL properties to show an application
in multi-agent systems problems where they maximized the probability of satisfying the task [147].
This approach also suffers from a similar problem. When they focus on maximizing the probability
of satisfying a task, they do not consider the total cost of the process.

In a similar integration of MDP and LTL properties, Ulusoy and coauthors worked on the
interaction between the robot and the environment where there is no control on the environment.
An example application is driving an autonomous car in a pedestrian crossing area where the vehicle
should be aware of the movements of people but cannot control them [144]. Their MDP is also tuned
to maximize the probability of satisfying tasks.

A study by Wolff et al. used the same methodology but focused on worst case scenarios
where not only the task has to be satisfied with highest possible probability, but also the worst-case
probability of failure has to be minimized [146].

Luna et al. replaced MDPs with Bounded parameter Markov Decision Processes (BMDPs)
to solve control problems. In a BMDP, the transition probabilities are not precisely known. Instead
they are bounded to some specific ranges [117]. They focused on maximizing the probability of
reaching a single task.

While most of the approaches highlight the boolean satisfaction of LTL properties, Lahijanian
et al. calculate the distance from satisfying an LTL property. They define an extra cost function
which depends on how far the solution is from being accepted by an LTL property, and use weighted
automaton in their proposed algorithmic planner [104]. Then they extended their work, and stressed
on soft rather than hard constraints [107]. They proposed an algorithm for “specification revision”.
Anytime the distance from satisfying an LTL property increases, the algorithm revises the DFA and
proposes an alternative DFA which is more likely to be satisfied.

Lahijanian also published some more studies in this area where he used Probabilistic Com-
putation Tree Logic (PCTL) instead of LTL properties in conjunction with MDPs in order to satisfy
tasks in probabilistic form, and showed the flexibility of this method [105, 106]. PCTL is an ex-
tension to Computation Tree Logic (CTL) [57] properties and can express statements such as “a
property holds for a certain amount of time with a specific probability” [40].

There are other ways to solve planning under uncertainty with existence of an LTL property.
As an example, Gol an Belta tackled the same problem by focusing on convex optimization [75].
However, their main focus was on control side of the problem.

As seen, almost all the approaches suffer from two limitations:

e They take only one single objective into account which is either maximizing the probability
of satisfying tasks or minimizing the cost of accomplishing a mission. It is possible that
maximizing the probability of satisfying a task causes a very high cost. On the contrary,
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minimizing the cost may reduce the probability of satisfying tasks. Therefore, it is not ideal
to only consider one of them without controlling other factors.

e Their proposed planners take only a single task into account. However, there are numerous
applications that require several tasks to be considered.

To address the second issue, Etessami et al. proposed a planner which is capable of con-
sidering multiple LTL properties in a solver [58,59]. Their proposed algorithm satisfies every LTL
property with a predefined satisfaction rate. They also followed the same steps as formerly described
with some modifications. They run a graph reachability algorithm, after applying the product step,
to find paths that satisfy the LTL properties. After assuring the possibility of satisfying all LTL
properties with desired rates, they run a linear programming solver to calculate the final policy.
However, this approach has some limitations as well:

e The reachability graph algorithm is dependent on a single start state. The algorithm faces
problems, if the initial state is a generic mass distribution, not concentrated in a single state.

e The product operation does not consider dependencies of different LTL properties. In other
words, if two LTL properties contradict with each other, the output of the product algorithm
is an empty set.

e They do not consider any cost function, and only focus on satisfying LTL properties with
desired rates.

Following Etessami’s research, there have been some improved versions of that algorithm
by adding a cost function [67], or proposing an iterative solver with some limitations [67]. Using
the same methodology Kwiatkowska et al. suggest how to compose and decompose different LTL
properties to speed up calculations [102]. Similarly, Struck et al. show a framework to solve such
planners with Pareto curves [138].

Alternatively, Ding et al. replaced MDPs with Constrained MDPs (CMDPs) to consider
multiple cost functions [51,52,54]. They took advantage of the theory of occupation measures [5],
and estimated the probability of reaching a certain state on a state space. This estimated measure is
used as a constraint in the CMDP to assure the generated policy by the CMDP satisfies the task with
the predefined probability. However, their approach also suffers from the weaknesses of simplicity
where only one LTL property can be used.
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Chapter 3

Theoretical Background

3.1 Introduction

This chapter presents the theoretical background required for the rest of this document. It
starts by explaining model verification in Section 3.2. The section provides some necessary defini-
tions including finite automata and linear temporal logic properties. Most of the presented materials
in the section are standard, but the definition of extended total deterministic finite automata is novel.
Later, in Section 3.3, we elaborate on sequential decision models which include standard Markov
Decision Processes and Constrained Markov Decision Processes. Finally, in section 3.4, we present
the concept of Labeled Constrained Markov Decision Processes which is another contribution of
this thesis.

3.2 System Verification

System verification approaches verify the state of a system against some specified properties
[10]. The output of a verification algorithm is whether the system satisfies the gievn properties
or not. It also indicates the failure point, in case of one. There are numerous methods to verify
softwares such as review processes, implementation of test cases or etc.

Model checking is a formal verification technique which provides a principled approach to
systematically inspect all the states of a system to verify a set of desired behavioral properties [10].
Model checking approaches are attractive, because they can be automatically applied. Since formal
methods offer a rich foundation to describe the progress of a system, they have been extensively
used in model checking approaches. We briefly present the minimal set of theoretical background
for formal languages and formal methods in the rest this section.

System verification and model checking have been discussed in multiple textbooks [10,43,88]
which can be used as references.

3.2.1 Finite State Automata

We recall basic concepts in automata theory. The reader is referred to classic textbooks
like [84, 114, 135] for a thorough introduction to the topic. Most of the material we present in
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this section is standard, and can be found in the aforementioned references. Our only addition is the
definition of extended total deterministic finite automata which is also a form of finite state automata
with some extensions on its transition function and special input words. We start with some basic
definitions:

Definition 1 (Alphabet) A finite and nonempty set of symbols X is called alphabet.

Definition 2 (Word) A word w over an alphabet X is a sequence of 0 or more elements of £. A word
of length n > 0 will be indicated as w = o107 ...0,, where o is the ith symbol in the sequence.
The set of all possible words over the alphabet X is denoted by X*.

Definition 3 (Language) A language L over X is a subset of all possible words over Z, i.e., L C X*.

For sake of brevity, we do not present all the required background knowledge. We refer the
reader to [114] for a comprehensive description of formal languages, operators and etc.

As per definition 3, a language is a set with a finite or infinite number of elements. The theory
of automata provides a finite representation of languages. In other words, an automaton is capable
of recognizing languages. At this point, we present some variants of automata.

Definition 4 (Nondeterministic finite automaton) A nondeterministic finite automaton (NFA) is a
S-tuple N = (On, qo,0n, F,X) where:

o Oy is a finite set of states.
e go € Qy is the initial state.
o Sy : On XX — 29N jsthe transition function.

o F C Qu is the set of accepting states.

X is a finite set of symbols, or the alphabet.

Note that according to the definition 4, it can be that dx(q, a) = @ for some couple (g, a). In
such case the transition is not defined. In an NFA it is also possible to have |0x(g,a)| > 1 which
means the successor state can be multiple states.

Definition 5 (6}, (qo, w)) It represents the state reached by recursively applying the transition func-
tion O to all symbols in w.

NFA N rejects the word w in one of the following two conditions, otherwise it accepts the
word:

e While computing 6} (g0, w) the transition function is not defined for one of the symbols in w,
then automoton stops and the word is rejected.

e The automoton processes the word completely, and ends in a state which is not final. There-
fore, the w is rejected. In other words, 67\/(q0, w) ¢ F.
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The set of words over X is partitioned into the set of words accepted by N (also called the
language accepted by N) and the set of words rejected by N. A deterministic finite automaton
is a special case of an NFA where the successor state is uniquely determined, as implied by the
following definition.

Definition 6 (Deterministic finite automaton (DFA)) A DFA D = (Qp, qo,0p, F,X) is an NFA in
which |6p(q, a)| < 1 for each g € Qp and a € X.

It is well known that every NFA N can be converted into an equivalent DFA 9, i.e., a DFA accepting
all and only the words accepted by the NFA. Hence in this document, we will simply consider DFAs.

A total DFA is a special type of DFA where there is one and only one transition at any state
for every input symbol. The addition to the transition function helps eliminate the first condition for
rejecting a word. Therefore, the only condition that can cause failure in processing a word is the
second one.

Definition 7 A total deterministic finite automaton (total-DFA) is a DFA in which |6(q, a)| = 1 for
eachq e Qand a € X

We will later define a new type of automata, the extended-total-DFA, aiming at accepting a
certain class of infinite length words. Its utility will become evident in the later part of the document.
We start by defining infinite length words.

Definition 8 (Infinite length word) An infinite length word over an alphabet X is a function w :
N — X. We indicate with w(i) = o; the i-th character in the infinite length word.

Definition 9 (¢4-ending infinite length word) Ler w be a finite length word of length k > 0 over
alphabet ¥ (with 4 ¢ X). The corresponding ¢4-ending infinite length word is an infinite length
word w' over the alphabet ¥’ = X U {4} such that w' (i) = o for 1 < i < k and and w' (i) = ¥ for
i>k

Informally speaking, definition 9 establishes that the ¢-ending infinite length word associated
with w is obtained by repeatedly appending & characters at the end of w. This requirement, which
may seem odd at first, will be essential to establish the probability that a given specification is
satisfied. Starting from these definitions, we introduce the extended-total-DFA associated with a
total DFA, i.e., an automata aimed at processing ¢-ending infinite length words. Before explaining
its rationale, we give its formal definition.

Definition 10 (Extended Total DFA) Let D = (Qyp, qo,0p, F, X) be a DFA. Its associated extended-
total-DFA & = (Qs, qo, 0s, F, Zg) is defined as:

e Os = 0pU{qs,qs} where q,, g5 are new states not in Qp;

o X5 =XpU{¥Y} where 9 is a character not in Lg;
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Figure 3.1: The figure shows on the left a DFA accepting the regular expression AB(A + B + C)*,
and on the right the associated extended-total-DFA.

e 0g : Qs X Xg — Qg is the transition function defined as follows:

op(q,0) ifqge FUlgs,qulNo+Y9

q ifgeF

og(q,0) = . (3.1)
qs lquQ@\F/\o':g
da q=4qsV q=(q.

Besides the different alphabet Xg and state set Og, the extended-total-DFA & differs from D
in the transition function. The first case in the definition of the transition function stipulates that as
long as & processes characters different from ¢ and it has not yet entered a final state or the two
new states ¢y, g, it proceeds exactly as 9. The second case establishes that once the state enters a
final state, it remains there. Note that this is different from what happens in a DFA, where the state
may first enter, but then leave the set of final states as more symbols in the word w are processed.
Instead, the extended-total-DFA recognizes prefixes, i.e., as soon as a prefix leads to F, it stays there
forever. The third case establishes that when the first instance of ¢ is encountered, if the state is
not final, it moves to ¢,. The final case ensures that all remaining occurrences of ¢ lead to ¢, and
the state remains there forever. Note that dg stipulates that ¢, is visited at most once while w’ is
processed, that is if the state enters g, upon processing the first instance of ¢, it will leave it as soon
as the second instance of ¢ is encountered, and never return there (see Figure 3.1 for an example
of extended-total-DFA derived from another DFA accepting regular expressions). A few simple
examples will clarify this mechanism and the differences between O and &.

1. Let w be a finite length word on Z, part of the language accepted by D, and let w’ be its
associated ¢-ending infinite length word. When w’ is processed by &, the state eventually
enters F, and remains there forever.

2. Let w be a finite length word on X, not part of the language accepted by D, but such that
while D processes w, the state first enters the set F', but then leaves it. Let w’ be its associated
¢-ending infinite length word. When w’ is processed by &, the state eventually enters F and
remains there forever.

3. Let w be a finite length word on X, not part of the language accepted by . When w’ is
processed by D, the state will enter g; when the first instance of ¢ is encountered, and then
moves to ¢,, and remains there forever.
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Therefore, for each ¢-ending infinite length word the state will eventually be either a state
in F or gq,. Moreover, in each case the state g, is visited at most once, and it is never visited if
any state in F is entered. The new state g, is called sink state, whereas the new state g, is called
absorbing state. In the next section we introduce a specific subset of Linear Temporal Logic that
is characterized by “good prefixes.” This will clarify why the extended-total-DFA has been defined
this way.

3.2.2 Linear Temporal Logic

LTL is a formalism used to specify desired behaviors of reactive systems. There is a rich
body of work in this domain and even a superficial literature review in this area is beyond the scope
of this document. The reader is referred to [10] for a general introduction to the topic, and to [126]
for a recent overview with an emphasis on motion planning applications. It is worth recalling that
in this context the term femporal refers to the sequencing (or relative order) of certain events, and
is not strictly related to when they occur. In the following, the terms formula and property will be
used as synonyms. LTL formulas are built on top of a finite set of atomic propositions II. Each
element in I1 can either hold or not. An evaluation of IT determines which atomic propositions hold,
and which ones do not, i.e., it assigns a value of either O (false) or 1 (true) to each element in I1. An
evaluation is then completely specified by just stating the set of atomic propositions that hold, i.e.,
by specifying a subset of I1. Starting from II, the power set 2 can be thought as an alphabet over
which words of finite or infinite length can be built. In particular, (2™) is the set of infinite length
words built over IT. The sequence of symbols in a word w € (2™)“ can be used to model a temporal
evolution. That is to say that the i-th symbol in a word w is an element of 2!, and can therefore be
thought as the set of atomic propositions holding at the i-th time instant. Starting from II, an LTL
formula ¢ can be produced using this grammar [10]:

pu=true|plei Al -l O¢ler Ugp

where p € Il is an atomic proposition. Besides the classic logical operators A and —, LTL introduces
the two temporal operators O and U . The unary operator O is called next, and the formula O¢
holds at the current time step if ¢ is verified at the next time step (hence the name). The binary
operator U is called until, and the formula ¢ U ¢; holds at the current time step if in the future ¢,
holds and ¢; holds until ¢, holds. Combining these basic operators, it is customary to introduce two
additional unary temporal operators, namely <& (eventually) and O (always). The formula ¢¢ holds
if ¢ is true some time in the future, whereas Ogp holds if ¢ is verified at every time step. Starting
from this definition of LTL, interesting specifications for robot behaviors can be formulated, and
this leads also to automatic synthesis of controllers (see references in Chapter 2). Every formula
¢ partitions (2')¢ in two sets, i.e., the words satisfying the formula and those not satisfying the
formula.

In [52] the so called syntactically co-safe LTL (sc-LTL) properties were considered to specify
desired robot behaviors. Starting from I1, a sc-LTL formula is built using the operators and (A), or
(V), not (—), and the temporal operators eventually (&), next (O), and until (U ). Furthermore, the
operator — can only be used in front of atomic propositions. Note that sc-LTL formulas miss the
always operator. This refinement is introduced for practical and computational reasons. First, as
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pointed out in [52], robots operate over missions with finite duration, and the always operator is
therefore not particularly useful, since it is often meant to describe behaviors of indefinite length.
Second, sc-LTL formulas are verified in a finite amount of time, and for each sc-LTL formula ¢ there
exists a DFA accepting all an only the strings satisfying ¢. In particular, every string satisfying an
sc-LTL formula must start with a prefix from a set of good prefixes, and the DFA indeed accepts all
and only these good prefixes. Throughout this document, we will focus on sc-LTL properties.

The connection between sc-LTL properties and extended-total DFAs should be more clear
now. Every word with infinite length satisfies an sc-LTL property based on its good prefix with
finite length. Similarly, its associated extended total DFA accepts the same word based on its good
prefix as well.

3.3 Sequential Decision Models

The main entities in a sequential decision model are the following [128]:

A set of epochs (or time).

A set of states.

A set of actions.

A set of immediate rewards or costs which is dependent on the pair of state and action.

A set of transition probabilities which is dependent on the pair of state and action.

At every point in time, or epoch, and each system state, the decision maker has to choose an
appropriate action. Applying an action incurs one or multiple costs or results in rewards. However,
the outcome of an action is non-deterministic. In this context, a policy is considered as a lookup
table which tells the decision maker what action to select in each state at any time in the future. A
decision rule provides the decision maker with a methodology to select an action.

Applying a policy produces a sequence of rewards or costs. The final goal of probabilistic
sequential decision problem is to find the optimal policy which provides the best outcome for the
selected cost model before the first epoch starts. It means that the optimal policy has to be calculated
before the system starts to evolve. We talk about different cost models in Section 3.3.1.

A special set of sequential decision models is known as Markov Decision Processes (MDPs).
In this particular subset, the state at time ¢ only depends on the state at time # — 1 and the action
at time ¢ — 1. Even though minimizing a cost function or maximizing a reward function does not
change the nature of the optimization problem we are facing, our emphasis is on minimizing the
cost functions, and we will only discuss this case throughout this document.

3.3.1 Markov Decision Processes (MDPs)
A finite MDP is defined by a quadruple M = (S, U, P, ¢) where:

e S is a finite state space with n elements.
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Figure 3.2: An Example of MDP: The cost function ¢ assigns a cost value to each pair of state
and action. U function provides the list of available actions at each state. The edges of the graph
represent the transition function.

e for each s € § the finite set U(s) is the set of actions that can be executed in state s. From
these n sets, we define U = U,cg U(s) as the set of all actions. Furthermore, from S and U
we define the state/action set K = {(s,u) | s € S,u € U(s)}.

e P: KxS§ — [0,1]is a probability mass function called transition probability. P(s,u, s") is
the probability of transitioning from state s to state s when executing action u € U(s). In the
following, we write this as P, for brevity. Note that since P is a probability mass function,
it satisfies the probability axioms. In particular ) P(s,u, s’) = 1 for each (s, u) € K.

e ¢ : K — Ryq is a non-negative cost function. c(s, u) is the cost incurred when executing
action u while being at state s. It is not a requirement of MDPs to have c(s, u) > 0. However,
we make this assumption to have simpler discussions.

A graphical illustration of an MDP is shown in Figure 3.2. In general, there are four popular
cost models in solving MDPs as following:

1. Finite horizon: The simplest way to use an MDP is finite horizon where the system evolves
for a limitted time, 7, only. In this case, the goal of solvers is to optimize the following
expected value: min E[Z;T:o c(ss, ur)], where s; and u, represent the state and action at time #,

uz

respectively.

2. Infinite horizon discounted cost/reward: Running a system for an infinite-time can easily
cause the expectation to reach infinity. A discount factor O < y < 1 is proposed in order to
reduce the effect of events which happen later. Thus, the optimization formula is changed to

min B[ lim (3,2 ¥'c(si, 1))]
t —00
3. Infinite horizon average cost. If the discount factor is set to 1, the time has no effect on

the expected value. Therefore, the expectation with respect to average cost of actions is
calculated with the following formula: min E[Tlim %(Z;T:o c(sy, up))].
Uy —00
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4. Infinite horizon total cost: One of the most popular uses of MDPs considers the case where
the discount factor is 1, and the total cost of reaching a target is needed. To ensure that the
expectation does not reach infinite, the underlying MDP has to be absorbing. In absorbing
MDPs, the accrued cost turns to zero after reaching the absorbing state. We will further
elaborate it later. In this case, the optimization function is n}in E[Tlgr.}o (Ztho c(se, uy))].

Although, almost all of robotic applications happen in a finite period of time, finite-horizon
MDPs are not popular approaches in planning a robot. The main reason lies in finding the optimal
policy. Achieving an optimal solution for finite-time horizon problems is often more difficult than
finding that for infinite-time horizon problems. Finite-time horizon problems add more complexities
to the solvers by introducing dependencies between optimal actions and the time. Therefore, the
actions at the far end of the horizon have higher influences. Moreover, if the time length changes,
the optimal actions change significantly [142]. Similarly, the accrued cost of applying an action
usually does not depend on when the action is taken. This also shows a preference of undiscounted
approached to discounted MDPs. Last but not least, robotic applications are mostly interested in the
total cost of a plan such as total path length or total energy consumption along a path. Therefore,
infinite horizon total cost MDPs are widely used in robotic application, and it is also the focus of
this thesis.

A deterministic policy is a function 7 : § — U, associating to each state s an action in
U(s). A finite MDP M and a policy & induces a stochastic process over the set of states S. In the
following, we use the symbol S; for the random variable representing the state at time i obtained
starting from an initial state so € S and repeatedly applying . It is well known that for the most
commonly used cost criteria (e.g., finite horizon, discounted infinite horizon) deterministic policies
are optimal [19]. In this document, we focus on the infinite horizon total cost models defined as

c(m)y=E

DS, n(st»} (3.2)

t=0

where the expectation is taken with respect to the probability distribution over the set of realiza-
tions of the stochastic process §; induced by x. It is evident from Eq. (3.2) that without additional
hypotheses the total cost may in general be infinite. To assure that the total cost is always a finite
value, the MDP has to be absorbing or satisfy the following requirements. The state space S can be
partitioned into two subsets S’ and M such that:

1. VseM : c(s,u) =0;
2. P¢, =0foreachse€ M,u€ U(s),and 5" € §’;

3. for each s € S there exists one state s’ € M and a policy 7 such that in the Markov chain
associated with policy 7 state s” is accessible from s.

The first two conditions establish that no more cost is accrued in M and that once the state enters
M it remains there. The last condition implies the existence of a deterministic Markovian policy
leading to M. Collectively, these conditions establish that there exists at least one Markovian policy
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7’ such that ¢(n”) as defined in Eq. (3.2) is finite. This guarantees that the infinite horizon total
cost problem admits a solution. Note that while in general M may consist of more than one state,
since we assumed c(s, ) = 0 for each state in M, one can without loss of generality assume that M
consists of a single state. This simplifies the formulation of the last condition, where accessibility
is then requested from each state in S’ to the only state in M. In the remainder of this document,
we will assume that these three conditions hold. When these conditions hold, solving an infinite
horizon total cost MDP requires to determine the policy minimizing the cost, i.e., to determine

7" = arg min ¢(7).
T

As for the other cost criteria, the optimal policy for this problem is a deterministic policy.

3.3.2 Constrained Markov Decision Processes (CMDPs)

In an MDP, a single cost c(s, #) is incurred every time an action is executed. When multiple
costs are defined, a CMDP approach can instead be used. In CMDPs one determines a policy
minimizing one cost function while putting constraints on the others. Formally, a finite CMDP is
defined by the tuple C = (S, U, P, ¢;, 8) where the definitions of S, U and P are as in MDP and the
extensions are as following:

e ¢ci: K > Ryp,i=0,...,nare n+ 1 cost functions. When action u is executed in state s,
each of the costs ¢;(s, u) is incurred. We refer to cq as the primary cost function which has to
be minimized and the others as additional cost functions that must be bounded. Therefore,
we require n constants, By, ..., B, to define the upper bound on each of the additional cost
functions. Sometimes the upper bounds are also included in the definition of CMDPs.

e [is a probability mass distribution over S, i.e., 5(s;) is the probability that the initial state of
the CMDP is s;.

Executing action u at state s in a CMDP incurs each of the costs co(s,u),...,cu(s,u). For
each of them, different cost criteria could be defined. Extending the framework we just introduced,
we will consider infinite horizon total costs for all these cost functions. As for the MDP case, it
will be necessary to introduce an absorbing property to ensure that these costs are well defined. The
definition of an absorbing CMDP mirrors the definition of an absorbing MDP with the additional
requirement that c;(s,a) = 0 for each s € M. For an absorbing CMDP and policy n the following
n + 1 total costs are then defined:

ci(”?ﬁ) =E

PR z))} (3.3)

t=0
where the expectation is now taken with respect to both the policy m and the initial distribution

B. This additional parameter is needed because the solution of a CMDP in general depends on the
initial distribution of states. The CMDP problem asks to determine a policy 7* solving the following
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constrained optimization problem:

7* = arg min ¢o(, B) (3.4)

st.ci(m,B)<B; 1<i<n.

Although MDPs and CMDPs share many traits in their definitions, some important differ-
ences emerge when computing the optimal policies. First, the optimal policy for a CMDP is in
general randomized, whereas optimal policies for MDPs are deterministic. Moreover, because the
costs in Eq. (3.3) depend on the initial distribution £, the optimal policy too depends on it, whereas
the optimal policy for an MDP is independent from the initial state distribution.

As explained in [5], CMDPs can be solved by using a Lagrangian approach. This helps to
convert a constrained control problem into an equivalent minmax non-constrained control problem.
The approach solves the problem in Eq. (3.4) by adding a Lagrangian multiplier per additional cost
while every Lagrangian multiplier results in a separate policy. Then the optimal randomized policy
of a CMDP is computed as a mix policy of multiple optimal pure policies for all the Lagrangian
multipliers. Therefore, if there exists m constraints, there will be m + 1 policies represented by 7'
where 0 < i < m. The optimal policy 7* is the combination of all of these policies that randomly
selects among them [55]. Assuming there is only one constraint, 7* chooses 7° with the probability
of g where 0 < ¢ < 1 and chooses ! with probability of 1 — ¢. It should be noted that there is at
most one state where 7°(s) # 7'(s) [55]. A Similar rule is applied to more than one constraint as
well. We refer the reader to [55,79,91] for comprehensive discussions about this topic.

The optimal policy for a CMDP is determined by solving a constrained linear program based
on so-called occupancy measures. Let K’ = {(s,u) | s € S’,u € U(s)} be the state-action space
restricted to the non absorbing states, and let p(s, u#) be a set of optimization variables associated to
each element of K’. The optimization problem in Eq. (3.4) has a solution if and only if the following
constrained linear program is feasible:

min Z p(s, u)co(s, u) 3.5)
(s.0)eK’
s.t. Z p(s,u)ci(s,u) < B; 1<i<n
(s,u)eK’
D P WG, = Pl = Bls) Vs €S’
(s".u)ek’

o(s,u) >0 Y(s,u) € K’

where d4(s”) = 1 when s = 5" and 0 otherwise. If the linear program is feasible, then the optimal
solution p(s, u) induces an optimal randomized policy 7* defined as

p(s,u)
2 p(s,u)

uel(s)

(s, u) = seS, ueU(s) (3.6)

where 7 (s, u) is the probability of executing action u while in state x. The reader will note that this
definition allows for randomized policies, as we formerly stated. The policy is not defined for states
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M, but this is irrelevant because no more costs are accrued when the state is in M, and the state
cannot leave it once it enters.

While the CMDP formalism allows to tackle many different practical problems, one of the
main limitations is given by the number of variables that may emerge while solving the associated
linear program. In fact, one may easily end up with problem instances with tens of thousands of
variables. In a fully static scenario this could sometimes be acceptable as the policy could be com-
puted off-line upfront. However, when the environment changes one may be required to recompute
the policy on the fly, and the computational requirements could become difficult to accommodate
within a tightly timed control loop.

3.4 Labeled Constrained Markov Decision Processes (LCMDPs)

To connect the classic theory of CMDPs with properties expressed in sc-LTL, we extend the
definition of CMDPs introducing atomic propositions tracking which properties are verified during
an execution.

An LCMDP is defined by the tuple £ = (S,B, U, ¢;, P,11, L) where S, 8, U, ¢;, P are as in the
CMDP definition and:

e [l is a finite set of atomic propositions;

e L: S — 2 is a labeling function assigning to each state the subset of atomic propositions
holding in that state.

Informally speaking, LCMDPs are defined to assign a label to each state in order to verify
which atomic propositions are true at each state. In terms of costs, actions, transition probabilities
and initial states there is no difference between CMDPs and LCMDPs. The most important addition
of LCMDPs is the ability to generate words from trajectories. Given a start state sop € S and a policy
7, by repeatedly applying the actions defined by 7 a stochastic process Q = s, ug, 51, U1, ... is in-
duced, with u; € U(s;). The trajectory Q generates an infinite length word in L(Q) = L(so)L(s1)...
where L(Q) € (2)* that is obtained by concatenating the sequence of symbols which are the outputs
of labeling function.

In this document, we only focus on absorbing LCMDPs where the conditions for an LCMDP
to be absorbing is the same as in CMDPs. Policies are randomized as in CMDPs, and calculated
the same way. Similarly, the optimal policy is generated by following the same linear program
approach. For sake of brevity, we do not repeat all the conditions and approaches again here. The
additional labeling function does not influence any calculation, and only helps to keep traces of
trajectories.

Note that we label the states in the absorbing set M with ¢, or L(s) = ¢, ¥s € M. Since
every trajectory ends at the absorbing state set and remains there forever, all of the generated words
have an infinite repetition of ¢ at the end. At this point, it is clear why we defined ¢-ending infinite
length words in Definition 9. Informally speaking, robots operate in non-deterministic environments
which is modeled by CMDPs. Every trajectory starts from an initial state, enters the set of absorbing
states and stays there forever. Such trajectories generate words that are obtained from the labeling
function where every word is composed of two parts:
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o Finite prefix: This part contains the path from initial state until reaching the absorbing set.

¢ Infinite ¥-ending suffix: After entering the absorbing set, ¢ is concatenated infinite times to
the word of the trajectory.

In order for a trajectory to satisfy an sc-LTL property, its associated extended total DFA must accept
the ¢-ending word which is generated by the labeling function of such trajectory. This part will
make a bridge between this Section and Section 3.2.
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Chapter 4

Planning with Hierarchical Constrained
Markov Decision Processes

4.1 Introduction

Planning in non-deterministic environments is a challenging problem. The robot takes an
action to move to a target point, but may end up at a different location. To overcome this problem,
several planners have been introduced such as Markov Decision Processes (MDPs) [19], Partially
Observable MDPs (POMDPs) [136] or Constrained MDPs (CMDPs) [5]. These planners include
the existing uncertainties during the planning phase, and are able to choose the optimal solution
under such conditions. MDPs have been widely used in different applications to tackle planning
under uncertainty in fully observable environments. Here, we point out to few advantages of MDPs.
First, different problems can be easily modeled with MDPs. Second, there are numerous solvers
for MDPs in discrete [85] or continuous [29] domains. Third, various cost functions can be easily
applied to different MDP models.

Despite the advantages of using MDPs, they also have some limitations. In practical applica-
tions one is often interested in performance measures combining multiple criteria; e.g. finding the
shortest path subject to a bound on the risk, or, alternatively, finding the path with the lowest risk
subject to a bound on the length. These practically relevant objectives can hardly be accommodated
using MDPs only, but can be naturally formulated as CMDP problems. In fact, the CMDP frame-
work allows to consider an arbitrary number of additional constraints. One can then for example
seek the shortest path subject to different bounds to various types of risk.

Throughout this chapter, we use risk as primary cost function which should be minimized.
However, our proposed planner is not tied to any special application and risk is chosen as an example
metric only. Therefore, risk can be easily replaced with any other measure such as fuel consump-
tion. We also do not aim for defining a risk factor, because there are multiple standard documents
proposing such measurements as in [1,2,81].

This chapter consolidates three of our previously published works [63, 65, 66]. In Section
4.2, we propose a planner by using CMDPs. This planner solves CMDPs hierarchically by intro-
ducing a simple rectangular fixed-size partitioning method. Then we show an improved version of
the hierarchical CMDP model in Section 4.3 which uses adjustable partition sizes. This enhance-
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ment increases the flexibility of the simple fixed-size partitioning by guaranteeing the feasibility of
the solutions. Subsequently, we present our experimental results in Section 4.4 to compare non-
hierarchical vs hierarchical (fixed-size and variable-size) CMDPs in solving motion planning prob-
lems. Various experiments were done in Matlab, robot simulation scenarios and also on real robots.
Finally, we conclude the chapter in Section 4.5.

4.2 Planning with Hierarchical CMDPs using Fixed-Size Partitioning

One of the well known limitations of MDPs and CMDPs, as discussed in Chapter 3, relies
on their computational complexity. CMDPs, in particular, require the solution of linear program
whose size may quickly become unmanageable (see section 4.4 for some numbers). For this reason,
hierarchical approaches can be a viable alternative, as long as there is a clear understanding that this
will lead to suboptimal solutions. Hierarchical methods in the area of MDPs have been practiced
in the past mainly with the objective of determining policies that can be reused, see e.g., [80].
We instead pursue hierarchical solutions with the objective of reducing the computational time.
In particular, we are interested in reducing the computational effort with the eventual objective of
enabling reactive replanning when changes in the environment are detected by the robot. Changes
may for example concern a rearrangement of the obstacles on the floor plan, or a person moving
from one area to another, with the consequent necessity to update the associated risk.

Our approach is based on the idea of aggregate states (see [18], Vol 1, pg. 321), an idea that
has been proposed for MDPs, but needs to be adapted for CMDPs. In the following, we make the
assumption that the action set U(s) is identical for all states. This is consistent with the application
scenario we present in the following and can also be imposed in the general case.! In the interest of
simplicity, we furthermore assume that S(s) = 1 for just one state and is O for all other states, and
we assume there is just one goal state. These two states will be indicated as / (initial) and G (goal).

The general idea is as follows. We start from a given CMDP with a large state space and build
a hierarchical version through state aggregation. The aggregate CMDP is then solved and a policy
over the aggregate states is determined. In order to map the high level policy back into actions
that can be executed in the original CMDP, a smaller CMDP is solved for each aggregate state
traversed by the high level policy. Since action execution is stochastic, one cannot anticipate the
precise sequence of aggregate states that will be traversed when the policy is followed. Therefore
the solution of the smaller CMDPs is interleaved with execution, because the precise sequence of
traversed aggregate states cannot be predicted upfront (see Figure 4.1).

In the following, quantities with the subscript A refer to the aggregate CMDP. First, to define
the state space S 4 of the aggregate CMDP we partition the state space S into a set of m aggregate
states A1, As,...,A,. Each aggregate state represents a set of states in the original CMDP. The
problem of how to split S into S 4 is a long standing issue. A rule of thumb is to group together
states with similar costs, when this is possible. In our application, targeting path planning in planar
environments this calls to grouping together states that are nearby in a metric sense. Indeed, nearby

'One can define a new set U = | J, U(s) and assign it to each state. If through this assignment a state s receives a
new action ¢’ not in its original action set, one adds a loop transition probability P% = 1 and large costs c;(s, a’) so that
a’ is never included in the optimal policy.
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Figure 4.1: Large CMDPs can be solved through aggregation. Note that for CMDPs both the start
and the goal state (/ and G in the figure) need to be specified, as opposed to the MDP case where
an optimal policy is specific by the goal state only. It is evident that the hierarchical model can be
applied in more than too layers too.

states have usually comparable distances to the goal location. The problem of how to partition S
using different criteria is described in Section 4.3 where variable size partitions are proposed. Two
quantities called aggregation and disaggregation probabilities are defined to represent the aggrega-
tion. The aggregation probability w;; = 1 if 5; € A; and O otherwise. The disaggregation probability
18 g5 = ﬁ if 5; € Ay and O otherwise. These definitions correspond to the so-called hard assign-
ment, i.e., every state in the original CMDP is assigned to one and only one aggregate state. Soft
assignments are possible too, with states possibly belonging to multiple aggregate states, but this
extension is left to future investigation. The initial and goal states / and G in the original CMDP
obviously induce initial (or start) and goal states I4 and G4 in the aggregate CMDP because I and
G belong to one and only aggregate state.

Next, it is necessary to define the action set, transition probabilities, and the costs ¢; 4 for
the aggregate CMDP. Since we assumed all states in the original CMDP had the same action set
U, it follows that we can assume all states in the aggregate CMDP also have the same action set,
and this is also U. Every action executed in a certain aggregate state A; has an intended effect in
terms of state transition (e.g., this can be the state with towards which there is the highest transition
probability). The function NextState(A,, u), used in the implementation of algorithm 4 returns such
state. Moreover, we define the frontier between aggregate-state A, and A, as the set of states in A,
that can be reached in one transition from one state in A,. Transition probabilities between state A;
and A; in the aggregate CMDP are then defined as follows:
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Algorithm 4 presents an algorithmic sketch of the idea we described.

Algorithm 1: Algorithmic Sketch
Data: CMDP = (S, U, P, c;,8)
Build CMDP (SA, UA, Pa, C[,A,ﬂ);
Solve aggregate CMDP ;
Extract optimal aggregate policy r, (Eq. 3.4);
s < f5;
while s # G do
Determine state A; for which w,, = 1;
if A, = A; then

GoalS et — {G}
else

u — 1, (Ap);

A, « NextState(A;, u);

GoualS et < Frontier(A;, A,)
71 «SolveLocal CMDP(s, GoalS et);
repeat

Follow policy 7z and update s
until s reaches GoalSet or exits Ay,

o 0 AN AR W N -

L < =
N AW N =D

—
=

The algorithm starts creating and solving the aggregate CMDP (line 2 and 3). Then, it extracts
the optimal policy for the aggregate CMDP and starts to follow it (while loop). Inside the loop, the
CMDPs for the aggregate states are solved on demand, i.e., the CMDP for an aggregate state A;
is created and solved only when the state enters the corresponding aggregate state. Note also that,
because of the unpredictability in the motion of the robot, it is possible that when the robot tries
moving from macro state A; to A; it instead reaches a different macro state Ay (think for example
to the case of a robot moving along the boundary of two macro states). This event does not create
a problem. A policy over the macro states is preliminarily computed, so even if the state deviates
from the intended trajectory the corresponding high-level policy is always available. Next, CMDPs
for the macro states are solved on the fly, so an unpredicted transition into a different macro state can
be dealt with by the algorithm. Note also that the algorithm does not solve CMDPs for the macro
states not visited during the main while loop. The interleaved planning and execution strategy is
essential to limit the computational cost.
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4.3 Planning with Hierarchical CMDPs using Variable-Size Partition-
ing

As explained in Section 4.2, hierarchical solvers for CMDPs provide an estimations for the
optimal solution while saving time. However, the proposed method has the following drawbacks:

e The major problem with fixed-size partitioning is the possibility of losing a feasible solution
(See Figure 4.10). In other words, there are some cases that the non-hierarchical solver is
able to find a viable solution, but the hierarchical solver fails to calculate that because of
how the partitions are calculated. However, this drawback can be resolved by adjusting the
size of partitions. By looking at Figure 4.10, we notice that fixed partitioning may succeed
to find a solution if partitions have bigger sizes. But larger partition sizes may increase the
computational times as analyzed in Figure 4.13. According to our experimental analysis in
this chart, too large or too small partitions increase the time to solve the problem. If we try
to intelligently choose the size of partitions in order to achieve a desired resolution, we may
need to create a single partition from the entire state space in the worst case which does not
save us any time.

o If the partitions are selected only based on their geometrical proximity of states while cost
functions are independent from this factor, the solution of the hierarchical solvers could be
quite far from the optimal solution. Therefore, it is preferable to take cost functions into
account when considering partitioning.

o If the state space has a non-standard shape (e.g. non-rectangular in this case), the fixed-size
partitioning method will suffer extensively to adapt to the abnormal structure. This could
cause the final solution to be farther from optimal.

In this section we present a new type of partitioning that is capable of addressing all the
aforementioned problems. The new hierarchical CMDP, which will be referred to as HCMDP from
now on, is based on defining partitions with variable sizes and some similarities in terms of cost
functions. The major differences between HCMDP and fixed-size partitioning consists on how to
calculate partitions, cost functions, transition probabilities and action sets.

By clustering the state space of the original CMDP one creates a new CMDP with fewer
states, computes a policy for the smaller instance, and then utilizes the policy for the smaller CMDP
to derive a policy for the original CMDP (see Figure 4.2).

These ideas can be formalized as follows. Let C = (S, U, P, ¢;, ) be a CMDP. From C we
extract an HCMDP Cy = (S, Uy, Py, ¢ifg,Br) with |Sy| << |S|. Next, we compute the optimal
policy ny, for Cy and we use it to extract a policy n” for C. While 7, is optimal for Cy, in general
n’ will not be optimal C and in fact one can anticipate that the gap between 7’ and 7* (the optimal
policy for C) widens as the size of the clusters shrinks, and viceversa narrows as the size of the
clusters increases. However, our tenet is that the loss in optimality is limited and compensated by the
significant gain in computational efficiency. Moreover, the hierarchical solution is also less memory
intensive, i.e., by solving multiple smaller problems it requires less memory than the original non-
hierarchical problem. Various subproblems must be tackled to build Cy from C. In the following
subsections we identify all of them and provide pertinent solutions.
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Figure 4.2: The figure illustrates the idea behind the HCMDP approach. The left side shows a
CMDP whose numerous states are represented by the small grid cells. On top of these states,
irregularly shaped clusters are defined, as indicated by the thick line partitions. Clusters define a
new hierarchical CMDP shown in the right panel. Neighboring relationships between clusters define
connectivity in the hierarchical CMDP. Absorbing states in the original CMDP (red grid cell) are
mapped into absorbing states in the hierarchical CMDP (red circle). Edges in the clustered graph
are added between macro states sharing a border in the original state space.

4.3.1 Clustering

The first problem is how to compute Sy from S. Elements of Sy will be in the following
called macro states or clusters. There are evidently multiple ways to determine these clusters. The
method we propose is based upon both an intuition and a formal requirement. The intuition is
that clusters should be composed of similar states, where similarity is measured in terms of the
cost function c¢. The formal requirement is that clusters must preserve the connectivity property we
define in the following.

Definition 11 Let C = (S, U, P,c¢;,8) be a CMDP, and x,y be two states in S. We say that x is
connected to y and we write x ~> y if there exists a sequence of states sy, ..., s, € S and actions
ui,...uy_1 € Usuchthat sy = x, s,y =y, and P,  >0for1 <i<m-1.

SiySit1
Based on this definition we introduce the concept of connectivity preserving HCMDP.

Definition 12 Let C = (S, U, P,c;,8) be a CMDP and let Cy = (Su,Un, Pu,cin,Ba) be an
HCMDP for C. We say that Cy preserves the connectivity of C if the two following conditions
hold:

1. Sy is a partition of S;

2. Forz € 8" andy € M, let Zy and Yy be the states in Sy such that 7 € Zy and y € Yy. If
7~ Y, then Zg ~> Yg.

Where M and &’ were formerly introduced in Section 3.3.1 as requirements for absorbing
MDPs. Note that because of the requirement that Sy is a partition of S, the states Zy and Yy
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are unique and the second condition is then well posed. Moreover, observe that the connectivity
preserving property is a function of Cy as a whole and not just Sy, because connectivity depends
not only on states, but also on transition probabilities. To define the clustering algorithm, for S C S,
x € 8, and u € U(x) it is convenient to define the following operators:

Pre(S):{xeSIHMEU(x)/\HyES/\Pﬁy>O}
Post(x,u):{YeSHlElyeY/\P)”Cy>0}
Post(S) ={Y € Sy |y e Y Adx e S A Py, > 0}

Note that Pre(S) is a subset of states of S, whereas Post(x, 1) and Post(S) are sets of macrostates
of Sy. Starting from these operators, Algorithm 2 shows our proposed approach to clustering. The
method depends on two parameters, namely the maximum cluster size MS and a constant ¢ used to
define whether two states have similar cost. A single cluster is initially created with the set M (line
1). Then the algorithm loops until all states in S have been assigned to a state in Sy (loop starting
at line 2). At each iteration, each of the existing clusters is examined (line 3) and the states that can
reach one of the clusters in one step with non-zero probability are identified (set S at line 4). For
each element in S (loop starting at line 5) every possible action is evaluated (line 6) to determine
to which macrostate the action would lead to (line 7). The state is assigned to a cluster H (line 10)
only if two conditions are simultaneously verified, i.e., cluster H includes less than MS states, and
the average cost of cluster C(H) is similar to the cost c(s, us) incurred to move from s into H (test
at line 9). As soon as a state is assigned to a cluster, it is not considered anymore (line 11). If state
s cannot be assigned to any cluster (line 12), then a new cluster including just s is created (line 13)
and added to the set of clusters (line 14). At the end, an optional merging step described in the
following is performed (line 15) and the set of clusters is returned (line 16.)

Note that because of the third hypothesis we formerly made (accessibility of M from each
state), Algorithm 2 terminates. This is because the hypothesis ensures that at every iteration at
least one state is assigned to a cluster (either an existing one or a new one). Therefore, after a
finite number of iterations the clustering algorithm terminates. As previously stated, the clusters
determined by Algorithm 2 depend on MS and ¢ and their impact on the clusters should now be
clear. A too large value for ¢ leads to cluster with heterogeneous values for ¢, while small values
for ¢ lead to the creation of many small clusters. Similar conclusions can be made for MS. In the
experimental section we will analyze the sensitivity to MS. The negative effect of a poorly chosen
¢ can be mitigated by MS (when ¢ is too large) or by the merging algorithm described next (when
¢ is too small).

Merging. The cluster size influences the performance of the algorithm, because too large
clusters diminish the effectiveness of the algorithm, whereas too many small clusters induce large
approximations. The MS parameter is used to counter the first problem, i.e., the creation of too
large clusters. The merging algorithm presented here counters the other problem, i.e., the presence
of too many small clusters. To this end, small clusters are merged together, where the definition of
small cluster is defined by a new parameter mS (minimum size). Algorithm 3 shows how merging
is performed. All clusters are examined (line 2), and if they are smaller than mS (line 3) they are
combined with one of their neighboring clusters. To this end, all neighbors are determined (line 4)
and the one with the most similar cost is picked (line 4). If the combined size does not exceed the
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Algorithm 2: Clustering Algorithm

Data: S, U, P
Result: Sy: Set of macro-states
1 Sy « (M}
2 while There exist states not assigned to any cluster do
3 foreach C € Sy do
4 S « Pre(C) N(S\ USg) ;
5 foreach s € S do
6 for u, € U(s) do
7 Y, « Post(s, uy);
8 for H € Y; do
9 if co(H) ~ co(s,ug) A |H| < MS then
10 assign s to cluster H;
11 break out of the two inner for loops;
12 if s not assigned yet then
13 create new cluster M = {s} and assign s to it;

14 add M, to Sy;
15 Sy « merge(Sy) ;
16 return Sy;

upper limit MS (line 6) then the clusters are merged (line 7). The process is repeated until no more
clusters can be merged (loop starting at line 1). The algorithm terminates returning the new set of
merged macrostates (line 9.) Note that the merging algorithm does not merge the macro state M.

4.3.2 Hierarchical Action Set

Once the set of macro states Sy has been created, the set of actions Uy for the HCMDP
easily follows. For Y € Sy, the action set Uy(Y) is identified considering all macro states that can
be reached in one step from the states in C, i.e.,

UH(Y)={ZESHIHyGYAz€Z/\u€U(y)/\P;Z>0}. “4.1)

It is important to note that according to this definition Ug(Y) is generated starting from the original
action set U, but its elements are actions that are not in U. In particular, each action in Ug(Y) is a
macrostate in Sg.

4.3.3 Transition probabilities, costs, and initial probability distribution

The definition of an HCMDP is completed by the definition of the transition probabilities
(Pp), costs (c; ), bounds (B; ), and initial probability distribution 8. With the objective of creat-
ing a method applicable independently from the structure of the underlying state space, we opt for a
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Algorithm 3: Merge Algorithm

Data: Sy: Set of all macro-states excluding the macro state {M}
Result: Sy: New set of macro-states

1 repeat

2 for M € Sy do

3 if [M| < mS then

4 M qj=PostM) ;

5 M, « argminy.epm,,; lco(Mc) — co(M)|;

6 if [M.|+ M| < MS then

7 ‘ merge M and M, and update Sy;

8 until no more states are merged,

9 return Sy;

Monte Carlo approach whereby transition probabilities and costs are estimated through sampling.?

Given M|, M, € Sy and M3 € U(M,), we aim at estimating P%?’Mz. It is worthwhile recalling
that although M3 is a macro state too, in this context it is an action applied from macro state M
and it shall be interpreted as the action aiming at moving from macro state M; to macro state M3.
As per the definition of Uy(M;) given in Eq. (4.1), P%; M is non zero only if M; and M, are
adjacent, where adjacency is defined by Eq.(4.1). The probability estimation method is as follows.
Let By, v, =y € Mz |Ax e MiAdu € U(x)/\PZy > 0}, i.e., the boundary between M| and M3. We
then build a graph G = (V, E) where V = M; U B and an edge is added between vertices v,v, € V
whenever P;’l n > 0 for some u € U(vy). Then, for each state x € M| we compute the shortest path
from x to B, where shortest is defined in terms of number of edges. These paths define a policy?
m over M to move from M| to M3. Note that this policy is not optimal. Next, using a uniform
probability mass function over the states in M| we randomly select one state x € M| and simulate
policy m. Following r the state eventually leaves M to enter either M3 or some other macro state.
Through repeated executions, these policy simulations allow to estimate P%: M for each M.

A similar graph is built to estimate c; y(M, M3). We simulate a path from a random state
x € M; toward a state y € By, m, by following the aforementioned policy. Then, ¢; z(M;, M3)
is estimated by taking the average of costs accrued during the simulation. For the hierarchical
bounds B; y we use the same costs in the original CMDP. Finally, S8y is built from 8 by adding
up the probabilities of the states within each macro state, i.e., for each macro state Yy we define

Bu(Yy) = X yey, B(X).

4.3.4 Hierarchical planning

The hierarchical planner operates in two steps and Algorithm 4 illustrates them. As men-
tioned in section 3.3.2, upper bound values can be included in the definition of CMDPs. Therefore,
in this algorithm, we used the upper bounds in the definitions in order to provide estimations for

2To the best of our knowledge no method has been proposed to analytically estimate costs and probabilities.
3The set of paths define a policy because for each vertex they identify an edge to traverse along the shortest path,
and by construction this edge is associated with an action.
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them. The algorithm takes as input a CMDP C, a starting state s and a set of goal states M. Since we
assumed that a starting state s € S is provided as input, the initial distribution g is zero everywhere
except in s. An HCMDP Cp is built as per our previous description (line 1), and an optimal policy
is determined (loop starting at line 3). At each iteration the linear program is solved (line 4), and
an optimal policy 7, for Cy is computed. If a policy cannot be found (line 5), the bounds B; ; are
increased until the associated linear program is solved (line 6). In particular, each of the B,y is
increased by a fixed percentage. In our examples presented later on, the increment is 10% and there
is an obvious tradeoff between selecting a larger or a smaller increase, since a smaller increase will
give a sharper bound, but multiple small increases may be necessary before a satisfactory bound
is determined and the problem solved. The rationale behind increasing the bounds, is that the hi-
erarchical problem may be unsolvable due to the approximations induced in computing the costs
through Monte Carlo sampling (in particular, overestimation of the costs c; g). It shall however be
noted that these increased bounds may end up being higher than the original ones. While we believe
that for simple problem settings it may be possible to derive quantitative bounds, this appear to be
not trivial for the general case, and is left for future work. After a solution is found (line 8), the
optimal policy for the hierarchical CMDP is determined (line 9). This concludes the first stage of
the algorithm. In the second stage, starting at line 10, a policy for the original CMDP is extracted
solving a sequence of smaller CMDPs to move from one macro state to the next. To be specific,
the smaller CMDPs are built as follows. Assume the state in the original CMDP C is s ¢ M (oth-
erwise the problem is already solved and the second loop at line 11 terminates.) This state belongs
to exactly one macro state Yy € Sy because Sy is a partition of S (line 12.) The optimal policy
my, defines the action Zy € U(Yy) to execute, i.e., it identifies the next macro state to move into
(line 14.) By construction, this macro state shares a boundary with Yy, i.e., there exist a set of states
GoalS et C § in the original CMDP reachable from some state in Yy with a single transition (line
15). Therefore, from the original CMDP we extract a smaller CMDP whose state set is Yx UGoalS et
and we compute a policy 77, to reach GoalS et (line 16). Once the policy is computed, it is executed
(line 18) until the state exists Yy (either entering GoalS et or another macro state). From there, the
optimal policy 77, provides a new action to execute and the cycle terminates when the goal set M is
reached.
We conclude this section stating two theorems and their proofs.

Theorem 1 LetC = (S, U, P, c;,8) be a CMDP and let Cy = (Su, Uy, PH, cin,Sr) be an HCMDP
built from C with the method described in this section. If the number of samples tends to infinity,
then Cy preserves the connectivity of C.

Proof. Definition 12 establishes two conditions for saying that an HCMDP preserves con-
nectivity. The first requires that Sy is a partition of S. Algorithm 2 never considers a state twice,
i.e., once a state has been assigned to a cluster it will not be considered again for assignment (line
4). Moreover, the main loop ensures that all states in S are assigned to a cluster. Therefore, Sy is a
partition of S.

We next turn to the second condition. Let z € 8’ and y € M be two states such that 7z ~» y.
By definition this means that there exists a sequence of states S = sy, 52, ..., s, such that for each
eachl <i<n-1 P';;SM for some u; € U(s;) and s = y and s, = z. Since Sy is a partition of

S, this sequence of states is associated with a sequence of macrostates Zy = S1...S5, = Yy such
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Algorithm 4: HCMDP Planning

o 0 N AN R W N =

o~ L < o
o 0 N AN R WN = O

Data: CMDP C = (S, U, P, ¢;, 8, Bi), s, M
Build HCMDP C]—[ = (SH, UH, PH, Ci,HaﬁH’ Bi,H);
Solved « false;
while Not Solved do

Solve LP associated with HCMDP;

if LP unfeasible then

‘ Increase each bound B; y of AB; i > 0;
else
‘ Solved « true;

Extract optimal aggregate policy ny, (Eq. 3.6);
X5
while x ¢ M do
Determine state Yy containing s ;
if Yy # M then
Zn — 7Y ;
GoalS et < Frontier(Yy, Zy);
;. «SolveLocal CMDP(x, GoalS et) ;
repeat

Follow policy n;, and update x ;
until x exits Yy;
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that s; € §; for each i. Note that in general there could be some repeated elements in the sequence
of macrostates. Let S1,... Sk (k < n) be the sequence obtained removing subsequences of repeated
macrostates.* First note that this sequence includes at least two elements. This is true because we
started assuming y ¢ M while z € M. According to Algorithm 2 all and only the states in M are
mapped to an individual macrostate (line 1), so y cannot be in the same macrostate as z. Next,
consider two successive elements in the sequence of macrostates, say S; and S;.;. By construction,
there exist two successive states in S, say s; and 5,1, such that s; € S; and s, € S;41. Since these
two states are part of S, there exists one input u; € U(s;) such that PI;]’ s;u > 0. As per Eq.(4.1), this
implies that an action § 1 is added to the set of actions U(S ;). Next, consider the method described
in subsection 4.3.3, and in particular the definition of the boundary B between two macro states. It
follows that s;;| € Bg,s,,,. The algorithm further continues computing the shortest path between
each state in §; and B, where the shortest path is computed over the induced graph G. For s; the
path trivially consists of a single edge to s;;1 (or some other vertex in B that is also one hop away
from s;.) Next, the algorithm randomly selects one vertex from S ; using a uniform distribution and
executes the policy to reach B. Let m be the total number of Monte Carlo samples generated. Then
the probability that the estimate of P‘Sg j*S‘I 1 = 0is bounded from above by
(1= =P, )"

where y = Sl[, ki is the number of times s; was not sampled and k; is the number of times s; was
sampled (k; + ko = m,k;» > 0). This proves that as the total number of samples m grows, the
estimate for P! , Will be eventually be positive. This reasoning can be repeated for each couple

Si.Si+
of successive macro states, thus showing that Zg ~» Yy, and this concludes the proof.

Theorem 2 Let C = (S,U, P, c;,B),s, M be the input to Algorithm 4. Then, as the number of
samples tends to infinity, Algorithm 4 builds a solvable HCMDP.

Proof. We start observing that Algorithm 4 builds and solves a sequence of HCMDPs.
Each is a CMDP with a suitable set of parameters and at every iteration the constrained linear
program given in Eq. (3.5) is solved. Theorem 1 guarantees that state My is accessible from every
macrostate, and therefore there exists at least one policy 7’ for which c¢(’) is finite. Let us next
consider the inequality constraints in Eq. (3.5). If the linear program is not feasible, then each
bound B, y is increased by AB; g (line 6.) By construction, all additional costs ¢; y(x,u) > 0 for
each state/action pair (x, u). Let ng = |K},| be the number of state/action pairs in the HCMDP, ¢4, =
max(x,u)eK;{{ci,H(x, u)}, 1 <1 < n, the largest among the additional costs, and B,,;; = min{AB; } the

Nsdmax

smallest among the increments in line 6. Therefore after at most [m] iterations all inequality
constraints become feasible.

Note that the second theorem states the existence of a policy, but does not state anything
about its optimality. Theorems 1 and 2 only guarantee asymptotic convergence in the number of
samples, but do not provide indications on the rate of convergence as a function of the number of

“This means that if S; = S;,; we remove the latter from the sequence and we reiterate this step until S; # S, for all
symbols left in the sequence.
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samples. This is consistent with results in existing literature for motion planning, like the probabilis-
tic roadmap method [95], rapidly exploring random trees [112], and the more recent optimal method
RRT* [94]. In some instances, knowledge of certain parameters characterizing the environment, or
making simplifying assumptions about its structure, it may be possible to derive relationships be-
tween the number of samples and the rate of convergence. However, for more general cases this is
an open question and subject to future work.

4.4 Experimental Evaluation

In this section we compare the two hierarchical models and the non-hierarchical CMDPs. We
provided simulation and real robot experiments to show the advantages and disadvantages of each
method.

4.4.1 Planning with Hierarchical CMDPs using Fixed-Size Partitioning
4.4.1.1 Setup

In this section, we present some experiments outlining the advantages and limitations of the
hierarchical decomposition. Figure 4.3 shows the floorplans of two factories retrieved from the web,
with white pixels encoding free space and black pixels indicating obstacles. The same picture shows
two corresponding risk maps. For sake of simplicity and ease of visualization, we assumed that risk
is a function of the state only, and risk is defined as distance from the closest obstacle. Both maps
are divided into equally sized cells. The first maps consist of 78 x 272 cells, whereas the second
one includes 111 x 270 cells. We assume that the robot fits inside one of the cells, and furthermore
assume 4-connectivity, i.e., from every cell the robot can move up, down, left, right, assuming the
neighboring cell is not occupied by an obstacle. These numbers define the number of variables in
the linear program given in Eq. 3.5 and shows why a hierarchical approach is necessary. For the
first case (Factory 1), the linear program has 54542 variables, whereas for the second case (Factory
2) it has 114862 variables. Evidently, the time needed to setup and solve these large optimization
problems prevents rapid replanning when needed, thus showing the necessity to go for a hierarchical
approach. In the following, we assume the objective is to compute the policy giving the expected
shortest path between a couple of start/goal points, while keeping the expected risk below a given
threshold. Risk is here defined as the sum of the risks accrued throughout the path, i.e., it is the sum
of the risks of the traversed cells.

The stochastic motion model is defined as follows. When the robot executes action u from
state x trying to reach state y (say moving up on the grid), it succeeds with probability 0.8 and fails
with probability 0.2. When it fails, it may remain in x or move to any of the free cells adjacent to x
and different from y (all with equal probability).

4.4.1.2 Results

We contrast the performance of the hierarchical approach with the non hierarchical one. In
particular, we compare the time spent to compute a solution, the average path length and the average
risk. In order to compare the time spent to compute a solution, for the non hierarchical approach

49



(a) Factory 1 map (b) Factory 1 risk map
5 . ' -
T ' | *
: -
Pl : ¢
- r _1 *
= r+ 1 -
| Sl ] L4 -

[ a— [N
(c) Factory 2 map (d) Factory 2 risk map

Figure 4.3: The two test environment used for experimental evaluation. Both environments are
factory floorplans retrieved from the web. The left subfigures show the structure of the environment,
whereas the right subfigures show the associated risk maps (warmer colors indicate riskier states).

we consider the time spent solving the linear program given in Eq. 3.5. For the hierarchical method
we give the sum of the time spent solving all instances of linear programs Eq. 3.5 (see Algorithm
4). In both cases the linear program is solved using Matlab’s builtin command to solve linear
programs (linprog — in particular we use the interior-point method). We decided to compare the
time spent solving instances of the linear program because this is where most of the time is spent,
and the remaining time (e.g., setting up the matrices for the linear program) strongly depends on the
characteristics of the used programming language (Matlab, in this case). Moreover, with respect to
timing, emphasis should be given to the ratios between hierarchical and non-hierarchical, and not
to the absolute values. For each environment we consider five different couples of start/goal points
and we test both the hierarchical and non-hierarchical methods on the same problem instances. For
the case Factory 1, the aggregate CMDP is obtained splitting the original grid into a coarser 6 X 8
grid with , whereas Factory 2 was divided into a 9 x 10 grid.

Table 4.1 and 4.2 show the performance of the non-hierarchical method for the five test cases
in the two environments (time is given in seconds). Table 4.3 and 4.4 show instead the performance
of the hierarchical method for the five test cases in the two environments. Statistics for path length
and risk are computed on the basis of 100 repeated trials.

Test Case | Time | Avg. Length | Std Length | Avg. Risk | Std. Risk
Case 1 32.7 415.7 18.8 2108.8 187.4
Case 2 28.2 103.3 10.7 266.6 104.5
Case3 | 368.5 106.7 8.6 534.7 63.5
Case 4 47.8 381.7 17.0 1020.4 80.4
Case5 | 359.2 143.4 10.6 505.3 126.1

Table 4.1: Performance of the non-hierarchical method on Factory 1.
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Test Case | Time | Avg. Length | Std Length | Avg. Risk | Std. Risk
Case 1 198.7 484.7 222 2019.7 198.7
Case2 | 180.1 356.9 17.5 21584 435.1
Case3 | 223.0 156.1 11.9 525.1 63.2
Case4 | 218.0 176.2 134 429.2 203.6
Case5 | 228.5 265.4 13.5 1117.0 139.6

Table 4.2: Performance of the non-hierarchical method on Factory 2.

Test Case | Avg. Time | Avg. Length | Std Length | Avg. Risk | Std Risk
Case 1 5.5 450.9 20.5 1963.7 284.8
Case 2 1.46 107.5 11.6 283.2 854
Case 3 2.5 142.7 10.4 646.1 98.9
Case 4 4.6 395.2 17.9 1396.4 163.8
Case 5 22 148.1 18.5 428.0 121.7

Table 4.3: Performance of the hierarchical method on Factory 1.

Test Case | Avg. Time | Avg. Length | Std Length | Avg. Risk | Std Risk
Case 1 6.8 444.5 34.1 5392.0 834.0
Case 2 7.1 3195 29.5 2690.2 838.6
Case 3 3.03 142.1 17.9 1165.1 156.4
Case 4 4.3 153.0 14.4 476.6 52.5
Case 5 6.0 240.8 25.2 1611.3 181.6

Table 4.4: Performance of the hierarchical method on Factory 2.

This preliminary round of simulations, although limited, allows to draw some interesting
insights. First, the speedup in terms of computational time is large and varies from a factor of 5 to a
factor of 150. For the case of Factory 1 (Table 4.1 and Table 4.3), the average length obtained with
the hierarchical method is comparable with the length obtained with the non hierarchical solution.
Similarly, average risks are almost the same (in Case 5 the hierarchical method performs even better,
but this is due to averaging a limited number of cases). For the Factory 2 case (Table 4.2 and Table
4.4), things instead are different. The average length of the path is again almost the same. But in
a couple of cases (Case 1 and Case 3) the hierarchical method incurs in significantly higher risk,
whereas the other cases are comparable. It is of course expected that the hierarchical method will in
general generate paths with higher length and higher risk, although the significant variations deserve
additional investigation. In particular, it will be interesting to observe these trends while varying the
number of grid cells in the hierarchical models, for example increasing their number. In general,
however, in 8 out of 10 cases the hierarchical method produces solutions of comparable quality in
terms of path length and risk, but spending just a fraction of the computational time.
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4.4.2 Planning with Hierarchical CMDPs using Variable-Size Partitioning

In this section we investigate the viability of the method we presented as HCMDP. In particu-
lar, we aim at assessing the trade off between the computational gains we obtain using a hierarchical
solution and the gap between the optimal non-hierarchical solution and the sub-optimal hierarchical
solution. Moreover, we also experimentally determine the sensitivity to the parameters influencing
the clustering method we presented. The algorithm is evaluated in three different scenarios, namely
a matlab based simulation, a Gazebo based simulation, and an implementation on a Pioneer P3AT
robot operating in an indoor environment. Each of the three different setups offer complementary
features.

4.4.2.1 Matlab Simulations

We start our study with numerous matlab simulations allowing to quickly evaluate how the
performance changes as the parameters are modified. Three different methods are compared. The
first is the baseline non-hierarchical CMDP solver producing optimal policies solving the linear
program given in Eq. (3.5). This method will be indicated as NH (non-hierarchical) in the tables
and charts. The second is the method we presented in section 4.2 that relies on a fixed structure
for partitioning of the state space. In particular, for mobile robot tasks it relies on a state space
clustering leading to a rectangular decomposition of the environment (see Figure 4.10). In tables
and charts this method will be indicated as “Fixed”. The third is the method we propose in section
4.3. All methods are subject to the same costs and transition probabilities.

All examples we will consider in the following feature two costs and then cannot be consid-
ered with a plain MDP solver. The first cost ¢ is the cumulative risk accrued along a trajectory
based on a preassigned risk map. The second cost ¢ is the Euclidean path length. Note that al-
though we consider two costs only, all solving approaches can handle an arbitrary number of costs.
The first test environment is shown in Figure 5.3 and it models an outdoor environment in which
the robot has to navigate between selected couples of start/goal locations. The heat map shows the
risk map, with higher risk locations indicated by warmer colors. The sub figure on the right shows
two different solutions obtained imposing different constraints on the path length. Note that the
white trajectory traverses areas with higher risk because it is subject to a more stringent bound on
path length, so it cannot afford to take the same detour generated by the red trajectory. This map is
referred to as “terrain map” in the following. Figure 4.5 shows the clusters created by Algorithm 2
when processing this map.

The second test environment is depicted in Figure 4.6 and it is based on an indoor factory-like
environment. The associated risk map is shown as well, where the darker areas with highest risk are
associated with the obstacles. This map is referred to as “maze” in the following. In both maps the
cost ¢; (Euclidean distance) is set to 1 for every state/action pair.

Both environments are defined over a grid in which we assume 4-connectivity and we corre-
spondingly define four actions for each state when possible.” Each action succeeds with probability
0.8. When the action fails, any of the nearby neighbors can be reached with equal probability. Three

SFor states close the boundary or to an obstacle, the action set is adjusted by removing actions that would violate
these constraints.
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Figure 4.4: Sample terrain map where warmer colors represent high risk areas to be avoided. The
right picture shows two different solutions obtained with different constraints.

Figure 4.5: Macro states created by Algorithm 2 on the terrain map environment. The goal state is
evidenced by the letter G and a red circle as it constitutes a standalone cluster.

different performance measures are used in the following to compare the different algorithms. The
first is the time spent to determine the policy. The second is the expected value of the risk objective
function ¢y, and the last is the value for the additional constrained cost c¢; (path length). All algo-
rithms are coded in matlab and rely on the built in 1inprog function to solve the linear programs. To
ensure a fair comparison, since the hierarchical methods solve multiple instances of smaller linear
programs, the displayed time is the cumulative sum of the time spent to solve all linear programs
needed to compute a solution. The non-hierarchical method instead solves just one large linear
program and the time spent to solve it is what we use for comparison.

Table 4.5 displays the time spent to solve 12 different problem instances on the terrain map
environment. Each instance is defined by a different couple of start/goal locations. The top two
rows display the performance of the non hierarchical and fixed resolution planner whereas the bot-
tom twelve rows display the time spent by the HCMDP method for different combinations of its
parameters. In particular, X/Y means that the maximum cluster size MS is X, and the number of
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Figure 4.6: Maze map where fixed partitioning fails. The left panel shows the map whereas the right
panel displays the associated risk map.

samples used to estimate probabilities and costs is Y% of the number of states in the clusters. The
prefix nm stands for non merged, and indicates that the merging step at the end of Algorithm 2 was
not performed. Throughout this section, the ¢ parameter is set as the average difference for the cg
function between each node and all of its neighbors. The table shows that the performance dif-
ference between the non hierarchical method and the hierarchical strategies considered (Fixed and
HCMDP) varies between a factor of 17 (case 3) and 1000 (case 4). Similarly, Table 4.6 shows the
standard deviations for the same data. It should be noted that every experiment was repeated 100
times. In Figure 4.7, we show how 100 trials is enough for such an experiment.

| Alg 1 [2 [3 [4 |5 |6 [7 [8 [9 [10 |11 [12 |
NH 107 |94 |54 [1303] 613 |43 [860 | 86 | 743 | 151 | 59 | 106
Fixed 31929122 |13 |08 | 1.79[23 |15 |25 | 089 1.89| 1.7
100/10 459[549]389] 1.72] 2.72]2.20] 2.43] 1.82] 3.21[ 1.43] 3.39] 2.55
100/30 7.04| 5.68| 4.02| 1.82| 1.79| 7.33 | 2.48 | 3.02| 3.59| 1.79 | 3.06 | 3.59
100/50 6.17| 8.45| 3.79| 1.70 | 1.65| 7.48 | 2.37 | 5.48 | 5.14| 2.58 | 4.34 | 4.21
nm/100/50 | 5.3 | 3.48| 3.15| 1.76 | 1.56 | 2.54 | 11.8| 2.87| 2.51| 1.92| 2.93 | 2.76
200/10 49 | 3.53| 406|257 | 1.08| 3.47| 2.58| 3.53[ 2.9 | 1.02| 3.44| 4.57
200/30 3.89 | 3.21| 3.74 | 2.84| 1.49| 2.72| 2.98 | 4.01 | 3.72| 1.28 | 2.84 | 3.81
200/50 475|450| 4.45| 238 | 1.64 | 2.36| 2.48 | 3.78 | 5.21 | 1.21 | 3.51| 3.77
nm/200/50 | 4.03 | 3.44| 3.02| 1.31| 1.76 | 2.63 | 1.84 | 4.83| 4.07| 1.49| 2.45| 2.20
400/10 7.17| 6.02| 5.25| 5.64| 1.71| 8.12| 3.17| 3.76 | 3.31| 2.26| 3.45| 3.85
400/30 641 6.83]5.05| 252|231 8.06| 543|2.90| 4.08| 2.42| 7.73 | 4.86
400/50 6.80| 5.65| 5.41| 5.14| 2.48| 8.09| 3.06 | 2.56 | 4.39| 2.3 | 3.47| 3.89
nm/400/50 | 5.32 | 3.98| 9.72| 6.28 | 7.16| 11.0| 49 | 5.92| 45 | 2.32| 3.83 | 4.62

Table 4.5: Time spent (seconds) by the various algorithms for the terrain map on 12 different in-
stances.

Table 4.5 also shows that, as expected, HCMDP is slower than the fixed method since it
performs a more sophisticated partitioning, but the performance gap is in general modest, though it
widens as expected as the number of samples in the Monte Carlo estimation grows.

Another interesting point to assess the performance gain is by looking at the number and
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Figure 4.7: The effect of number of trials on average calculations. We computed cumulative average
of time, risk and path length over trail number for the first four cases in Table 4.5 were the maximum
macro-state size is set to 400 and sample rate is 50%. The top left picture shows the time, top right
is the path length and the bottom picture represents the total risk. As seen at the beginning of trails
some fluctuations are visible. However, after passing 50th trial the average becomes quite stable.
These plots confirm that 100 trials can reflect the true average value of all of these metrics.
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| Alg (1 ]2 3 [4 |5 Je6 |7 [8 [9 J1o |11 [12 ]

| Fixed 0.51]042]02 [015]0.6 |0.15] 0.45[ 03 [0.21] 0.29] 0.18 [ 0.05 ]
100/10 0.81]0.84]0.75] 035] 0.1 [ 0.41] 0.41]0.13] 0.87] 0.13| 0.75 0.08
100/30 12 1005/ 08 | 029]0.08|1.05]038]091|021|0.1 |021|1.1
100/50 0.5 |0.36(0.7 | 02702 | 0.81| 081|075 09903107 | 0.74
nm/100/50 | 1.85 | 1.23 | 0.54| 0.95| 0.54| 0.61 | 2.51{ 0.93| 0.75| 0.71 | 1.01 | 0.51
200/10 0.35] 0.75| 1.01] 0.51] 0.1 | 1.05| 0.25| 0.31 | 0.38 | 0.41 | 0.31] 0.38
200/30 0.75| 0.65| 0.78 | 0.18 | 0.03 | 0.71 | 0.31 | 0.61 | 0.17 | 0.02 | 0.08 | 0.74
200/50 0.95| 0.81| 0.81] 0.25| 0.01 | 0.28 | 0.51 | 0.58 | 0.54| 0.5 | 0.17| 0.85
nm/200/50 | 1.32 | 2.02| 1.92| 0.51 | 0.48| 0.35| 0.42| 1.8 | 1.03| 0.85| 0.62 | 0.96
400/10 09 | 051| 1.51]0.71| 0.8 |201|064[03 | 081|025 06 |04
400/30 1121 0.32] 1.28] 043 | 0.57 | 1.81] 02 | 0.11| 0.25| 0.11 | 1.31| 1.3
400/50 135/ 0.71| 1.02| 0.5 | 0.71| 0.28| 0.17 | 0.05| 0.36 | 0.37 | 0.14 | 0.81
nm/400/50 | 1.1 | 0.98| 1.96| 1.87|0.99| 22 | 1.3 | 0.85] 1.68 | 0.68 | 0.85| 1.01

Table 4.6: Standard deviation in timing by the various algorithms for the terrain map on 12 different
instances. There is no standard deviation for non-hierarchical CMDP as its linear program runs only
once.

size of the linear programs solved by the non-hierarchical and hierarchical methods. The terrain
map environment generates a constrained linear program with more than 65,000 variables, and the
maze environment creates instances with more than 41,000 variables. The number of variables is
(roughly) given by the number of states multiplied by four, since each variable corresponds to a
state/action pair (x,#) and there are four or less actions per state (states close to the boundary or
to the obstacles have less than four actions.) Table 4.7 instead displays the size and number of
subproblems generated by the hierarchical methods for the twelve problems considered in the ter-
rain environment. Each row shows two numbers, with the top one being the number of variables
of the largest linear program solved, and the bottom number showing the average number of prob-
lems solved. Both numbers are averaged over one hundered runs, and rounded to the closest integer.
Note that the percentage of samples does not influence these numbers and is therefore not displayed.
These numbers justify the large difference in time between non-hierarchical and hierarchical meth-
ods and motivate this line of research.

While the time to solve a problem instance is an important aspect, hierarchical methods would
not be very useful if the performance increase comes at the cost of a inferior performance in terms
of costs of the functions being optimized. Figure 4.8 and 4.9 analyze how these costs vary across the
12 different cases we considered. In particular, Figure 4.8 shows the average cost for the primary
co cost (risk), whereas Figure 4.9 plots the average c; cost (path length). In both instances averages
are obtained over 100 independent runs (variances are small, and so averages are representative.)

Figure 4.8 shows that as expected the non-hierarchical method achieves in general the best
performance in terms of minimizing the expected ¢y cost. In some cases (e.g., 2 and 8) some
instances of the HCMDP solver obtains a better cost. This is due to the fact that if the HCMDP
planner cannot solve a certain problem instance for given constraints on the c; cost, it will increase
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Alg |1 ]2 [3 [4 |5 J6 [7 [8 |9 J10 [11 [12 |

100 392 | 380 | 354 | 380 | 382 | 384 | 376 | 348 | 376 | 356 | 380 | 384
10 | 8 8 4 3 5 6 4 5 3 5 6

nm/100 356 | 348 | 316 | 284 | 358 | 348 | 304 | 320 | 320 | 340 | 312 | 276
14 | 13 10 |6 6 8 8 9 7 8 9 6

200 756 | 780 | 800 | 800 | 800 | 760 | 780/4 756 | 800 | 740 | 704 | 760
6 5 3 3 2 5 4 3 4 3 2 4

nm/200 740 | 680 | 656 | 632 | 740 | 556 | 724 | 712 | 680 | 644 | 720 | 716
8 8 5 3 4 8 4 6 8 4 3 6

400 1560 1524| 1460| 1388| 1512| 1560| 1540| 1452| 1524| 1512| 1420| 1420
4 4 3 3 2 3 3 2 3 3 2 3

/400 1320 1272| 1156| 1420 1260| 1340| 1410| 1316| 1220| 1340| 1360| 1360
5 6 4 3 3 2 5 3 4 8 6 4

Table 4.7: Size of the largest linear program (top number) and number of supbroblems (bottom
number) for each algorithm and problem considered in the terrain map problem.

the B bounds in an attempt to make the linear program feasible. Hence, in some instances, taking
advantage of the increased bound for the ¢ cost, it is possible to lower the ¢ cost as well because
the additional budget for the traversed length may give the possibility to avoid risky areas. The
reader could also observe that in many instances the Fixed partitioning method works competitively
with both the non hierarchical method and HCMDP. However, as it will be evidenced discussing the
maze environment, this strategy is in general prone to failure, although in the terrain map this is not
evident since there are no obstacles.

Figure 4.9 shows instead the average for the constrained path length cost c;. Here we see that
the variations are more contained, demonstrating that only in few instances the bound needs to be
lifted for making the problem feasible.

We next consider the maze map. This environment is interesting because it shows that ap-
proaches relying on clustering methods not considering the underlying map are in general doomed
to fail. Figure 4.10 shows the policy produced by the algorithm we formerly presented in section
4.2. The dotted lines show the clusters boundaries, whereas the red arrows illustrate the computed
policy. The example shows that in some macro states the policy suggests transitions that cannot be
executed because of an obstacle cutting through. This problem could be overcome reducing the size
of the clusters, but for any fixed clustering strategy one can devise an environment leading to unfea-
sible policies. For this reason, adaptive clustering algorithms considering the underlying structure
of the state space are needed. These include the one we presented, as well as [12].

Given that the fixed-clustering approach is not a viable solution for this environment, and
having shown in the previous section that the non-hierarchical solution is largely outperformed
by our method, the analysis of the maze environment is then restricted to the HCMDP algorithm.
Similarly to Table 4.5, Table 4.8 show the time spent (in seconds) to compute the policy as the size
of the cluster and the number of samples is varied. The table confirms that for this metric the size of
the cluster is the most relevant parameter, whereas there is less sensitivity to the number of samples.
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Figure 4.8: Average c( cost (risk) over 100 independent runs for the terrain map environment.

Similarly, Table 4.9 shows the standard deviations for the same data set.

Finally, Figures 4.11 and 4.12 show the performance for the functions ¢ and d. The findings
confirm what previously observed, i.e., that the performance loss is contained.

In the introduction we outlined that gain in speed is only one of the advantages of the proposed
method. Another important aspect to consider is memory requirements and the associated feasibil-
ity. To put this aspect into context, if we double the resolution along the x and y directions for either
the terrain map example or the maze example, the number of state/action variables (roughly) grows
by a factor of four. Under these conditions, on the computer system we used to perform our experi-
ments, the non-hierarchical method systematically fails because it runs out of memory, whereas the
hierarchical method succeeds, since, as shown in Table 4.7 it solves significantly smaller problems.

Alg 1 2 [ 3 | 4
100/10 | 5.63 | 4.64 | 3.41 | 2.22
100/30 | 3.08 | 3.89 | 3.20 | 2.10
100/50 | 5.69 | 4.54 | 3.76 | 2.54
100/70 | 5.69 | 5.22 | 3.92 | 2.44
100/90 | 5.73 | 4.80 | 3.78 | 2.45
200/10 | 8.52 | 7.95 | 5.05 | 8.48
200/30 | 9.89 | 5.44 | 6.97 | 7.76
200/50 | 9.08 | 8.88 | 5.66 | 6.74
200/70 | 9.62 | 7.51 | 6.37 | 6.28
200/90 | 9.07 | 9.11 | 5.84 | 7.31

Table 4.8: Time spent (seconds) by the various algorithms for the maze map on 4 different instances.
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formulation.

One last question to be addressed is how to pick the parameters for the HCMDP planner.
Looking at Table 4.5, for example, we see that the performance varies with the maximum size of
the cluster (MS) and the number of samples. The second parameter has rather straightforward
interpretation, since the number of samples is a fixed percentage of the number of states in the
macrostate, and there is an obvious tradeoff, in the sense that more samples imply higher accuracy
but require more time. The choice for the cluster size, instead, is less intuitive. With the objective of
getting some experimental insights on how to select this value, we performed a series of experiments
where we varied the size of the cluster and observed its impact on the computational time and the
quality of the solutions. Figure 4.13 shows the results for three different problem instances in both
the terrain and the maze problem. Note that since the problems have different state spaces, results
are normalized expressing in both cases MS as the percentage of the number of states rather than
as an absolute number. It is interesting to notice that for both problems and all cases considered,
picking MS equal to 1% of the number of states in the non-hierarchical problem seems to give the
best result.

Moreover, in Figures 4.14 and 4.15 we evaluate how the cluster size influences the objective
function (risk) and the additional constrained costs (path length). Experimental data show that the
impact of MS on these quantities is limited. Therefore, it is reasonable to conclude that setting MS
equal to 1% of the size of the state space seems to be a good starting point. Of course, when domain
specific knowledge is available, better choices could be made. An analytic investigation on how to
select the cluster size is subject to future work.
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Figure 4.10: Example showing how fixed partitioning fails. Partitions are shown using dotted lines.
The hierarchical CMDP induces the policy shown by the red arrows that cannot be executed due to
the obstacles cutting through the macro states.

Alg | 1 | 2 | 3 [ 4
100/10 | 1.05 | 0.82 | 027 | 0.4
100/30 | 0.95 | 0.1 | 0.18 | 0.21
100/50 | 0.84 | 1.01 | 0.8 | 0.09
100/70 | 1.01 | 0.5 | 0.54 | 0.35
100/90 | 1.3 | 0.92 | 0.28 | 0.18
200/10 | 1.8 | 0.74 | 0.37 | 0.27
200/30 | 2.05 | 1.01 | 0.44 | 0.07
200/50 | 1.8 | 0.21 | 0.66 | 0.71
200/70 | 2.01 | 1.08 | 0.91 | 0.34
200/90 | 1.3 | 0.91 | 0.08 | 0.72

Table 4.9: Standard deviations in timing by the various algorithms for the maze map on 4 different
instances.
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Figure 4.11: Average c cost (risk) over 100 independent runs for the maze environment.

4.4.2.2 Gazebo Simulations

With the objective of eventually validating the HCMDP planner on a real robotic platform,
as an intermediate step we developed and tested the planner using ROS and the Gazebo simulator.
The simulated robotic platform exactly matches the robot we use in the real world experiments,
i.e., a P3AT equipped with odometry, sonar, and the SICK LMS proximity range finder (see Figure
4.21). The software architecture used both in Gazebo and on the real robot relies on standard ROS
nodes. In particular, we use a particle filter for localization [142] and we therefore assume that
a map of the environment is available. In both cases the map was preliminarily built driving the
robot around manually and using the GMapping SLAM algorithm [76] available in ROS. Figure
4.16 shows a rendering of the simulated environment (top), the map built by the SLAM algorithm
(bottom left) and the associated risk map for the primary cost ¢ (bottom right). The simulated map
is 21.7m x 20m and is discretized into square cells of size 0.5m X 0.5m. In each cell we assume the
availability of four actions (up, down, right, left). This assumption is consistent with our software
design, where navigation to a given target point relies on the ROS navigation stack. In particular,
the ability to execute an action (say “up”) is not influenced by the current orientation of the robot,
and therefore the state is represented just by the cell where the robot is located (without considering
its orientation). According to the framework we presented, for each state x (i.e., grid cell) the policy
computed by the planners returns an action n(x) that can be translated to a point in one of the nearby
grid cells and then fed to the navigation stack to move the robot there.

An essential step to setup a planner based on an MDP approach is to estimate the transition
probabilities, i.e., Py,. To estimate these quantities, each action is executed 100 times and transition
probabilities are derived by counting. To explore the sensitivity of the policies to transition proba-
bilities, two surfaces with different friction coefficients were used. In the first case the probability
of executing a motion with success is 0.66 whereas in the second case it is 0.51. When a motion
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Figure 4.12: Average c; cost (path length) over 100 independent runs for the maze environment.
Horizontal green bars show the value of the constraint in the original, non-hierarchical problem
formulation.

does not succeed, a uniform probability over adjacent states (excluding the target state) is used.

Figure 4.16 (bottom left) shows four different points in the map used as start/goal locations
to compute the policy. Four different cases were considered. The first starts at P; and ends at P;;
the second starts at P, and ends at Pj3; the third starts at P3 and ends at P4; and the fourth starts
at P, and ends at P;. Policies were computed using three different planning strategies, namely
MDP, CMDP, and HCMDP. For the MDP planner the objective is to minimize the cumulative cg
cost according to the risk map shown in figure 4.16. MDP is included as an additional term of
comparison, although it solves a simpler problem because it considers just the primary cost cq (risk)
and ignores the additional cost ¢; (Euclidean distance). Figure 4.17 shows some examples of the
resulting paths. Every test was repeated 20 times to estimate average behaviors. The leftmost panel
in figure 4.17 shows that the MDP solution takes the safest path since it almost entirely lies inside
the low risk areas (refer to figure 4.16). This path is however longer. This is consistent with the
objective function we setup, and to the lack of constraints on path length. The middle panel shows
that, due to the constraints on path length, the planner produces a path that cuts through some higher
risk areas to meet the bound. Finally, the rightmost panel shows that the HCDMP planner displays
a behavior that is somehow intermediate, in the sense that sometimes it favors a safer subpath, and
sometimes it instead selects a shorter path. This is very evident when considering point P,. In such
case the HCMDP planner produces a path that approaches P, like the CMDP planner (shorter but
riskier), but then leaves the point along the same path determined by the MDP planner. This is
due to the fact that when leaving P, the hierarchical planner has to relax the constraints to achieve
feasibility, and therefore it can produce a path with higher length but lower risk.

Figures 4.18 and 4.19 show the first set of results, where the HCMDP planner was tested using
different values for the maximum cluster size and sampling rate. Consistently with the expectations,
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Figure 4.14: Variations of the primary objective function (risk) as the size of the clusters vary.

Figure 4.18 shows that the MDP achieves the lowest risk, whereas it is again shown that tuning the
parameters it is possible to obtain similar performance between CMDP and HCMDP. Figure 4.19
also confirms our previous observations with regard to variations in the secondary cost. Based
on these two sets of results, it appears that the most convenient setup for the HCMDP planner is
obtained when the maximum cluster size is set to 200 and the sampling rate is 90%. Therefore in
the following we will just consider these parameters.

Figure 4.20 shows an additional set of results where the friction coefficient is set to be much
lower and then the robot is subject to more slippage when moving (and then more uncertainty). The
figure confirms the conclusions we formerly derived, thus showing insensitivity to the transition
probability rates.
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Figure 4.16: Simulated environment used for the Gazebo simulations and associated risk map.
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Figure 4.17: Sample paths obtained by the three planners solving the same problem instance: Left:
MDP, Center: CMDP, Right: HCMDP
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Figure 4.18: Average c( cost (risk) over 20 independent runs for intermediate friction.
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Figure 4.21: The P3AT robot used to test the HCMDP planner in the real world.

4.4.2.3 Real Robot Experiments

To conclude, we executed the same three algorithms to control a P3AT robot (see figure 4.21)
navigating inside one of the university buildings. Figure 4.22 shows the map of the environment
preliminarily obtained using the GMapping algorithm. The maximum dimensions of the environ-
ment are 42m X 71m, and the map was split in square cells of size 0.5m x 0.5m. Consistently with
the previous experiments, Figure 4.23 displays the risk map associated with the map. As for the
Gazebo simulations, transition probabilities were extracted through repeated simulation of the var-
ious actions. Figure 4.22 also shows four points used to define the start and goal locations for the
various missions. To determine averages, every mission was executed 10 times, and over the var-
ious runs, the robot drove more than 5.5km inside the building totaling over more than 25 hours
of autonomous operation. Figure 4.24 shows four paths produced by the HCMDP planner while
computing a policy from point P to P;, then to P3, afterwards to P4, and ending at P;. Columns in
Figure 4.25 represent these four paths respectively.

As we did in the previous cases, Figure 4.25 displays the average primary cost ¢ (risk) and
the average additional cost ¢ (path length). Three different versions of the HCMDP planner were
compared, where differences were in the size of the clusters (100, 200, 400), whereas the percentage
of samples was fixed at 90. Experiments with the real robot confirm the conclusions we anticipated
in Matlab and Gazebo simulations. In particular, referring to the bottom figure we outline that
the path length constraint was 45 in the first case, 55 in the second, 40 in the third, and 85 in the
fourth. It can be observed that the planner with cluster size 400 is rather competitive with the non
hierarchical version for both costs.

4.5 Conclusions and Future Work

This chapter proposed two hierarchical models to solve CMDPs, fixed-size partitioning and
variable-size partitioning or HCMDP. Fixed-size partitioning was the primary step to implement
HCMDP, and is significantly outperformed by HCMDP. Theses techniques presented in this paper
are valuable because they offer an efficient way to solve sequential stochastic decision making prob-
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Figure 4.22: Map of the university building used to the the HCMDP planner.

Figure 4.23: Risk map associated with Figure 4.22.
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Figure 4.24: Four paths produced by the HCMDP planner while computing a policy from point P,
to Py, then to P3, afterwards to P4, and ending at P; (see also Figure 4.22).

lems considering more than one cost. While CMDPs offer an optimal solution to these problems,
their computational burden limits their applicability in real world applications. HCMDP overcomes
this problem while at the same time ensuring that valuable properties (e.g., feasibility) are main-
tained. The algorithm has been extensively validated in simulation and on a real robot, and the
results show significant reductions in the computational time paired with modest gaps in the expec-
tations of the cost functions.

Various interesting open questions remain. The first is whether it is possible to derive formal
bounds for the performance gap between the policy produced by the non-hierarchical CMDP and
HCMDP. This gap is likely to be a function of parameters like the maximum cluster size and the
number of samples used in the Monte Carlo estimation, but at the moment it appears that tight
bounds may not be easy to determine. The second question pertains to the choice of the parameters.
It would be interesting to derive intuitions on how they should be selected for a given problem
instance, perhaps in terms of an heuristic, or through an iterative guessing process. Another question
is related to the estimation of the parameters for the HCMDP. Within the Monte Carlo framework,
estimation can be performed in many different ways, and the one we explored in this paper is just
one of the possible choices. A more in depth study would most likely determine better strategies,
either in terms of performance or estimation accuracy.

On the experimental side, at the moment we have contrasted our proposed hierarchical meth-
ods only with the optimal non-hierarchical alternative. Of course, there is a range of sub-optimal
methods one could use to expedite the solution of sequential stochastic decision problems, in partic-
ular for the unconstrained MDP scenario. As part of the future work, more numerical comparisons
between sub-optimal solvers can be done.

Finally, with the emergence of massive multi-core architectures, it would be interesting to ex-
periment how performance scales if one uses multiple cores to perform the Monte Carlo estimation
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and to solve the intermediate CMDP instances.
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Chapter 5

Multi Objective Planning with Multiple
Costs and Multiple High Level Task
Specifications

5.1 Introduction

As presented in Chapter 4, CMDPs can be used to program robots in complex missions where
a robot faces multiple challenges modeled as cost functions. In such circumstances, a planner takes
all the cost constrains into account and offers a viable solution optimizing the plan with respect to
all the cost functions.

Obviously, we cannot model every possible objective with cost functions only. Imagine a
complex mission which requires a sequence of actions to be taken with a specific order. It is difficult
to interpret such sequences as cost functions. Therefore, the concept of task has been used to specify
such sequences. With robots duties getting more complex, their tasks have to be accordingly more
advanced. To this end, formalisms like Linear Temporal Logic (LTL) have been considered to
express tasks that can be automatically translated into control policies. The use of LTL properties
to specify tasks in robotics applications has increased significantly which makes LTL properties the
primary language to interpret robotic tasks.

Moreover, robots usually do not face a single task, and they are required to accomplish several
tasks or sub-tasks in a mission. Therefore, it is beneficial to have a planner that can consider multiple
tasks at the same time and generate the optimal policy that satisfies all of them. It is clear that dealing
with multiple tasks raises many issues such as the importance of each task, ordering and priorities
of them. One way to overcome such discussions is to define soft constraints. For example having
three tasks of ¢, ¢, and ¢3, we are interested in plans that satisfy them with probabilities of 0.3, 0.5
and 0.6 respectively. In other words, ¢ should be satisfied in 30 % of robot runs while ¢, and ¢3
should be satisfied in 50 % and 60 % of the runs, respectively. Then we avoid all of the mentioned
complications and let the planner choose the optimal solution.

In this chapter we present a planning algorithm that simultaneously tackles all these chal-
lenges at once, i.e., it allows to consider multiple costs incurred while pursuing multiple objectives
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expressed in a subset of LTL, each associated with a different target probability. Our work builds
upon the theory of constrained Markov Decision Processes (CMDPs). We extend the classical defi-
nition of CMDPs introducing so-called labeled CMDPs (LCMDPs), where atomic propositions are
associated to the CMDP states as labels (See Section 3.4). Labels provide a way to define a prod-
uct between CMDPs and deterministic finite automata (DFAs) used to express a suitable subset of
LTL formulae (sc-LTL, defined in Section 3.2.2). Based on our definitions, a product between an
LCDMP and a DFA is defined. The product can be iterated because the product between an LCMDP
and a DFA gives a new LCDMP. Therefore, given one LCMDP and multiple DFAs, the product be-
tween all of them can be considered, and the result is a comprehensive LCMDP considering all
DFAs. Starting from these definitions, we provide conditions for the existence of an optimal solu-
tion and formulate an algorithm to determine it. Since the product operation significantly increases
the size of the state space, a pruning step is introduced to remove all states that cannot be reached
under any realization. The solution policy will minimize one of the cost functions, satisfy bounds
on the remaining costs, and satisfy each of the formulas with the desired probabilities. The key step
in our construction is the definition of the product operation so that the probability of satisfying
a formula is equivalent to the probability of traversing a given state in a suitably augmented state
space. Finally, we demonstrate the power of the proposed technique both in simulation and on field
experiments with a Husky robot operating outdoor.

The remainder of this chapter is organized as following. In Section 5.2, we clarify how
our proposed solution improves the existing literature. Later, in Section 5.3, the general problem
is formally defined. Then we provide the proposed solution. Next, we present a toolbox which
makes our software usable for other researchers in Section 5.4. Section 5.5 shows how the proposed
approach works in Matlab and robot simulation scenarios. It also provides the results on real robot
experiment. Finally, Section 5.6 concludes the chapter.

5.2 Major Contributions

The area of motion planning with LTL specifications is very dense and the differences be-
tween distinct works is often narrow. Therefore, we compare our proposed approach with the state
of the art in details throughout this section.

Etessami et al. in [58, 59] presented a multi-objective planner capable of applying multiple
LTL properties with predefined satisfaction rates. They proposed a three step approach to first
estimate the existence of a viable solution by using Pareto Curves, then solve the problem for LTL
properties which only consists of eventually statements and finally extend the solution to general
LTL properties. This work was later extended in [68] by improving the solver to value iteration.
However, our approach has four differences with theirs as following:

1. We consider multiple cost functions where one cost function has to be minimized and addi-
tional cost functions have to be bounded. On the contrary, their approach only focuses on
satisfying multiple LTL properties disregarding any cost function.

2. The base of our approach is on a initial distribution of states which might consist of many
initial states. Etessami’s approach to estimate Pareto curves is graph based and focuses on
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one initial state only. Therefore, having a distribution of initial states may require to solve
the problem multiple times.

3. One of our major contributions is to define sink states on DFAs to solve contradicting LTL
properties with higher probabilities. Etessami et al. used the standard product function which
reduces the probability of satisfying some LTL properties. For example imagine two LTL
properties ¢; = 0A and ¢, = 0O(-A). The product ¢; ® ¢, will result in an empty graph
according to Etessami’s approach, but it might have many valid solutions in our solver if the
sum of the target probabilities is less than one. We further elaborate this topic in Chapter 6
by showing the effect of such dependencies on the final solution.

4. Our work proposes a planner that finds a policy toward an absorbing state (goal state). On the
contrary, Etessami’s method does not consider any goal state. Their aim is to find a policy
that satisfies LTL properties with predefined probabilities.

Another similar work was proposed by Forejt et al., [67], targeting non-deterministic en-
vironments that presents a framework which is capable of solving verification problems by taking
advantage of Probabilistic Automaton (PA). They extend Etessami’s work by adding the reward/cost
function into the solver. However, they are bounded to total cost functions only. This research was
extended in [102] by decomposing the properties into smaller ones to speed up the process. How-
ever, similar differences apply. The advantages of our work over Forejt’s work is summarized as:

e Our solver considers multiple cost functions while they only take one cost function into
account.

e Their focus is to satisfy a bound on their cost function, not minimizing that. However, we
minimize the primary cost function in the CMDPs.

e Their approach is bound to total cost problems while CMDPs can be solved in different forms
such as average cost as well as total costs. They can be approximated as well [4].

o Similar to Etessami’s work, they do not accommodate contradicting LTL properties.

In another work, Ding et al. used CMDPs in conjunction with LTL properties [52]. But
their approach is very limited by considering a single LTL property under special conditions only.
The method cannot accommodate multiple LTL properties at once. Moreover, their approach is
computationally expensive by lacking any form of optimization or pruning methodology for the
generated graph.

In general, the novel idea behind our approach is to address multiple LTL properties into a
CMDP without losing any functionalities. By introducing extended-total-DFAs, we offer a product
operation that is repeatable. This addition creates a product operation which is fully commutative,
i.e. the order in which the product operation is applied does not have any effect on the final output.
We provide further evidences in Chapter 6 regarding the advantages of using this type of product
operation. Note that none of the aforementioned multi-objective solvers provides a commutative
product operation. One of the main drawbacks of such methods lies in the importance of ordering
the products. Therefore, the LTL property which is applied first receives a higher priority than the
ones that are applied later.
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5.3 Multi Objective Planning with High Level Task Specifications

5.3.1 Problem formulation

Building upon the definitions we introduced in Chapter 3, we can now formulate the problem
we tackle in this chapter. In particular, we want to determine policies for situations where a robot is
tasked with multiple objectives at once, and is subject to multiple costs. Each task is formalized as
an sc-LTL formula. Rather than requesting that each task is completed for sure, we assign to each
task (and then formula) a desired probability of success. It is important to notice that every formula
can be associated with a different target probability. Therefore, a form of soft task assignment is
defined. These considerations lead to the following formulation.

Multi-Objective, Multi-Property (MOMP) MDP - Given:

e an LCMDP M = (S,8, U, ¢;, Pr,I1, L) with n + 1 costs functions cg, c1, ..., cy;
e m sc-LTL formulas ¢y, ..., ¢, over II;
e n cost bounds By, ..., By;

e m probability bounds P, ..., Py ;
determine a policy 7 for M that:

e minimizes in expectation the cost cy(r, 5);
e for each cost ¢; (1 < i < n) it satisfies in expectation the bound c¢;(r, 8) < B;;

o for every trajectory €, each of the m formulas ¢; is satisfied with at least proba-
bility P,.

Before discussing the proposed solution, it is worth recalling that each formula ¢; is satisfied
with a certain probability and that bounds on the cost functions are satisfied in expectation, coher-
ently with the CMDP theory. This means that a specific trajectory { could miss all properties and
violate all constraints. However, over repeated iterations, all of these goals will be achieved at once.
This aspect will become evident when discussing simulation and experimental results.

5.3.2 Proposed Solution

Our two-step solution strategy can be sketched as follows. We start from the fact that for
every sc-LTL formula ¢; there exists a DFA 9; accepting all and only the words satisfying ¢;, and
then, for the equivalences we discussed in section 3.2.1, there is an extended-total-DFA &; accepting
the language satisfying ¢;. To be more precise, there exist a DFA D); accepting all and only the finite
length words starting with prefixes satisfying the sc-LTL formula ¢;, and then there is an extended-
total-DFA &; accepting the ¢-ending infinite length words obtained extending the language accepted
by D;. We define a product operation between an LCMDP and an extended-total-DFA that yields
a new LCMDP whose trajectories are related to the probability of satisfying the formula associated
with the extended-total-DFA. Since the product between an LCMDP and an extended-total-DFA
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gives a new LCMDP, given multiple extended-total-DFAs the product can be iterated multiple times
to include all extended-total-DFAs until eventually a comprehensive LCMDP is obtained. Trajec-
tories generated by this LCMDP allow to compute the probability that each formula ¢; is satisfied.
However, at each step the new LCMDP produced through the product operation has a larger state
set, and after multiple iterations the state space may become rather large and create a computational
bottleneck. To counter this problem, we introduce a pruning algorithm that reduces the size of the
state space by removing unnecessary states, i.e., states that cannot be reached by any realization. Fi-
nally, the pruned LCMDP is solved using a linear program built upon the classic theory of CMDPs.
In the remaining of this section we detail each of these steps.

5.3.2.1 Product definition

Products between transition systems or CMDPs and DFAs were already considered in litera-
ture [10,52], but since our objective is to precisely assess the probability that each different formula
; is satisfied, our approach is different. In particular, our definition of product between an LCDMP
and an extended-total-DFA gives another LCMDP. Therefore, given multiple DFAs it is possible
to iterate the product between the initial LCMDP and all the DFAs. We first formally define the
product and then discuss the rationale behind its structure.

Definition 13 Let M = (S,8, U, ¢;, Pr,11, L) be an LCMDP with absorbing state s,, and let & =
(0, 90,9, F,X) be an extended-total-DFA with alphabet £ = 21 sink state qs and absorbing state
qa- The product between M and & is an absorbing LCDMP M ® & = (S, 8y, Up, cp,;, Prp, 11, Ly)
where:

e S,=8x%x0Q0.
B(s) ifg=qo
° S,q) =
Bols.@) {O otherwise
e U,=U.

cpi((s,q),u) = ci(s,u) for 0 <i < n.

Pr(s,u, s’) ifq" = d(q, L(s))

0 otherwise

P;r((s, Q) u, (s, q") = {

Ly(s,q) = L(s) .

States of the type (s, g5) where g is the sink state in the extended-total-DFA are called sink
states for the product LCMDP. Note that in the original LCMDP definition we did not introduce any
sink state, therefore sink states will appear only in LCMDPs obtained through a product with a total-
extended-DFA. The key element in the product definition is the transition probability Pr, indicating
that a transition between two states (s,q) and (s’,¢’) may occur under input u only if 5" can be
reached from s under input u, and ¢’ is obtained from ¢ when the input for the extended-total-DFA
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is the set of atomic propositions L(s) verified in s. It is easy to verify that since M is absorbing then
M®E is absorbing too, and its absorbing states are (s,, g) where g € F U{q,}, i.e., it is either a final
state or the absorbing state of the extended-total-DFA. Let Q,, = F;U{q,,}, i.e., the set of final states
and the absorbing state of the i-th extended-total-DFA. Oy is the set of ferminal states for &;, that is
while processing a ¢-ending infinite length word w’ the extended-total-DFA will always eventually
reach either a state in F (it w’ is accepted) or g, (if w’ is rejected). Let us consider product between
an LCMDP M and m extended-total-DFAs &4, ..., &,,;. This product M ® & ® ...&,, is also an
absorbing LCMDP whose states have the form (s, q1,...,gn) € S X Qg X Q, -+ X O, . Its set of
absorbing states is

Sa = {(S’CII,---’(Im)ISZ Sa/\ViQie Qa[}-

Accordingly, the set S7, = § ), \ S, is the set of transient states in the product. Figure 5.1 shows an
example of product between an LCMDP and two total-extended-DFAs.

In both extended-total-DFAs, if the string does not belong to the accepted regular language
(AB(A + B + CO)* for the first automaton, and AC(A + B + C)* for the second automaton), when the
first instance of ¢ occurs the state moves to the sink state g; and then at the next step moves to
the absorbing state g, and remains there. The product LCMDP shown at the bottom features some
interesting properties that will be useful to compute the probability that an sc-LTL formula is verified
or not. The top branch in the diagram traverses the state S4g3q;. This path is associated with any
word matching the regular expression AB* that is accepted by the first total-extended-DFA but not
by the second. In the path this is modeled by the passage through a state including ¢, i.e., the sink
state for the extended-total-DFA not accepting the string. Similarly, the bottom branch goes through
S 4959/, since it is associated with strings matching AC”, i.e., accepted by the second total-extended-
DFA, but not by the first. Finally, the middle branch is associated with the regular expression A¥Y*
that is not accepted by either automaton. Accordingly, the path traverses a composite state including
both sink states g, and g}, i.e. S4q,q,. Note that in the product LCMDP there are three absorbing
states at the very right and that without loss of generality one could combine them into a single
absorbing state. However in the figure we do merge them to better illustrate the process leading to
the product.

5.3.2.2 Reducing the Size of State Space

Given an LCMDP M and an extended-total-DFA &, the product we just defined creates an
LCMDP M ® & where S, = § x Q. In practice numerous states in S, will be unreachable, i.e.,
they will not be visited under any policy because of the way the new transition probability function
Pr,, has been introduced. As it will be evidenced later, the number of states has a linear relationship
with the number of variables in the linear program to be solved to determine the solving policy.
Therefore, to reduce this number, instead of creating S, as per the definition, we replace it with
a set of reachable states R € S x Q, i.e., states that can be reached. The key observation is that
if Pr,((s,q),u,(s’,q")) = 0 for each (s,q) € S x Q and u € U, then (s’,¢") can be omitted from
S . These states can be easily identified from the definition of Pr, as illustrated in Algorithm 5.
The algorithm takes as input an LCMDP M and an extended total-DFA &, and returns the set of
reachable states R € S X Q. R s iteratively grown from the state of initial states with strictly positive
probability (line 1). The set R,, (reachable analyzed) is created as well, initially empty. Ry, is the
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Figure 5.1: Top picture shows the original LCMDP with 4 states, absorbing state S4 and atomic
propositions set IT = {A, B, C,%}. Atomic propositions are placed near the states in which they are
verified, as per the labeling function L. Note that this trivial LCMDP is absorbing. The second
figure shows on the left a DFA accepting the regular expression AB(A + B + C)*, and on the right
the associated extended-total-DFA. Note that the initial states of the left and right DFAs are ¢; and
q; respectively. Similarly, the third figure showsnn the left a DFA accepting the regular expression
AC(A + B + C)*, and on the right the associated extended-total-DFA. Note the added sink states
(g5 and g%) and absorbing states (g, and ¢,,). The bottom picture shows the pruned product model
M® E; ® E with three absorbing states.
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set of reachable states whose successors have already been determined. The algorithm continues as
long as the successors of all reachable states have not been determined (line 3). At each iteration the
algorithm considers a reachable state not yet analyzed (line 4), and using the function Reachable-
States-From it determines the set of states that are reachable in one transition from this state (line 5).
These new states become themselves reachable and are added to R (line 6) and the loop continues
until all reachable states have been analyzed.

Algorithm 5: Selection of reachable states in product LCMDP
Data: LCMDP, M = (S, 8, U, ¢;, Pr, 11, L), extended-total-DFA & = (Q, g9, 6, F, X)
Result: Set of reachable states in the product (R C S x Q)
1 R={(s,q)|s €S Ag=qoAPB(s)>0}
2 Run =
3 while R # R, do
4 select (s,q) € R\ Raun;
Q’ « Reachable-States-From((s, ¢), M, E);
R—RUQ;
Ran — Ran UA(s, @)};

N S »

Algorithm 6 shows how states reachable in a single step can be determined. It uses a function
Post(s) that takes a state in M and returns the set of states that can be reached from state s in one
step with non zero probability. The algorithm simply returns the states (s’,¢’) having non zero
probability of being reached from (s, ) as per the definition of Pr,,.

Algorithm 6: Reachable-States-From
Data: (s,q) € S x O, M =(S,8,U,c;,Pr,I1, L), &E = (0, qo,6, F, %)
Result: The set of reachable states from (s, g)
A — L(s);
C «— ©;
S’ «Post(s);
for a € Ado

q < (g, a);

for s’ € S’ do

| C=Cu(s.q)

return C

XN N R W N =

After computing R, we can then consider M ® & = (R,f,,Ap,cp,, Prp,I1,L,). Since by
construction states excluded from R cannot be reached under any policy, substituting S, with R
does not change the underlying properties of the LCMDP.
5.3.2.3 Solving the Optimization Problem

The reason for introducing the product LCMDP is to convert the problem of computing the
probability of satisfying multiple sc-LTL formulas into a reachability problem. In the example

80



discussed in Figure 5.1 we saw that trajectories of the product LCMDP are associated with the sc-
LTL formulas being satisfied by L(€2) or not. Therefore, to evaluate the probability that one or more
formulas are satisfied, it is sufficient to compute the probability that certain states are reached by a
trajectory Q. In particular, we are interested in the composite states including the sink states defined
by the extended-total-DFAs. Note that in the definition of the product LCMDP, states including one
or more sink states are visited at most once, i.e., if Q reaches on of them at a certain time ¢, it will
move to an absorbing state at time ¢ + 1. The relevance of this property hinges on the definition of
occupancy measure induced by a policy 7. Note that this definition is given for the general case of
CMDP without labels.

Definition 14 (Occupancy measure) Given an absorbing CMDP, let S’ be its set of transient states
and let K' = {(s,u) | s € S” Au € U(s)}. For a policy n we define the occupation measures p(s, u)
for each state/action element in K’ as

+00
pls,u)= ) PrglS: = 5,U; = ul
=0

where Prg[S ¢ = 8, Uy = u] is the probability induced by the policy m and the initial distribution .

According to the definition, the occupation measure is a sum of probabilities and then in
general not a probability itself. However, if the structure of the underlying CMDP is such that a
state s” is entered at most once, then },cy () P(s", 1) is instead a probability because at most one
term is different from zero in the sum and that term by definition is a probability. It is indeed
this property that led us to the definition of the total-extended-DFA and the introduction of the
hypothesis concerning the extra symbols ¢ at the end. When this is the case the sink state is always
visited at most once. Therefore, if there is an event occurring only when the sink state is visited,
then the occupancy measure associated with the sink state is exactly the probability that such event
happens. As we discussed in the beginning of this subsection, a visit to a state including one or
more sink states is associated with the event that L(2) does not satisfy the corresponding sc-LTL
formulas. This approach is further expanded in the following. We start with this simple theorem.

Theorem 3 Let M be an LCMDP and & be an extended-total-DFA associated with the sc-LTL
formula ¢. Let Q = (s1,41),...,(Sn,qn), ... be atrajectory of M®E and L(Q) be the corresponding
string. L(Q) satisfies ¢ if and only if Q does not include any state (s,q) € S , where q = q.

Proof The proof follows from the definition of product M ® & and the assumption that & is the
extended-total-DFA associated with ¢. This latter property states that £(E) is the language or ¢-
ending infinite length words with a prefix satisfying ¢. Since we assumed that the LCMDP is
absorbing and that L(s) = ¢ for all an only states in the absorbing set, it follows that £(Q) is a
%-ending infinite length word. Therefore, if £(Q) is not accepted by & the state enters g, once and
then moves into g,, whereas if £(€2) is accepted by & the state never enter g;. Given that S, = § xXQ
and the transition rule stated in Definition 13, the claim follows.

According to the theorem, if a trajectory Q of M®E reaches a sink state, then the correspond-
ing sc-LTL property ¢ is not satisfied by L(€Q). Otherwise, it does. Therefore, we are looking for
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traces starting from an initial state, without passing the sink state and ending in the absorbing state.
These trajectories satisfy ¢ by construction and as we will show in the following we can compute
the probability of satisfying ¢.

Theorem 4 Let M, = M ® & be a product LCMDP where & is the extended-total-DFA associated
with an sc-LTL property ¢. If a policy m generates trajectories satisfying ¢ with probability P, then
with probability 1 — P, the policy will generate trajectories visiting the sink states (s, qs) € S .

Proof Because of the definition of transition function for an extended-total-DFA and the definition
of product M ® &, every state of M, of the type (s, gy) is entered at most once. Moreover a state
of the type (s, gy) is entered if and only if the property ¢ is not satisfied by L(Q), so if the policy «
satisfies ¢ with probability Py, the trajectory enters states (s, g;) with probability 1 — P,,.
Given an LCMDP M and m extended-total-DFAs &4, ..., &, associated with sc-LTL proper-
ties @1, ..., @m, let
M, =MeE ®Ey---®Ey.

For each property ¢;, we define the set

%:{(Seql""9Qi9"'9qm)ESplqiZQS,'}

i.e., the set of states in M), including the sink state for the extended-total-DFA associated with ¢;.
Note that according to how we defined the product operation and the transition function for the total-
extended-DFA (third case in Eq. (3.1)) s must be the absorbing state s, in the LCMDP. This is true
because g, is entered only after the symbol ¢ is processed, and L(s) = {¢} only in the absorbing
state s,. Consequently, for any state in .7}, there is only one defined action, i.e., the loop action u,
that in the original absorbing LCMDP goes from state s, to state s, with probability 1 (see Section
3.4). To ease the notation, in the linear program that follows we write the tuple ((s, g1, g2, - - -, qn), 1)
as (x, u) with the understanding that x is a state in M), and u € U(x) is an action for x as recursively
defined by the product. At this point we have all the elements to formulate the main theorem
providing the solution for the problem we defined in Section 5.3.1.

Theorem 5 Let M = (S,B8,U,c;,Pr,IL L), ¢1,...,0m Bi,...,B, and Py, ... P, be asin Section
5.3.1. Let &y, ..., E, be m extended-total-DFAs associated with g1, . . ., o, M, = MREIRE; -+ -®
Em, and K be the state action space associated with the set S, of transient states in M,,. The multi-
objective, multi-property MDP problem admits a solution if and only if the following linear program
is feasible:

Jmin D) coleuple) (5.1)
xeS;, uelU(x)
subject to
Z ci(x,w)p(x,u) < Bii=1,...n (5.2)
xeS;, uelU(x)
DD pw <1 =Pyi=1,.m (5.3)

x€.%; uel(x)
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Z plx, u)[6,(x") — I;r(x’, u, )] = B(x),¥x € S, (5.4

x'eS, ueU(x’)

p(x,u) > 0,¥x €S, (5.5)

where 6,(x") equals to one, if x = x” and zero otherwise.

Proof The proof follows from the theory of CMDPs and our definition of product. First consider
the linear program excluding the constraints in Eq. (5.3). This is precisely the linear program to
solve a CMDP with an occupancy measure approach (see, e.g., [5]). Next, consider the additional
m constraints in Eq. (5.3). By definition, states in .%; have the form (s,, g1,...,¢i,...,qgm) With
qi = qs;, 1.e., the ith component is the sink state of the total-extended-DFA associated with formula
¢i. Moreover, they are associated with just one action, i.e., u,. Therefore, we can write

+00 +00
plx.u) = ) PEIS = x Uy = ug] = ) P[S, = x]
t=0 t=0

and the ith constraint in Eq. (5.3) can therefore be rewritten as

> iprg[s, =x]<1-P,.

xe.%; t=0

Let £ be the sample space for €, i.e., the stochastic process for the state evolution, and consider the
event A’t‘ = {S; = s¢}, where s € .. From the rules defining how the state evolves, if the state is
in .%; at time ¢, it will not be in .#; at time ¢ > ¢, because the ith component will move from g,
to g4 and remain there. Therefore the events A{ and Af, are mutually incompatible for any choice
of indices j,k and t,¢ (unless of course j = k and ¢+ = ¢/, but this will never happen in the sum
we consider in the following). The above sum is therefore the same of probabilities of mutually
incompatible events, and it is therefore equal to the probability of the union of the events, that is

Zipﬁlg[st:X]=Pr [jUAf =Pr G{Sleﬂ}m
xes; 1=0 =0 k =0

This last probability is therefore the probability that Q reaches .#;. Combining this fact with Theo-
rem 4, it follows that each of the m constraints in (5.3) bounds the probability that formula ¢; is not
satisfied, and this concludes the proof.

At this point it should be clear why the sink states g and g, were introduced when defining
the extended-total-DFAs. ¢; is separated from ¢, in order to make sure g, will be visited at most one
time for every policy realization, and our definition of product allows to track multiple formulas in
parallel. If the linear program is solvable, its solution provides a randomized, stationary, Markovian
policy as follows (see [5]):

p(x, a)
Yaca P(X,a)

where 7(x, a) is the probability of taking action @ when in state x.

a(x,a) = x€8),,a€A(x)
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5.4 MOMP-MDP Toolbox

Since the presented theory is a general-purpose solver which is not tied to any specific prob-
lem or application, we present a toolbox in this section to be released to the scientific community.
The proposed toolbox is implemented in MATLAB, receives a problem specification, its constraints
and objectives, and returns a policy. Here, we illustrate more details of the toolbox.

The input parameters of this toolbox are as following:

An LCMDP M where n + 1 cost functions are defined for each state. The toolbox provides a
class for LCMDPs.

m DFAs. The DFA class implemented in the toolbox is used for this purpose.

n upper bounds for the non-primary cost functions, encoded as a vector ‘A.

m satisfaction probabilities for each DFA. These values are appended to ‘A.

Upon proper setup, the toolbox calculates the optimal policy according to the linear program for-
merly presented. If a solution satisfying the constraints is found, the toolbox generates a feedback
policy & specifying which action should be taken at any given state. Additionally, the planner sim-
ulates multiple executions of the generated policy to experimentally ensure that the policy satisfies
the given constraints.

This toolbox comes with some auxiliary functions to convert an image into an LCMDP (see
section 5.5.2 for examples), and also to verify that the user defined DFAs are correct and total. The
class diagram of the toolbox is given in Figure 5.2.

CMDP_Solver
DFA -LCMDP
-States - Bounds
-Initial State + Calculate_Policy(}
-Transition Function
-Accepting States
-Alphabet
LCMDP
States
- Initial Distribution
- Actions
- Cost Functions
Main - Transition Function
_LCMDP - Atomic Propositions
- m DFEAS - Labeling Function
- Bounds
+Product()
+ Solve()
+ Test()

Product_Calculator

- DFA
- LCMDP

+ Calculate_Product()

Figure 5.2: Class Diagram for the MOMP-MDP Toolbox
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5.5 Experimental Evaluations

In this section, we illustrate how our planner operates under different scenarios. We start
with a simulation scenario to explore a wide variety of parameters and to perform a large number
of test cases. In Section 5.5.3 we show how the same framework can be applied to solve planning
problems for a robot operating in real environments. In all scenarios, a grid based abstraction for
the environment is adopted, whereby the robot moves on a grid and at each location it can move
up/down/left/right, unless the motion is forbidden by the environment (e.g., when the robot is at the
boundary or when there are obstacles.)

5.5.1 Matlab Simulations
5.5.1.1 QOutdoor navigation

In the first case we consider a robot moving in an outdoor environment without obstacles.
(see Figure 5.3). The leftmost panel shows an elevation map retrieved from the web. The map is
discretized into a grid as shown in the middle panel. To each grid cell a risk level is associated based
on the elevation. Warmer colors are associated with riskier areas, and this will be one of the costs
considered in the LCMDP formulation. The set of atomic propositions is IT = {R;, R», R3, R4, X}
and the figure shows in which grid cells these propositions hold. The figure shows also the start
location S and the goal location G. The rightmost panel shows an example of the path followed by
the robot while satisfying all the tasks we specify in the following.

e
T E
- L= o

-t " il
) - oy

T i

R, e, ql

L

Figure 5.3: Navigation experiment: Left: Terrain map retrieved from Internet. Middle: Risk map
and labels. Right: A sample path satisfying all tasks.

Coherently with the MDP framework, the outcome of actions is non-deterministic and the
transition probabilities are determined by the elevation map. To be specific, an action attempting
to move the robot towards a location not higher than the current location succeeds with probability
0.9 and fails with probability 0.1. If the action fails the robot remains at its own location or moves
to one of its neighbors with lower height (excluding the intended target location). Each of these
locations is selected with equal probability. When the robot selects an action trying to move to a
higher location, the action succeeds with probability of 0.3, and fails in similar way.

In all experiments we consider two costs, ¢g and ¢;. The first one is the cumulative risk along
a path, i.e., the sum of the risk values associated with all cells traversed along a path. This objective
function must be minimized. The second cost ¢ is the path length and must be bounded by a given
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constant B; = 30. Every time an action is executed a cost of one is incurred, i.e., ci(x,a) = 1
for each x € S. The planner is tasked with the following three objectives formulated as sc-LTL
formulas:

1. Visit region R; then R; to read some sensory data: ¢; = G(R; A OORy).
2. Visit region R3 and leave region Rz from its border to region R4: ¢ = O(R3 A O(R3 U Ry)).
3. Vigsit at least two consecutive states in region X to explore that region: ¢3 = (X O X).

Consistently with our problem definition, we assigned different probability bounds to each of the
properties specifying the three tasks, namely ¢; should be satisfied with probability 0.7, ¢, with
probability 0.8 and ¢3 with probability 0.5. The right panel in Figure 5.3 shows a stochastic realiza-
tion of the path that satisfies all properties.

5.5.1.2 Factory environment

We next consider a pickup-deliver task in a factory-like environment. This is similar to our
former work considered in [64, 65], and Figure 5.4 shows the floor plan.

As in the previous case, a risk map is associated to the map (middle panel in Figure 5.4),
where risk in this case is a function of the distance from walls and obstacles. The figure also shows
that IT = {Py, P>, R, D} and in which grid cells the atomic propositions hold. As in the previous
example, the robot starts in the cell marked S and ends in the goal cell marked G. Actions are
non-deterministic and succeed with probability 0.8. When failure occurs, the robot ends up in one
of the free adjacent locations (excluding the target location). As in the previous example, the robot
has to minimize the overall cumulative risk along the path while obeying to a bound on the traveled
length (B; = 150 in this case). As in the previous scenario, c;(x,a) = 1 for each x € S and every
action. The following tasks are defined as sc-LTL formulas:

1. Goto P; to pick up an object, then deliver it at location D: ¢; = O(Pp A OOD);
2. Go to P, to pick up an object, then deliver it at D location: ¢, = OG(Py A OOD);

3. Stay away from region R: ¢3 = (=R) UG. Since there is no always (O) operator for sc-LTL
properties, it needs to be defined requiring that the robot ends in G.

In this case the desired probability for ¢; and ¢, is 0.7, whereas for ¢35 it is 0.8. The bottom
panel in Figure 5.4 shows a path satisfying all formulas.

5.5.1.3 Rapid Deployment

As third scenario we consider the rapid deployment problem we studied in [33, 38]. In the
rapid deployment problem a robot is tasked with visiting various location within a given temporal
deadline while maximizing the chance of succeeding. Figure 5.5 shows a map where four regions
are labeled as A, B, C and D and the goal area is marked with G. The rapid deployment problem can
be formulated assigning a target probability to each of the following tasks:
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Figure 5.4: Factory experiment: Left: factory floor map. Middle : Risk map of the factory and its
labels. Right: A sample path satisfying all properties.

1. Visitregion A: ¢ = CA

2. Visitregion B: ¢ = OB

3. Visitregion C: ¢3 = OC

4. Visitregion D: ¢4 = OD

Since the tasks are defined independent from each other, assuming the probability of visiting A is
P(A) and so on, the probability of successfully completing the mission is then P(A)P(B)P(C)P(D).
The desired probability for the four formulas is 0.6, 0.8, 0.5, and 0.9, respectively.

5.5.1.4 Results

To compute solving the policy, the linear program formerly outlined is solved, and we next
simulated 1000 executions of the optimal policy to experimentally derive costs and success prob-
abilities for each of the three problems. In this case all code is run in Matlab, and no efforts were
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Figure 5.5: Rapid deployment experiment: A sample path satisfying all tasks.

made to optimize the code. Table 5.1 shows the time spent to perform the various steps in the solu-
tion. In particular, we show the time spent to compute the product between the initial LCMDP and
the various formulas considered. The last column shows the time spent to solve the linear program
using Matlab’s builtin 1inprog function. The code was executed on a 2.5 GHz quadcore i7 CPU
with 12 GB of RAM running Linux.

Experiment ¥l v ©3 ¢4  Linear Program
Navigation 36.6 2446 2427 N/A 91.6
Factory 157.6 10124 89284 N/A 158.5
Deployment 11.4 20.4 729 2745 47.1

Table 5.1: Time spent for every LTL product and the time for solving linear programming problems
(in seconds.)

As anticipated, the time grows with the number of formulas considered since the state space
grows, and these numbers should also be compared with Table 5.2 for the number of states. In
absolute terms, it should be considered that these policies are computed offline, as it is typical with
MDP based planners, and therefore these numbers would not impact real world performance.

In Table 5.2 we show the number of states, i.e., the number of states in the original LCMDP
(first column) and the number of states in the LCMDPs obtained after considering the various for-
mulas. The last column (NP — no pruning) shows how many states would have been generated if
the product was calculated without pruning unreachable states and thus shows the effectiveness and
importance of the proposed pruning method. As it can be observed comparing the last two columns
for each scenario, the reduction in the number of states is significant, and varies between a factor of
5 and 15. The precise number of course depends on the structure of the formulas considered and of
the underlying LCMDP.

Finally in Table 5.3, we summarize the results of 1000 simulated executions of the optimal
policy. For every experiment each column shows the number of times that the sink state of every
extended-total-DFAs associated with each sc-LTL properties has been reached. To understand these
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Experiment  Original ¢ © ©3 ws NP

Navigation 117 600 1526 5024 N/A 25272
Factory 608 1550 3136 9400 N/A 87552
Deployment 117 356 474 950 1894 29952

Table 5.2: Original number of states, and the number of states after each product operation. NP
stands for not pruned.

results, it is important to recall that the sink state is reached when the associated sc-LTL formula
is not satisfied. That is to say that for a given target probability P, in N trials we would expect
that the sink state is traversed (1 — Py)N times. The table shows that this is indeed the case and
small deviations from the desired value are due to the unavoidable approximation introduced when
estimating the expectation from a limited set of test cases. For example, in the first row we see
the number 311 under ¢;. This means that the sink state associated with formula ¢; was traversed
311 times in 1000 realizations. This means that experimentally ¢; was satisfied with probability
1-0.311=0.689. This is close to our desired target P, = 0.7. Similar conclusions can be drawn in
all other cases. Total risk along the path for experiments I, II and III are 106.5, 1049.9 and 128.1
respectively. Average path length for experiments I, II and III is 24.55, 142.7 and 34.5 in order.

Experiment o1 @2 @3 ¢4
Navigation 311 195 455 N/A
Factory 259 305 194 N/A
Deployment 393 188 495 102

Table 5.3: Number of times every sink state of every extended-total-DFA is reached.

5.5.2 Gazebo Simulations

Following the extensive Matlab experiments which showed the behavior of the planner when
all the simulation parameters are known, we describe multiple simulations aiming at assessing
strengths and limits of the planner in this section. In particular, we aim at showing its ability to
express suitable missions in scenarios relevant to manufacturing and automation, and its robustness
to modeling errors. We also provide a detailed description on how the planner can be implemented
using the mainstream ROS software platform. For all our simulations we rely Gazebo, i.e., the
standard simulation environment associated with ROS.

5.5.2.1 Environment Setup

We consider an autonomous forklift, i.e., an unmanned ground vehicle equipped with a for-
ward facing gripper used to grab and release items. The Gazebo simulation environment does not
provide a model for this vehicle, and therefore we developed one building upon the existing model
for the Pioneer P3AT robot. Starting from the P3AT, we added four extra links and joints to enable
the robot to restrain an object, and lift it. Figure 5.6 shows the model we developed. Note that on
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Figure 5.6: On leftmost figure, the autonomous vehicle with its gripper fully opened at its lowest
position. In the center figure, the vehicle carrying an object. Note that the fork as been closed and
lifted. On the right, the environment used for testing.

top of the gripper we placed a laser range finder to localize the robot inside the known map of the
environment.

From a mobility perspective the P3AT is a differential drive platform, and one could argue
that forklifts instead use Ackermann steering, where the rear wheels are used for steering. While
this is true, this distinction is immaterial to the nature of the experiments we present, because, as
explained in the next subsection, navigation is fully handled by the ROS navigation stack that can
manage different mobility configurations. The robot operates in known environment displayed in
the rightmost panel of Figure 5.6. In our implementation a map of the environment is acquired
upfront using one of ROS’ built in SLAM algorithms. The map is then discretized into cells of
0.5%0.5 meters. With reference to the LCMDP formulation, the state of the robot is (x, y, c), where
x,y identify the grid cell where the robot is located, and c is a binary variable indicating whether
the robot is carrying something or not. The set of actions is A = {left, right, up, down, load,
unload}. The first four actions describe motions in the grid, whereas the last two indicate the action
on the gripper. Note that the orientation of the robot is missing from the state because thanks to
the underlying motion controller the robot is capable of executing any of the four motion actions
irrespectively of the direction it is facing. For what concerns the transition probabilities, when
one of the left, right, up, down actions is executed, it succeeds with probability 0.63. This value
was derived experimentally by simulating the actions multiple times and observing how often it
succeeds. The action load succeeds with probability 0.6, whereas the action unload succeeds with
probability 1.

5.5.2.2 Software architecture

From a software perspective we organized the system into the two-layer architecture shown
in Figure 5.7. The top layer (Layer 2) is in charge of generating the policy by solving the linear
program in Eq. (5.1), and to determine the desired action n(s) as a function of the current state.
Hence, it receives from the lower layer (Layer 1) the robot pose and the grasp status. These values
determine the current state s = (x, y, ¢), and the next action 7(s) € A(s) can therefore be identified.
If the action is either left, right, up or down, it is sent to the Move Base node in Layer 1, whereas if
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the action is load or unload it is sent to the node Load Controller.

Layer 1 consists of a set of standard ROS nodes (AMCL, Move Base, Map Server) and of a
custom developed node (Load Controller) in charge of the gripper device we introduced. AMCL
handles the localization task using a particle filter. Given a map of the environment (provided by
Map Server), and the data from the range finder and odometry, it provides an estimate of the robot
pose. In our experiments, since the map is static, the estimate provided by AMCL is reliable and
consistent with our hypothesis of state observability. Move Base implements the ROS mobility
stack, i.e., drives the robot to a desired target location. Finally, Load Controller implements a PID
algorithm to open/close the gripper and move it up or down.

Layer 2 Policy Follower

!

Goal Pose| Load/Unload
Robot Pose
Map
AMCL Map Server
Layer 1
Robot|Pose

Move Base

Map
Load Controller

Desired Action

Desired Movement
Odometry Controller

Grasp Status
Laser Scan Control |Qutputs

Robot Software Interface

Robot

Figure 5.7: Software architecture

5.5.2.3 Costs, Atomic Propositions, and Tasks

According to the formulation presented in Section 3.3.2, we introduce two costs, i.e., risk (co)
and traveled distance (c1). The risk cost is defined by a risk map extracted from the environment,
where locations near to obstacles are deemed more risky (see Figure 5.8). The overall risk along a
path is the sum of the risk values of the cells traversed along the path. Next, we define two missions
characterized by different atomic propositions and tasks.

Mission 1. For the first mission the set of atomic propositions is I1 = {Py, P, D,G, L}, and the
associated labeling function L is as follows (refer to the right panel in Figure 5.6).

e L(P;) is true when the robot is in the state corresponding to location Pickup I and false
otherwise.
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Figure 5.8: Risk Map. Warmer colors indicate higher risk areas.
L(P») is true when the robot is in the state corresponding to location Pickup 2 and false
otherwise.

L(D) is true when the robot is in the state corresponding to location Delivery and false other-
wise.

L(G) true when the robot is in the state corresponding to location Goal and false otherwise.
L(L) is true if the robot is carrying something (loaded) and false otherwise.

The following two tasks are defined as sc-LTL formulas over II. In both cases, we assume

that the robot starts without carrying anything.

1. Task 1: ¢; = =LUP; A(QLUD A (O—-LUG)). In plain words this task requires to go

to location Pickup 1, retrieve the element, bring it to location Delivery, release it, and then
terminate in location Goal.

. Task 2: ¢p = 2 LU P, A(OLUD A(O—~LTU G)). This task requires to go to location Pickup
2, retrieve the element, bring it to location Delivery, release it, and then terminate in location
Goal.

We associate to ¢ a probability Py, = 0.4 and to ¢, a value Py, = 0.3. When solving the

linear program, we minimize the risk cost, while setting a bound B; = 70m on the cost ¢; (path
length).

Mission 2. For the second mission the set of atomic propositions is IT = {S, S», P1, P2, D, G, L}.
The labeling function for Py, P>, D, G, L is as in Mission 1, whereas for S| and S it is as follows
(refer to Figure 5.9).

e [(S) is true when the robot is in the state corresponding to location Station I and false
otherwise.

e [(S,) is true when the robot is in the state corresponding to location Station 2 and false
otherwise.
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Figure 5.9: Relevant locations for the tasks in the second mission.

We define two tasks also for the second mission, and we again assume that the robot starts
without carrying anything.

1. Task 1: ¢1 = =LUS| A(O-LUP; A(QLUD A (O-LUG))). Informally speaking, the
robot is required to go to Station 1 while unloaded, receive some orders, then drive to Pick
Up 1 to pick up an object. Then it unloads the object at the Delivery location and terminates
the task by going to the Goal location.

2. Task2: ¢pp = = LUP, A(QLUS, A(OQLUD A (O-LUG))). In this task the robot goes to
Pick Up 2 location, loads the object. Then it drives towards Station 2 which can be a check
point in order to verify the status of the object being carried. After the check point, it moves
towards the Delivery location to drop it off and then drives to the Goal location.

We associate to ¢ a probability Py, = 0.4 and to ¢; a probability Ps, = 0.3. When solving
the linear program, we minimize the risk cost (cg), while setting a bound B; = 100m on the path
length (c1).

5.5.2.4 Results

Starting from the experimental setup we described in the previous section, we solve the linear
program corresponding to the cases described in the first and second mission, and we then repeat-
edly executed the policy in Gazebo, logging the results in terms of traveled path, accrued risk, and
percentage of accomplishments of the specified tasks. In every experiment the policy is executed
500 times. For both missions we first solve the linear program with values for the transition proba-
bility equal to the probabilities we experimentally determined, as described earlier. Next, to assess
the robustness of the algorithm to modeling errors, we repeat the same experiments after having
solved the linear program using transition probabilities that differ from the value we observed, and
evaluate how the performance degrades.
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Figure 5.10: Satisfaction rates of two tasks in mission 1.
5.5.2.4.1 Mission 1 In the first batch of experiments, we solve the linear program using our best

estimates for the transition probabilities. Table 5.4 shows the results we obtained. It can be seen
that over 500 runs the bound B = 70 on the path is on expectation met with a rather small variance.

Quantity Mean | Variance
Risk 362.9 64.2
Path Length || 61.2 9.3

Table 5.4: Mission 1 results in terms of total accrued cost and path length

Moreover, ¢ was satisfied with probability 0.43 and ¢, and with probability 0.25. The reason
for the mismatch between Py, = 0.3 and the observed value of 0.25 is twofold. First, the number
of samples is relatively small and then does not necessarily converge to the expected value. Sec-
ond, as we will show in the next experiment, it seems like that the transition probability value we
experimentally estimated is not extremely accurate.

Next, to experimentally evaluate the robustness of the algorithm to errors in the transition
probabilities, we solved again the linear program using transition probability values different from
the one we experimentally determined. Figure 5.10 shows the satisfaction rates for ¢y, ¢, as the
transition probability varies, whereas figure 5.11 shows the Kullback-Leibler divergence between
the desired values for Py, and Py, and the observed values. From this second figure we can observe
that 0.7 appears to be a better estimate for the transition probability.

5.5.2.4.2 Mission 2 Similar experiments were performed for mission 2. Table 5.5 confirms that
the policy satisfies in expectation the bound B; = 100 for the expected path length.

In this case ¢; was satisfied with probability of 0.49, and ¢, with probability of 0.25. As
compared to the values in the setup step, the desired value for Py, is slightly off from the desired
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Figure 5.11: KL Divergence for mission 1.

Quantity Mean | Variance
Risk 556.4 89.4
Path Length || 102.6 18.2

Table 5.5: Mission 2 results in terms of total accrued cost and path length

value. In our interpretation this is due to the fact that the transition probability value we used to
solve the linear program is not necessarily the one best fitting the underlying model, as confirmed
by Figure 5.12 and Figure 5.13 in which we observe the performance of the planner as the transition
probability vary.

We conclude this section outlining that the presented results, although not completely aligned
with the desired results, do not undermine the correctness of the planner. In fact, in the previous
section we showed that if the linear program in Eq. 5.1 is solved using transition probabilities
accurately matching the underlying model, then all target probabilities are achieved.

5.5.3 Real World Experiments

To further validate our proposed method, we performed additional experiments using a mo-
bile platform operating outdoor. Figure 5.14 shows the system we used, i.e., a Husky robot marketed
by Cleaprath Robotics. All software controlling the robot is based on ROS Indigo and runs on the
laptop onboard the robot. The robot is equipped with a SICK for obstacle avoidance. For localiza-
tion it uses two Hiper SR GPS receivers by Topcon (seen on top of the yellow and red posts), and
a myAHRS+ inertial navigation unit. Data from these sensors, as well as odometry readings and
motion commands, is processed by a ROS node providing localization using an Extended Kalman
Filter. The system was tested outdoor on the campus of the University of California, Merced (see
Figure 5.15), and drove more than 7.8 km during the missions described in the following.
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Figure 5.12: Satisfaction rates of two tasks in mission 2.
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Figure 5.13: KL Divergence for mission 2
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Figure 5.14: The Husky robot used to validate the planner proposed in the paper.

A map for the campus was retrieved from Google maps and discretized into rectangular cells.
For the first two experiments the environment consisted of a rectangle of size 102m X 115m dis-
cretized into cells of 1.86m X 1.88m. In the third scenario the environment consisted of a rectangle
of size 203m x 232m discretized into cells of 2.36m x 2.35m. To align the real world experiments as
much as possible with the simulations presented in the previous section, a risk value was associated
to each grid cell based on the distance from the closest obstacle. Figure 5.16 shows the grid cells
and risk maps for the first two testcases, whereas Figure 5.17 displays the grid cells and risk maps
for the last case. As for the simulations, warmer colors indicate higher risk.

Solving the linear program in Eq. (5.1), a policy consisting of up/down/left/right actions is de-
termined. To execute the commands, the ROS navigation stack was used, where the center location
of the desired grid cell to reach was given as goal to the navigation stack. Note that knowing the cur-
rent location on the map and the desired action, this point can be univocally determined. Moreover,
as in the simulated case, the orientation of the robot is not considered during the planning stage, but
is of course taken into account by the navigation stack. In all experiments, two cost functions cg
and c; were used, as in the simulations. The first one, to be minimized, accounts for the cumulative
risk along the path, whereas the second one considers that path length to be bounded. Each mission
was repeated 15 times.

5.5.3.1 Pickup and Delivery

During this mission, the robot starts from a point, drives to a pickup station, then to a delivery
station, and finally goes to the goal point. Two pairs of pickup/delivery stations were defined and
associated with two sc-LTL formulas. Figure 5.18 (left) shows the labels relevant for the formulas
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Figure 5.15: Aerial view of the campus area where the navigation experiments took place.

describing the tasks:

e Task 1: pickup from location A, deliver to location B and go to the goal location: ¢; =
O(A AOOB(A O ©G)).

e Task 2: pickup from location C, deliver to location D and go to the goal location: ¢, =
O(C AOOD(A O ©G6)).

Both tasks were given a target probability of 0.4. The bound on path length was set to 100.
5.5.3.1.1 Results Sample paths for both tasks in mission I are shown in Figure 5.19. Among the
15 experiments, 6 paths satisfied task 1 and 7 paths satisfied task 2 while 3 paths did not satisfy any
of the tasks. The average path length among all the cases is 90.92 where the unit of measurement is
the number of cells which is approximately 167m. Meanwhile the total accrued risk is 621.

5.5.3.2 Navigation

Three tasks are defined for this mission according to the label map in the right panel of Figure
5.18. The area labeled as A is a forbidden area where the robot should not enter and is represented
in the first task. A goal area G is evidenced and should be entered either by the left area B or the
right area C. These tasks are formalized in sc-LTL as follows.

e Task 1: stay out of area A: ¢ = (mA) UG

e Task 2: enter the goal location G from the left side ¢, = G(B A O(B U G))
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Figure 5.16: Grid map (left) and risk map (right) for the first two scenarios. On the map, black grid
cells are associated with untraversable areas. These are obstacles like trees, benches, sculptures or
areas that the robot shall not enter.

Figure 5.17: Grid map (left) and risk map (right) for the third scenario.

e Task 3: enter the goal location G from the right side ¢3 = G(C A O(C U G))

Formula ¢; should be satisfied with probability 0.9, ¢, with probability 0.5, and ¢35 with
probability 0.4. The bound on path length was set to 90. Note that ¢; resembles the construct always
that is not available in sc-LTL. This is possible because we impose to negate atomic proposition A
until the goal location G is reached.

5.5.3.2.1 Results As in the previous case, the Navigation mission was repeated 15 times where
task 1 was satisfied in 14 paths, task 2 in 7 paths and task 3 in 7 paths. Two sample paths for this
mission are shown in Figure 5.20. The average total path length is 71.2 or approximately 130m.
The total accrued risk is 340.8.
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Figure 5.19: Sample paths obtained during the Pickup and Delivery tests.

5.5.3.3 Autonomous Driving

This mission features three tasks resembling situations arising in autonomous driving. We
define a label map for this mission as in Figure 5.21.

Informally speaking, the street is labeled as A while a pedestrian crossing is labeled as B. A
bike rack is marked with C while a charging station for the robot is labeled with D. According to
these labels, the following three tasks are defined:

e Task 1: Avoid the bike rack: ¢; = (=C) U G;
e Task 2: Do not cross the street anywhere other than the pedestrian area. ¢, = (—A) U G;

e Task 3: Visit the charging station: ¢3 = OD;
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Figure 5.21: Label Map for mission III

The first formula has a target probability of 0.9, the second has a probability of 0.9, and the
third has a probability of 0.5. The bound on path length was set to 110.

5.5.3.3.1 Results In 15 runs, all paths all satisfied the requirements for task 1 while 14 of them
satisfied task 2. Task 3 was realized in 7 paths. Two sample paths are shown in 5.22. The average
path length for this mission was 95 and the average total risk is 677.

5.6 Conclusions
In this chapter, we have presented a novel planning algorithm capable of simultaneously con-

sidering multiple costs and multiple tasks expressed as sc-LTL formulas. In particular, each task is
associated with a different target probability and the planner produces a policy that in expectation
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Figure 5.22: Mission III paths. The left picture satisfies task 1 and 2 while the right picture satisfies
all three tasks.

will satisfy each formula with the target probability. The algorithm builds upon the theory of con-
strained MDPs, and is therefore suitable for situations where dynamics are non-deterministic but
the state is observable. The key insight of our approach is the definition of a product between the
CMDP and the DFAs defining the good prefixes satisfying the given sc-LTL formulas. In particular,
this definition allows to precisely compute the probability that a certain state in the product defini-
tion will be reached during a stochastic evolution, and this can be associated with the probability
that a given sc-LTL formula is not satisfied. A vanilla implementation of the product definition
would lead to an unmanageable growth in the size of the state space and therefore a suitable pruning
algorithm was developed. Our approach can be extended in different ways. The order in which the
DFAs are multiplied with LCMDP has an impact on the size of the product and could be optimized.
Another extension we will consider is risk aversion, i.e., producing policies that not only minimize
expectations, but bound variance from the expectation.
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Chapter 6

Improvements to Multi Objective
Planning with Multiple Costs and
Multiple High Level Task Specifications

6.1 Introduction

In chapter 5 we presented a planner that solves multi-cost and multi-task planning problems in
non-deterministic environments by combining the theory of constrained Markov decision processes
(CMDPs) with linear temporal logic (LTL). In such scenario a robot faces the challenge of finding
a path to a goal location while being subject to multiple cost functions. Besides that, the robot is
required to accomplish some tasks with specified target probabilities. The major innovation of our
proposed planner is the ability to generate optimal plans which satisfy both types of constraints at
once. For example, the planner may aim at minimizing the time to complete a mission while at the
same time: 1) obey to constraints on multiple other cost functions, like consumed energy, traveled
length, etc.; 2) probabilistically satisfy n tasks expressed in LTL, where every task is associated
with a different target probability. For example consider a factory forklift robot. The robot drives
to a pick-up station, loads an object, stays loaded while driving toward a drop-off location and
unloads the object. We emphasize defining tasks by LTL properties because it has emerged as a
very practical tool to easily specify new tasks that is easy to understand even for non-specialists.
Our approach builds upon the definition of a product operation between the CMDP state space and
the states of the discrete finite state automata associated with each of the LTL formulas.

While this approach has been successfully validated both in simulation and in extensive out-
door navigation experiments, it also has some drawbacks related to its scalability. In particular,
even though the method eventually requires the solution of a linear program that can be efficiently
solved, determining the state space defining the parameters of the linear program can be time con-
suming, in particular when many different tasks expressed in LTL are considered. This preliminary
step is usually the most time consuming stage of the algorithm. In Chapter 5, we made no attempt
to optimize the process aiming at considering all LTL formulas and all objective functions at once.
In this chapter, we address this issue by proposing two techniques to improve the previous work as
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following:

e Order of Operations: The order in which the various LTL formulas are considered during
the planning stage does not influence the final result. However, it has a significant impact on
the processing time. To overcome this limit, in this chapter we propose a step to optimize
the order in which the various formulas are considered, and show that this can lead to a 50%
improvement in the performance.

e Pruning: During the product calculation process, composite states satisfying only a subset of
the LTL formulas are produced. In some instances there can be a large number of such states
that are relevant only to exactly solve the given planning problem, i.e., to satisfy the LTL
formulas with the given probability. In this chapter we present a method to eliminate these
states, thus obtaining an approximate but faster solution.

The remainder of this chapter is organized as follows. Section 6.2 gives the problem formu-
lation and the discusses the proposed improvements. In Section 6.3, we present some experiments
substantiating our results and finally in Section 6.4, we draw conclusions and discuss possible future
work.

6.2 Improvements

In this section we present the improvements to the method we presented in Chapter 5. The
proposed improvements only target the length of the calculations. The rest of this chapter explains
each of the improvements with their advantages and disadvantages. The readers are referred to
Chapter 3 and 5 for the required background knowledge.

6.2.1 Order of Operations

Given an LCMDP M = (§,8, U, c;,Pr, AP, L) and m sc-LTL formulas ¢, ..., ¢, over AP,
our method requires to compute the product between M and all the DFAs associated with the m
formulas, i.e., M®¢; ®¢;,...0¢;,. Note that since there is a one-to-one matching between DFAs and
formulas, we use the same symbol for both. The product is commutative, but the order influences
the computational time and there can be significant variations. To see why the order is relevant,
consider the small example shown in Figure 6.1. The original LCMDP M is shown on the left, with
two DFAs are presented alongside. Since the product is commutative, M@ DD = M@ D' @ D
as illustrated in Figure 6.2. But in the two cases the intermediate steps are different as shown in
Figure 6.3. M® 9 produces one more state which requires additional computation. On large scale
examples, there can be many such instances, and the compounded effect is significant. Let Nr(M)
be the number of states in the LCMDP M.The total number of states which require processing is:

N=Nr(M¢))+ -+ Nr(M® P ® --- ® dp)

Having that Nr(M ® ¢1) > Nr(M), we know Nr(M ® ¢1) = Nr(M) + n; where n; is a positive
integer. Then,
N=WNr(M)+n)+...(Nr(M) + ny...ny,)).

104



Figure 6.1: The left picture is the original LCMDP. The DFA D is shown in the middle and 9’ is
illustrated in the right picture.

Figure 6.2: The final product M@ D@ D' = M D' @ D.

np is repeated m times, similarly n; is repeated m — 1 times and so on. To minimize N, the following
inequality has to hold
n<ny---<ny,

This means the DFA which produces the smallest LCMDP has to be applied first in the product
operation, and so on, recursively. The problem is then how to estimate Nr(M®¢) before calculating
the product completely. In the following subsection we show how to efficiently estimate this value.

So S S ASDH ED
ED -Cd GG ED D CD D
S —God) -G D e PR

Figure 6.3: Intermediate product results. Top: LCMDP as the result of M ® D. Bottom: M ® O’
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6.2.1.1 Proposed Solution

Our solution consists of three steps.

1. In the first step, we build an aggregate LCMDP from the original LCMDP by merging all
states with similar labels into a single aggregated state under the condition of connectivity.
This means that if there is a valid path between two states with the same label, and all of the
intermediate states involved in the path have the same label, the two states can be merged
into the same aggregate state.

2. The second step is to calculate the product between all the DFAs and the aggregate LCMDP.

3. Step three is to evaluate the resulting product LCMDPs to estimate how many original states
will be generated.

To further illustrate step 1, we plotted a simple example in Figure 6.4. If the original LCMDP
is represented by M = (S, 8, U, ¢;, Pr, AP, L), and the aggregate LCMDP that is computed from M is
shown by A = (S &, 4, Ua, ca;, Pra, AP, Lz), normally |S 4| << |S| which makes the product cal-
culation faster. Algorithm 7 generates the aggregate LCMDP A from LCMDP M. In the algorithm,
we assume to have the following functions:

e primaries: Takes in an aggregate state and returns the set of primary states in that.

e aggregate: Takes in a primary state and returns the aggregate state that it belongs to. The
function returns empty set if it has not been assigned yet.

e post: Takes in a primary state, and returns a set of primary states with non-zero probability
of reaching in one step.

Step two has been discussed in Chapter 5. The number of states in an aggregate LCMDP is
equal to sum of its primary states (Step three).

6.2.2 Pruning the LCMDP

The result of a product between an LCMDP M = (§,8,U,c;,Pr,AP,L) and a DFA D =
(09, 90,6, F,X) is a product LCMDP. In the product LCMDP, the set of states can be divided into two
subsets:

e Rejected Set: Any state that contains a g, or g has already been rejected.
e Acceptable Set: Any other state which has a chance of being accepted.

Since the most important subset is the Acceptable Set, we can prune away some of the states
in the Rejected Set, to save calculation time. The parameter R is defined as the percentage of states
in the Rejected Set, or non-accepting states, to be removed. In case R = 0 all the non-accepting
states will remain in the product LCMDP, and in case of R = 100 the product LCMDP will only
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Algorithm 7: Aggregation of an LCMDP
Data: LCMDP, M = (S,8, U, c;,Pr,AP, L)
Result: LCMDP A = (S 4,84, Ua, ca,, Pra, AP, Lz)
1 Init LCMDP A empty;
2 Build § # from a random state s where S(s) > 0;
3Aa=0; BalSa)=1, Swem=9;
4 while There is a change do
5 select s# € S #;
6 for s € primaries(s#) do
7 S’ = post(s);
8 for s’ € S’ do
9 if L(s) = L(s") then
10 if aggregate(s’) + @ then
1 ‘ merge aggregate(s’) into s ;
12 if s ¢ S ;een then
13 ‘ Add s’ to primaries(sg);
14 else
15 if 5" & S ;een then
16 Build s'ﬂ froms’ ;
17 Sa=SaV S’ﬂ;
18 Ug = Uﬂudummys,ﬂ ;
19 Pra(s4, s’ﬂ,dummyx,ﬂ) =1;
20 Lﬂ(s’ﬂ) = L(primaries(s#));
21 S seen = S seen U {S}

contain the set of accepting states. It is important to note that a rejected state for a DFA 91 might
lead to an accepting state in D;.

Given an LCMDP M = (S,8, U, ¢;, Pr, AP, L) with a single absorbing state s, and a DFA
D = (0, 90,6, F, X) with an absorbing state g,, product M® D = (S, 8y, Up, ¢i,, P, AP, L)) will
contain a set of states S, = {(s,q9) € Splg = qa}. S is the set of states in §, where the words are
rejected. This set contains one specific state sy = {(s,q) € Sqls = s,} which is the non-accepting
absorbing state of the LCMDP. Every state in S, cannot be accepted by the DFA 9 and all the
trajectories which contain at least one state in S, will be absorbed at sy. In this pruning step we
aim at eliminating a subset of states in S, that are less effective in the final result. This is done as
follows.

1. Calculate the product LCMDP, then extract S, and sy from that.
2. Revert the graph of LCMDP.
3. Calculate the shortest path using Dijkstra algorithm from s to all the states in S .

4. Sort the states by the number of times they appear in the shortest path to s.
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Figure 6.4: An example of an original LCMDP and its aggregate LCMDP. The top picture shows
the original LCMDP and the lower figure is its equivalent aggregate LCMDP.

5. Remove the given percentage, R, of states from the ordered list where least repeated states
are removed first.

It is important to note that states {(s,q) € Splqg = g} are also non-accepting, but cannot be
removed from the set of states since they are required to calculate the probability of satisfying the
DFAs.

6.3 Experimental Evaluation

We use a planning problem in the terrain map shown in Figure 6.5, where the actions are up,
down, left and right at every state. Actions succeed with probability 0.9 if the target state is lower
than the current state, and 0.5 otherwise. In case of failure the robot stays at its current location or
moves to one of its neighbors with uniform probability distribution. We assign a risk value to every
state between zero and ten that is proportional to the altitude of the state. In other words, the highest
point in the map is assigned the risk value of ten, and the lowest point has zero risk. The objective
is to calculate a policy that finds a path to the goal area G in the picture. The primary cost function
to be minimized is the total accrued risk along the path. Moreover, there is a constraint on the path
length, and are tasks to be satisfied. We defined two sets of tasks, one for evaluating the effects of
order of operations, and the other for pruning.

6.3.0.1 Order of Operations

We defined five sc-LTL properties and calculated the product between the original LCMDP
extracted from the terrain map and all DFAs. The tasks are:
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o ¢ =0A
o ¢ =0B

o ¢3=0C

e ¢4 = O((AUB) A OO(C A OOD))

o ¢5 = O(A A OO(C AOO(D A OSC)))

In plain words, ¢, ¢> and ¢3 require the robot to eventually reach the areas labeled by A, B and C
respectively. ¢4 tasks the robot to go to area A, stay in A until leaving it from its border to area B.
Then it eventually visits C, next eventually D. ¢5 forces the robot to eventually visit areas A, C, D
and C in order.

6.3.0.2 Pruning

For the pruning experiment, we selected three different scenarios:
1. We choose three sc-LTL properties where they are fully related to each other as following:

[ ] ¢1 = OA

* ¢ =0(ANOOB)

* $3=O0(AANOOBAOOC))
Again in plain words, ¢ requires the robot to eventually reach area A. ¢, eventually drives
the robot to A, then it eventually visits B. Similarly, ¢3 asks the robot to visit areas A, B and

C in order. If a word w is accepted by ¢3 it is also accepted by ¢, and ¢;. That means even if
we remove all the rejected states by ¢, there will be no effect on the final result.

2. Three independent sc-LTL properties are selected at this step as following: ¢ = GA, ¢y =
OB, ¢3 = OC. In this case, removing some states from the first rejected influences the next
product operation, and causes estimations of the final policy.

3. Two incompatible sc-LTL properties are selected: ¢; = GA, ¢ = A UG.

6.3.0.3 Order of Operations

The summary of results between the best and worst performance are shown in Table 6.1. The
results show that instead of calculating the product for the total of 894037 nodes, we only need to
calculate it for 540551 nodes and obtain the same results. It also reduces the computation time from
2388.9 seconds to 1425.4.
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Figure 6.5: Terrain map with labels.

Case $1 2 #3 P4 ?s Total
Best 29013 36183 58209 160406 256740 540551
Worst 50814 87589 242161 256733 256740 894037

Table 6.1: Number of computed states after each product operation in order of operations experi-
ment

6.3.0.4 Pruning

Three different cases where considered.

e Case I We set the satisfaction rate on ¢; to 0.7, ¢, to 0.6 and ¢3 to 0.5. Table 6.2 shows
the effect of pruning on the number of states. It can be seen that it can reduce the number
of states by almost half without any change in the final result. However, if the sc-LTLs were
different, where the amount of overlap between them was less, the reduction would show
better improvements but without any approximation. The calculation time drops from 431
to 177 seconds without any change on the final policy (See Table 6.3). Moreover, the linear
program solver succeeded in all three cases, i.e., there is no loss in terms of results.

o Case II With the same probability rates, Table 6.4 presents the results in terms of the number
of states. The gain on the number of states is better than case I, but it sacrifices the con-
vergence. So the linear program only converges for pruning of 0, 25% and 50%. Similarly,
Table 6.5 shows the effect of pruning on calculation time.

e Case III This case is different because the two sc-LTL formulas contradict each other. There-
fore, we set the satisfaction rate of 0.4 for both of them. Even though Table 6.6 illustrates a
good improvement, convergence rate is significantly impacted, and it only converges if the
pruning rate is O which means no pruning. In any other case, it fails to find an optimal solu-
tion. The calculation time is also shown in Table 6.7 which shows around 80% improvement.
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Pruning Percentage b1 102 3 Total

0% 29027 36350 53604 118981
25 % 27214 32624 23518 83356
50 % 25401 29000 22028 76429
75 % 23589 23512 21962 69063
100% 21776 22117 21910 65803

Table 6.2: Number of computed states (Pruning Case I)

Pruning Percentage ¢, 1033 b3 Total
0% 63.2 1052 262.8 4312
25 % 642 926 70.6 2274
50 % 657 875 667 219.2
75 % 66.4 727 656 204.7
100% 644 516 614 1774

Table 6.3: Time in seconds(Pruning Case I)

Pruning Percentage 1 1o o3 Total

0% 29027 65445 160009 254481
25 % 27214 57000 88502 172716
50 % 25401 41252 74139 140792
75 % 23589 34659 45599 103847
100% 21776 30453 37534 89763

Table 6.4: Number of computed states (Pruning Case II)

Pruning Percentage @1 10 @3 Total
0% 659 186.2 556.5 808.6
25 % 70.15 177.2 278.1 52545
50 % 71.8 1409 2554 468.1
75 % 74.8 1345 200.1 4094
100% 83.5 131 198.2 412.7

Table 6.5: Time in seconds(Pruning Case II)

Pruning Percentage o1 105 Total
0% 29027 36375 65402
25 % 27214 30550 57576
50 % 25401 21762 47163
75 % 23589 13320 36909
100% 21776 3843 25619

Table 6.6: Number of computed states (Pruning Case III)
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Pruning Percentage ¢, 103 Total

0% 81.2 107.2 1884
25 % 742 953 169.5
50 % 72.5 84.1 156.6
75 % 775 535 131

100% 78.8 215 100.3

Table 6.7: Time in seconds(Pruning Case III)

6.4 Conclusions

The approach presented in Chapter 5 is effective and has been validated in various scenarios
such as Matlab simulations and on real robot, but it falls short when the size of its state space grows.
Since the product operations are iterative, and every iteration increases the size of the state space, it
is foreseeable that the size of the state space tremendously grows and results in unsolvable problems.
To counter this problem, we run a shallow pruning algorithm to eliminate a set of unreachable states
which is somehow effective, we still require a more advanced mechanism to improve scalability of
our method. In this chapter, we then proposed two enhancements.

The first improvement considers how to order different product operations. Even though the
product operation is commutative, and the order does not influence the final result, it has a great
effect on the number computations and consequently the total time. We proposed an algorithmic
approach to create aggregate-states from the states that have similar labels and are connected to
each other to significantly reduce the size of the state space. Then we apply the product operation
between the aggregate state space and the original DFAs to estimate the size of the final LCMDP.
This helps us to predict the best order in which the product operation has to be performed. This
improvement is loss-less and has showed speed-ups of more than 50 % in our experiments.

The second improvement proposes a pruning approach to eliminate some of the states that
have lower possible influence on final result. To do so, we proposed a rating methodology to rank all
the states in the product LCMDP by their reachabilities from the initial states. Then we eliminate
a pre-determined ratio of them according to the parameters that are given by the user from least
reachable state to the highest. This is a parametric approach and can be tuned, and its effects vary
significantly based on the problem specifications. Therefore, depending on similarities of different
LTL properties, the influences of the pruning algorithm change. In short, if two LTL properties
comply with each other e.g. ¢A and OG(A A O<¢B), the pruning algorithm is very effective and
loss-less. On the contrary, if the two LTL formulas contradict e.g. ¢A and —A U G, the algorithm
sacrifices some viable solutions to speed-up the process.

This work can be extended in multiple ways. One may look at the type of a problem and
recognize what pruning category it falls in. Then it can predict a possible loss in the solution, and
apply a certain level of pruning to the planner only. Similarly, a planner can look some steps ahead
and considers the effect of the pruning on all the LTL properties and their propagated influences on
the future product operations in order to set the proper parameters. Another proposed enhancement
is to combine this solver with the HCMDP approach which was presented in Chapter 4 in order
to propose a hierarchical model for the resulting LCMDP. HCMDP has already proven that it is a
loss-less approach, and results in great speed-ups.
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Chapter 7

Conclusions

In this dissertation we developed novel planners to drive robots autonomously in environ-
ments with uncertainties while accomplishing complex missions. Technological advances have
improved the capabilities of robots by offering a wide range of sensors and actuators. As a result,
they should be programmed to perform multiple complex tasks at once. One of the most common
challenges for robots is to work in environments with uncertainties. The non-determinism which is
caused by the uncertainty, makes the robot motions unpredictable.

One of the most popular algorithms to find optimal solutions in non-deterministic environ-
ments is Markov Decision Processes (MDPs). MDPs are widely used in many different robotics
applications. However, all of MDP-based approaches are limited to optimize over a single objec-
tive function. But a real robot has to consider several factors to drive optimally in its work space.
Considering a real scenario of driving a mobile robot to a target point, the robot is required to take
several factors into account such as energy consumption, time of execution, etc. A planner is then
required to balance all the parameters, and select the most appropriate ones.

Therefore, Constrained Markov Decision Processes (CMDPs) are proposed to solve multi-
objective optimization problems in non-deterministic environments. They are capable of taking
multiple factors or cost functions into account while finding the optimal plan. Despite all the ca-
pabilities of CMDPs, they are not very popular in robotic planning, and researchers prefer MDPs
over CMDPs. The main reason lies in CMDP’s computation complexity. CMDPs are mostly solved
with linear programming which is not easily scalable. Popular solvers require huge computational
resources. But MDP-based solvers usually use dynamic programming which is based on breaking
down a large problem into a set of sub-problems and analyzing each of them separately. It reduces
the amount of required resources by running multiple iterations. An alternative to use CMDPs is to
linearly combine multiple cost functions in a single one and plug that into an MDP. However, the
interpretation of such metrics are very hard to interpret and difficult to generalize.

Throughout this dissertation, we used CMDPs as our primary planning algorithm, and showed
some of their capabilities. We started in Chapter 3 by defining the theoretical concept of CMDPs,
and very briefly showed how to solve its optimization problem.

Next, we showed an application of CMDPs in solving risk-aware planning problems in Chap-
ter 4. Risk-aware planning is only an example of optimal planning with multiple constraints, and
the proposed approach can be applied to any similar application. In the selected application, the
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robot runs in a non-deterministic environment, and is tasked to go to a goal location by minimizing
the total risk along the path while having an upper bound on the path length. Such problems can
be easily expressed as CMDP instances. Nevertheless, CMDP solvers very commonly use linear
programming approaches that may be memory demanding, due to the extremely large number of
optimization variables.

To overcome such limitation, we proposed a hierarchical model for CMDP that partitions
the state space into fixed size clusters. Our proposed solver calculates the optimal policy for each
cluster separately in order to break down the large problem into smaller sub-problems. Then it
stitches the sub-solutions together and creates the complete plan. Comparing the non-hierarchical
with the hierarchical approach, the hierarchical method showed great improvements in timing, and
in some cases the speed-up reached a factor of 150, while the average risk and path length are
closely comparable. Moreover, we showed that the hierarchical solver brings scalability to the main
CMDP problem. In this case, we did not require high amount of memory or processing powers, and
the problem would be solved on a standard laptop.

Although the hierarchical solver adds numerous advantages to the original CMDP, it does not
necessarily preserve existence of a solution. As mentioned in the chapter, there may be some cases
where a non-hierarchical CMDP solver is able to find a feasible plan, but the hierarchical solver fails
to do so, because of the fixed rectangular shape of the clusters. This limitation led us to introduce
a new type of partitioning mechanism (HCMDP) which outperformed the hierarchical solver by
addressing this disadvantage.

The theory of HCMDP proposes to generate clusters by adaptively selecting partitions with
two conditions: connectivity and similarity. In this approach, we do not require all the partitions to
have the same size and shape. Instead, we focus on clusters to be properly connected. Satisfying
such conditions guarantees that if a non-hierarchical CMDP finds a viable plan, its HCMDP will
find one, too. However, it does not provide any guarantees on optimality of such solutions. We sug-
gested a Monte Carlo approach to estimate the cost and transition function on high level HCMDP.
Finally, we ran extensive tests on all the proposed solvers to show the advantages and disadvantages
of each method. We compared the non-hierarchical, hierarchical CMDP (with fixed size partition-
ing) and HCMDP approaches in Matlab experiments in which all the simulation parameters are
fully known. We also compared them on Gazebo simulator where the uncertainties are controllable
but not fully known. Lastly, we showed the comparison when a real mobile robot (Pioneer 3AT)
operates autonomously for more than 5.5 km by executing our plans.

We tested HCMDP in multiple experimental ways to compare it with different approaches.
As a future work one might analyze the difference between HCMDP results and the optimal solution
from the non-hierarchical approach by some mathematical means and provide an upper bound or
limit on the amount of loss. Although we guarantee existence of solutions, we cannot bound the
difference from the optimal solution. Another useful addition is to identify a principled way to select
a proper sampling rate in Monte Carlo approach to achieve the best results.

In Chapter 5, we presented more complex scenarios by introducing tasks. A task is described
by temporal sequence of conditions to happen during the execution of a plan. An example task
for an autonomous forklift is to drive toward a pick up station, load an object, move to a delivery
location, then drop off the item. Such tasks can be used in several robotics applications where the
order of executing actions is important.
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Therefore, we used Linear Temporal Logic (LTL) properties to formalize the definition of
tasks. Then we proposed a solver which is capable of finding a plan with the following conditions:

e There are n tasks to be performed during robot runs.
e Every task has to be satisfied with a target probability (in expectations).
e There is a primary cost function which has to be minimized.

e Multiple additional cost functions, m, should be bounded by m predefined values (in expec-
tations).

To solve such a problem, we took multiple steps. In the first step, we converted every LTL
property into an extended total Deterministic Finite Automaton (DFA). We also converted the orig-
inal state space into a Labeled CMDP (LCMDP). In step two, we presented a product operation
which can be repeatedly applied between the original LCMDP and every extended total DFA where
the output of every product is a new LCMDP which can be used in the next product operation. Step
three consists of solving the final LCMDP using a linear programming approach by taking advan-
tage of occupation measures. In this approach, we can replace CMDPs with MDPs as alternative
solvers. However, we will not be able to provide support multiple cost function unless we combine
multiple cost functions into a single one as explained above. Another weakness of using MDPs is
that it will not be easy to satisfy all the sc-LTL properties with their target probabilities. However,
CMDP makes both of them easier.

To analyze the performance of our algorithm, we ran extensive experiments under different
circumstances. We started by running numerous Matlab experiments. We applied the solver thou-
sands of times to illustrate the satisfaction rates for tasks and upper bounds for additional costs.
Then we set up a factory environment on the Gazebo simulator, and showed the performance of a
forklift which runs our solver in multiple scenarios. We also proposed an open source implementa-
tion and showed its architecture. In the final step, we deployed our planner on a robot (Husky) and
ran it outdoor for about 8 km.

Our planner was able to include several tasks in a linear program, but it suffered from scala-
bility problems. Since the product operation is repeated multiple times, and each iteration increases
the size of state space significantly, it is possible that the state space expands and the problem be-
comes unsolvable. Thus, we improved the proposed algorithm in Chapter 6 by changing the order of
product operations, and pruning a set of unreachable states. In the experiments section, we showed
that the first improvement is loss-less and can reduce the calculation time to about half. But the
second improvement may cause some loss in the final result while dropping the calculation time to
less than one third.

This work can be extended in multiple ways. One addition can be to apply HCMDP on the
product LCMDP and solve the final LCMDP using a hierarchical approach. Another improvements
in this approach can be to choose the pruning algorithm intelligently by measuring the amount
of possible loss before applying the pruning. This can be done by comparing multiple sc-LTL
properties with each other before selecting the pruning percentages. Additionally, one can break
down complicated sc-LTL properties into multiple shorter and easier ones when possible. This
can be done by exploring the labels and the way they are distributed. Therefore, some improbable
combinations can be excluded from the beginning which saves time and computational resources.
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