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Abstract—Mapping can potentially be speeded up in a signifi- [3][4]. Conversely, if the robot pose is known, building a map
cant way by using multiple robots exploring different parts of the  js also a task that can be effectively solved. When the two
environment. But the core question of multi-robot mapping is how tasks have to be solved at the same time the problem becomes

to integrate the data of the different robots into a single global - . . . .
map. A significant amount of research exists in the area of multi- much more difficult. This motivates the different techniques

robot-mapping that deals with techniques to estimate the relative that have been developed.
robots poses at the start or during the mapping process. With  We can say that there exist two main approaches to address

map merging the robots in contrast individually build local maps  this challenge. SLAM can be solved using a Kalman filter
‘t"k’]'thot“ %ny 't‘.”ow'e‘.jge abfom thle" ret'a“x.e mz'“‘?ns' IT he goalis 5564 approach [5]. In this case the produced map presents the
bee?oir?eh fgggh;ergfncsoﬁcrg;f ;%%rzag] 'tf) thiseid%;aisrg?é):e%?gd posterior probability of the location of some fegtures (o_r land-
in form of a special similarity metric and a stochastic search Marks) that can be detected by the robot while exploring the
algorithm. Given two maps m and m/', the search algorithm environment. The method has some drawbacks. For example,
transforms m’ by rotations and translations to find a maximum g |limited number of features can be handled by the algorithm
overlap betweenm and m'. In doing so, the heuristic similarity \han puilding a map in real time while the robot is moving. A
metric guides the _search al_gorlthm toyvard optimal solutions. ith \V feat irear? t d this in t
Results from experiments with up to six robots are presented .map. wi ea u_res re‘?lu”e parameters, an IS In turn
based on simulated as well as real world map data. implies that matrices withV2? elements have to be processed
(i.e. inverted and multiplied) at each iteration. In addition
the Kalman filter approach relies on specific conditions on
the superimposed noise (0 mean Gaussian noise), practically
| INTRODUCTION rarely verifie_d. Another challenging as.pe.ct of Kalman _filter_
o based mapping methods is data association. The algorithm in

Autonomous mapping is one of the tasks that could bengfit; has to be able to identify features from the sensed data,
more from the effective deployment of cooperative multizng 1o associated them with features previously inserted in the
robot systems [1]. Teams of robots can bring more sensaggay |f no good association is possible, the algorithm has to
potentially heterogeneous ones, to the area where robots @gjde that the observed feature is a new one, and it should
performing their task. A properly designed team of robo{se inserted in the map.
can significantly reduce the time needed to map a givenp gifferent approach is based on the expectation maximiza-
environment, since they can explore different parts in parallgh, technigue [6]. In this case the mapping task is solved using
In addition, the overall team is more robust, since the failure gf, 5gorithm based on the expectation maximization principle
one of the robots is not doomed to hinder the overall missiogk ). Diferently from the previously described Kalman filter
In order to maintain this robustness, distributed approaclygaorithm, EM based mapping will not produce a full posterior,
are a must. In fact, each robot has to operate completglyi rather the most likely map. Another hard limitation is
autonomously, and there should be no agents that have unigy€tact that EM cannot generate maps incrementally, because
features, in terms of software or hardware, that make thesp ihe iterative nature of the EM. On the other hand, EM
pritical for the mission success. In addition, scalability is agased mapping is pretty insensitive to the data association
important factor: The addition of a new robot to the _tearﬂroblem, can be used to map huge environments, and, notably,
should not require too much of restructuring or reconfigurgan successfully map environments where loops or cycles are
tion. N _ present.

Note that the ability to build a map of an unknown the EM algorithm has been also used to address the multi-
enwronme_:n_t is one of the fundamental capabilities a _robfsgbot mapping [7][8]. However, some inherent limitations have
must exhibit in order to operate outside the well designgben outlined. In particular, it is necessary to assume that
and protected laboratory setting. In [2], Thrun provides a§)| the robots in the team start at positions where there is a
extensive coverage of single robot indoor mapping methodgynificant overlap between their range scans, and in addition
In particular he outlines thaniapping unstructured, dynamic,they must have an approximate knowledge of their relative
or large-scale environments remains largely an open researgfisitions. Also Kalman filter based approaches have been
problent. The mapping problem is often addressed togethgeyeloped and implemented to address the multi-robot map
with the Iocallzgnon problem. Thg cc_)mb|nat|0n of _the two i$nd localization problems [9][10], as well as other general
referred to as simultaneous localization and mapping problefategies for multi-robot exploration, mapping, and model ac-
(SLAM). In fact, once a map is given, the task of localizingisjtion [11][12][13][14]. The re-occurring pattern is the need
the robot inside the map using its sensors inputs is solVgfinformation about the relative positions of the robots. This
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one [15][16] or explicit rendezvous strategies [17][18]. Theccupancy grid mapping, nhamely for the purpose of improving
related general line of research can be dubbedributed localization [30]. In the work of Schultz and Adam, a small
mapping. local occupancy grid is registered into a large global map to
Here a totally opposite approach to the problem is taketpmpensate the accumulative error due to an odometry based
namely to completely ignore the issue of relative individudbcalization. This registration process searches only a small
robot poses. Robots first operate for some time independenmtgighborhood of the current erroneous position of the robot to
to generate individual local maps, for example in a scenanioatch the local map into the global one. It therefore can get
where multiple robots enter the same building from differetiong with relatively crude matching metrics.
locations. Possible applications include surveillance, searchiThe task of map merging is much harder than registration.
and rescue, military reconnaissance and the alike. After threstead of locating a known template in an image, an unknown
local maps have been acquired, they are merged togetherdgion of overlap has to be identified in two maps. This is
form a global map. According to Konolidge et al. this problensomparable to image stitching [31], i.e., the technique that is
of map merging, "is an interesting and difficult problem,for example used to generate panoramic views from several
which has not enjoyed the same attention that localizatimverlapping photographs. Solutions to solve this problem
and map building have[19]. If the exact initial positions of usually need common reference points that are either provided
the robots relative to each other would be known, the tably the user by hand or identified using local image descriptors
would be trivial. But no information at all about the poses dfke intensity patterns [32], [33]. But occupancy grids lack rich
the robots relative to each other is used here. Instead, regitedures like photographs. Also, we want to avoid any pre-
that appear in more than one local map are used to transfgurocessing of the map data for efficiency reasons. Hence, a
the maps into a global one. simple combination of the image similarity and a heuristic
The rather limited amount of work on map merging has come identify the alignment of the overlap regions of two maps is
centrated on feature based approaches [20][21][18][19], i.ased. Furthermore, there is the problem that there may be no
they rely on fixed landmarks that can be recognized througkerlap at all between the maps. This situation can be clearly
suited processing of the robots’ data. So-called topologiddentified within our approach, automatically indicating when
maps for example are graphs where the vertices represertp merging is prone to fail.
recognizable places, e.g., doorways, different forms of junc-The rest of this article is structured as follows. The problem
tions between hallways, and so on. An edge in a topologiaafl map merging is introduced in a formal way in section 2.
map represents a passage between the related two places. Mapsearch algorithm that is used in our approach is presented
merging of topological maps:; andms hence boils down to in section 3. Section 4 deals with the special heuristic to guide
finding suited identical subgraphs in; andmy [20]. the search algorithm. In section 5, experiments and results of
Our goal is to combine together maps not based on featuregrging the maps from up to six robots into a single one are
but rather on occupancy grids, i.e., metric arrays where tpeesented. Section 6 concludes the article.
value in each cell represents whether the related location
is free space or part of an obstacle. As outlined by some 1. MAP MERGING
authors [22],_occupancy gnd_s are the p_redomlnant pa}radl%r\n Basic definitions
used for environment modeling in robotics. They are indeed
very effective when robots are required to explore and mapFor sake of clearness, we formally define the problem we
unstructured environments where features extraction is hard#prmally described in the introduction. We start with the
perform. In the rest of the article, we always refer to occupan@gfinition of map.
grids when using the term map. Definition 1: Let N and M be two positive real numbers.
Occupancy grids can be thought of as images where thelN x M mapis a function
informatipr_l of whgther a cell corresponds to free space or m : [0, N] [0, M] — R.
whether it is occupied is represented by a color. Map merging
then corresponds to the problem of moving one of the imagé&e furthermore denote witliy . 5, the set of N x M maps.
around until a part of it is aligned with an identical part in an From a practical point of view, a discretization process is
other image. For this purpose we use a function borrowed frareeded when a map is processed. This leads to a straightfor-
a metricy introduced before by Birk to measure the similarityvard representation of a map as a matrix withrows, M
of images [23]. There are several commonly used alternativedumns, and storing integer numbers. The functionis a
to v, for example computing some form of correlation likenodel of the beliefs encoded in the map. For example, one
mean squared Euclidean distances between pixels of the smmald assume that a positive value @f(x,y) is the belief
color or using special functions like the Hausdorff distandbat the point(z,y) in the map is free, while a negative
[24], [25]. Unlike these approaches, the similarity functionalue indicates the opposite. The absolute value indicates the
1) can be very efficiently computed as explained in detaillegree of belief. The important point is that we assume that if
later on. Furthermore, it provides meaningful gradients witlu(x,y) = 0 no information is available. These assumptions
respect to rotation, translation and registration, i.e., it can bee consistent with the literature on occupancy grids based
used to guide a search algorithm to find a template in amaps.
image, a process known as registration [26], [27], [28], [29]. We next define a planar transformation which will be used
Registration has been employed previously in the context toftry different relative placements of two maps to find a good



merging. We assume that the location of a point in the planeTo solve this problem, there are many possible approaches.
is expressed in homogeneous coordinates, i.e. the poejig) For example, any of the well-known optimization algorithms
is represented by the vectr i 1]7, where the trailing upper can be used to maximize(). One problem is that() has

T indicates the transpose operation. The formal definition isany properties that make it badly suited for any optimiza-

the following. tion technique. The main drawback is that the values of
Definition 2: Let ¢,,t, and 6 be three real numbers. Thew(m,, T, ,6(m2)) are arbitrarily spread over the space of
transformation associated with,t, andé is the function transformationsr. The optimum may be located right next

to the worst case in the search space, for example if the

.2 2
TRy, t,0(r,y) : R* =R maps consist of spirals. The functian) hence delivers no

defined as follows: meaningful gradients that for example could be used by hill-
cosf —sinf t, T climbing. o ] o )
Ty v o(z,y)= | sinf cos® t, y (1) Therefore a heuristic functioi: is in general likely to be
o 0 0 1 1 necessary to guide the search processshould provide a

As known [34], the transformation given in equation Xind of attraction between the overlap regions, hence providing
corresponds to a counterclockwise rotation about the origiame feedback in which direction the search algorithm should
of the the point(z,y) of 6, followed by a translation of proceed. As mentioned in the introduction, several techniques
(tz,ty). We denote withr the space of possible transformafrom image registration and image stitching could be adapted
tions. Obviously, additional transformations could be used figr this purpose. Here, a metri¢p introduced before by
necessary. When the local maps are produced with approadBik [23] to measure the similarity of images is used in
that have known deficiencies that for example insert dista¥ombination with a heuristic to identify the alignment of the
tions like bended geometries, shear transformations could ®erlap regions. Also for the actual search algorithm, there
employed to generate proper matches. As we will see in thee many alternatives. Here, Carpin’s Gaussian Random Walk
results section, state-of-the-art mapping algorithms produl@®][36][37] is used for minimizingA by searching over.
occupancy grids where rotation and translation transformations

are seemingly sufficient for merging real world data. C. Multi-robot Map Merging

Map merging as defined above deals with an integration of

B. Pairwise Map Mergin
P ging two maps into one, i.e., with data coming from two robots.

In the map merging problem, given two partial maps Wepe questions is now how to deal with real multi-robots,
look for the transformation that gives the best mergiBgod o \jith & > 2 robots. The definitions can be extended in a

mergingis defined in terms of overlapping between maps, a'%‘graightforward way to deal with > 2 robots:
is captured by the following definition. The reader should note

that the following definition assumes that maps are represente(ﬂ)eﬁnition 5 Letm,

) ma,...,mg bek maps inlyxys. The
as matrices.

overlappingbetweenm, to my is

Definition 3: Let m; andmsy be two maps infyxas. The
overlappingbetweenm, andms is N1l o o
Ne1M-1 w(mla "'amk) = Z Z Eq(ml[za]}w“vmk[%]]) (3)
.o - =0 j=0
W(ml,mQ) = Z Z EQ(ml[%J]amﬂ%J]) (2) ’
i=0 j=0 where Eq(aq, ...,ax) is 1 whena; = as = ... = a;, and O

where Eq(a, b) is 1 whena = b and 0 otherwise. otherwise.

The overlapping function measures how much two maps
agree. In an ideal world, where robots would build maps o o
which correspond to the ground truth and completely cover Definition 6: Given &k maps m; to my € Invwu

the operating environment, there exist a transformation whiggtermine  the & — 1 {x,y,0}-map transformations
yields a perfect overlapping function, i@(m1,ms) = N x L) © T iy 160 1) which  maximize
M. In the real applications this is obviously not the case, so tadgm1, T, . 4 (m2), ..., T(];;il,yk_l,ek_l) (mg)).

challenge is to find a transformation which gives the highest
overlapping values.

Having set the scene, the map merging problem can beFortunately, not only the definitions but also the map
defined as follows. merging implementation can be easily extended to deal with
Definition 4: Given my € Iy, me € In g, determine k > 2 robots. To merge for example the data of some maps
the {z,y,0}-map transformatior|, , 5 which maximizes to my of four robots, the simplest way to do so is to merge

w(mi, Ty y,0(m2)). my andmy to getmi,- as well asms and my4 to get the

The devised problem is clearly an optimization problemmapms.y4. Then, the mapsi; o andmgs4 can get pairwise
where it is required to maximize a goal function, that imerged tani..4. Givenk robots this strategy tak&€3(k) times
our case is the overlapping. The optimization has to be the time for a pairwise merger. In section V presenting results
performed over a three dimensional space involving twioom various experiments, it is shown that this approach is
translations and one rotation. indeed very successful.



1. STOCHASTIC SEARCH OF TRANSFORMATIONS Algorithm 1 Random walk
Require: numSteps > 0

A. Overview 0. 1
. Lo L 1. K« “— S

The described optimization problem for the pairwise merget,. . 72- ’j M;t‘j_” Limit

wmnmats mn

can be thought of as a process where one map stays fix%dc U:A(m T (m2))
while the other one is moved around as a consequence of tq:e V\(/)hile A <17’w;1”§;€p82 do
d_|ffe_rently tried trans_formanon. The process is concepj[uaIIyS: Generate a new sample— . + vy
similar to the docking problem studied in computational .. cs — A(my, Ts(ms))
biology. Given a protein, called receptor, and a ligand, the, . AN _
; : i 70 if ¢s > ¢ OR RS(ty,s) =s then
task is to find the so called binding pocket of the receptor. Th|%_ EFe kol t s e —c
means moving the ligand to a site where the overall energgﬁ ok r ok 3
L . . A K Y «— Updatefs, tx—1,tk—2,- -, tk—nr)
of two compounds are minimized. Treating the ligand a rlglq ,
H ; ; : ; : : : bE Update@kv tk—la tk‘—Qa B 7tk7—]W)
body, this problem is nothing but a search in a six dimension else
space (three for rotations and three for translations). 12: discard the sample
Since a few years, there has been a trend to use robot
motion planning algorithms to solve this sort of problems
[38][39][40]. Though from the computational biology point of . .
view the obtained results are still not comparable with sta@nsformations generated by the transform?non random walk
of the art molecular dynamics based approaches, significd&gcribed in algorithm in equation 1. L&f" be the best
progresses have been achieved. In particular, the algorith3it¢ generated among the fisstransformations, i.e. the one
machinery developed along the years in the field of algorithmyéelding the highest value of\.
motion planning proved to be suitable to be extend for this & B
apparently unrelated problem. The most critical point is the , 11 Pria(my, Ty (m2)) # A(ma, T )(m2))] = 0 (4)
following. In motion planning both the starting point andVhile read_ing the former definition,_the reader sh_ould remem-
the end points are known. In the devised search probleh€r that given two maps, the optimal overlapping value is
only the starting point is known. The goal configuration i@ finite natural number. It is also important to notice that
obviously not available, since it is what we are looking fothe theorem only guarantees that when the processing time
There are many possible algorithms that can be used for tHigerges, the optimal transformation will be found.
purpose. Here, Carpin's Adaptive Random Walk planner is
used [35][36][37].

IV. THE OPTIMIZATION FUNCTION

B. Adaptive Random Walk A. Overview

Given a starting configuration, the algorithm explores the As motivated in section II-B, the direct overlagg) between
given configuration space using a random walk. At each stbgo maps is not a very well suited function for guiding
a random configuration is generated, and the correspondihg search over the transformation spaceThe values of
heuristicA is computed. w(mq, Ty ,y.0(me)) are spread in an unsystematic way over

The new configuration is generated using a Gaussian disfrhe optimum that we are looking for may be located right next
bution whose meap,;, and whose covariancs, are updated to the worst case value. Therefore, any stochastic technique
at each step (hence the indéx The updating is a function that tries to exploit gradient information from() is likely to
of the last accepted point and of the ldgt values obtained perform poorly.
for the heuristicA, M being one of the few parameters of A fundamental aspect of our approach to map merging is
the algorithm. The new sample is then retained or discardeence the choice of the heuristis(). A() has two compo-
according to the new value ak. Algorithm 1 illustrates the nents. One is a metrig introduced to measure the similarity of
principle. images [23]. As already mentioned in the introduction, there

The RS function introduced in line 7 is a so call&®hndom is a large field in computer vision dealing with a problem
Selector Its role is to allow the acceptance of a new sampkmewhat similar to map merging, namely so-called image
even if its associatech value does not increase the obtainedegistration. There are hence alternative metrics that could
overlapping. The reason for this criteria is to avoid a behavibe used. The choice af is mainly motivated by the fact
too similar to hill climbing, but rather like simulated annealinghat it can be very efficiently computed, namely in linear
[41]. In fact, it can be proved that by properly tuning tR& time. But map merging is a harder problem than image
function, simulated annealing and multipoint hill climbing areegistration. Not only a template has to be identified in an
special cases of the adaptive random walk. image, respectively map, but two completely unknown regions

In case of a stochastic search algorithm, it is important tave to be registered with each other. Note that overlapping
guarantee whether it will converge to the global optimum a@egions may not even exist. Fortunately, there is a simple but
not. The following theorem, whose proof is omitted, assuregry reliable indicator introduced in section IV-D that clearly
the convergence. indicates when a merger is not successful. Furthermoris,

Theorem 1:Let s* € S an element which maximizes supplemented by additional heuristic presented in section IV-C
A(mq,Ts(ms)), and let {Ty,T1,T>...} the sequence of that identifies well aligned identical regions.



B. The image similarity)

- "
Given two matricesn; andmsy containing discrete values. - _-=_-
The picture distance function betweenn; andm. is defined -’ —
as follows: j .
P(my,me) = Zd(ml,mg,c) + d(ma,my, )
ceC . -
with = LI

Zml [p1]=c min{md(p17p2) |m2 [pQ] = C}
#c(ml)

d(my,ma,c) =

where

« C denotes the set of values assumednby or m,

« my[p] denotes the value of map m; at positionp =
(2,9),

o md(p1,p2) = |1 — 2| + |y1 — yo| is the Manhattan-
distance between poinig and po,

o #c(my) = #{p1|mi[p1] = ¢} is the number of cells in
my With valuec.

In the work presented here, the matrices and ms are
maps in form of occupancy grids. Probabilistic information il >
the cells representing beliefs is discarded, i.e., a cell is mark,

as either "free”, "occupied” or "unknown”. Only occupied anc o
free cells are considered for computing C = {occ, free}. °
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Cells with unknown information are not of interest. 1
As mentioned before, a strong point abguits that it can be 2
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computed very efficiently. Concretely, it is possible to compu.2

the func_tlonw in linear time. The algorithm IS. based on a_ SQ—ig. 1. An example of a distance map that can be used as basis to efficiently
called distance-mag-map. for a valuec. The distance-map is compute the similarity between two maps. Given a matrixwith cells

an array of the Manhattan-distances to the nearest point Wnr?rksd with a psrticulzr value, hert?f the ;:olor black (upper left figure).
; i _ . The distance mag-map(lower center figure) is a matrix containing in every
valuec in mapms for all positionspy = (z1,1): cell the Manhattan distance to the nearest cell with valirem. A gray-scale

. illustration of thed-mapof mis shown in the upper right figure.
d-map[z1][y1] = min{md(p1, pz)|ma(po] = c} P PPErTgT I

Algorithm 2 Computingd-map. for a matrixm Init Relaxation Step 1 Relaxation Step 2
1: for y«— —1ton do i oo o o o =
2. for z+— —1ton do 00|00/ 00| 0| 00| 00 00/ 0 * — |
3: if m(x,y) =c then 2&232‘322 N
4: d-mapc[x][y] < 0 @0 %0008800 ||
00| 00| 0| [og] [er)
S else 0000|000/ 0| 0] 000
6: d-map.[z][y] < oo 00| ool col o] ool ool el 00
7: for y—0ton-—1 do B - visited position 0= neighbor
8 for z—0ton—1 do
9: h «— min(d-map.[z—1][y]+ 1, d-map.[z][y—1]+1)
10: d-map.[z][y] = min(d-map.|z][y], h) Fig. 2. The working principle for computind-map.. It is a simple relaxation
11: for y <« n — 1 downto0 do algorithm that just takes one pass for initialization and two passes over the
' map for processing.
12.  for z < mn—1downto0 do
13: h «— min(d-map.[z+1][y] +1, d-map.[x][y+1]+1)
14: d-map.[z][y] = min(d-map.[z][y], h)

Algorithm 3 Computingd(my,ms, ¢)
1: computed-map,. for mq
2: d(mqy,mg,c) <0
for y«— —1ton do
for v« —1ton do
if mi(z,y) =c then
d(m1,ma,c) < d(mi, mz,c) + d-mapc[z][y]

Figure 1 shows an example of a distance-ndamap. for
a matrix m. Algorithm 2 shows the pseudo-code for the
three steps carried out to built it. The underlying principle?’:
is illustrated in figure 2. First, all locations itk-map. where :
cells inm have the value are set to zero. All other cells of
d-map. are set to infinity; for a concrete implementatiax, :
can be substituted by any constant larger tihan M/ for an




N x M-matrix m. Then two relaxation steps follow. In thetheir image distance(r1, ) is zero or for noisy data at least
first one, a pass od-map. starting from the upper left cornerclose to zero. But though(ry,r2) is zero, there is still a
is carried out. During this pass, the value of each celtlin positive image distance (m1/r1, ma/r2) between the other
map. is updated based on the current value of this cell amparts of the maps. It is therefore likely that the "optimiza-
its left and upper neighbor. The second step is very simildon” continues to minimize) by trading small increases in
to the first one, except that it starts in the lower right cornef(r,r2) with larger decreases ig(m4/r1,ma/r2), hence
and that the value of each cell is updated based on the valuarsening the result in respect to the merging of the maps.
of the cell and its right and lower neighbor. The distance-mdfhe best solution would be to detect wheir,rs) is zero
d-map. for a mapm can then be used as lookup-table for théor two sufficiently large regions; andr,. But an according
computation of the sum over all cells in, with valuec, i.e., check would require to compute(ry,r2) for every possible
d(m1,ma,c). The according code is illustrated in algorithnsubset; andr, of m; respectivelyms in every transformation

3. step.
An easy way out is to count the number of cells iy
C. Map merging versus registration and my where there is agreement, respectively disagreement

Like any other image distance functio, is designed to Whether the cell is occupied or free:
WOI’k. best'for reglstr_atlon, i.e., for finding a templqte Matrix g (my,ma) = #{p = (z,y) | mi[p] = malp] € C}
mqg in an input matrixm;. In an early version of this work, .
1) was used as the sole componentf42]. But for merging dis(m1,m2) = #{p = (z,y) | m1[p] # m2[p] € C}

two mapsm, andmy, the situation is quite different from Note that only information is used from map parts that are

image registration. There is the need to identify a region jigned with each other in the current transformation step. If
in my; and a regionry in my such thatr; andr, register the content of the cell at positiop = (z,y) in m; or ms

with each other to merge the maps. The problem is that thete:,\known” then neithergr() nor dis() are affected. For

is usua_llly no a priori information available a_bout and 2. every cell that is "free”, respectively "occupied” at a positjon
There is even no guarantee that two according regionsiin ;, path my andma, agr() is incremented. The functiodis()

andms exist at all. is incremented when a cell at a locatipris "free” in m; and

" "occupied” inmy or vice versa. The according computations
averlap regions\ can be done in a straightforward manner in linear time.
The functionagr() should be as large as possibl&s()
as small as possible. In the ideal case when two identical
h 4 regionsr; andr, are aligned themis() = 0 andagr() is the
: number of cells inry, respectivelyrs, i.e., a positive integer
B that directly reflects the size of the overlap. Dissimilarity is
match to be minimized, hencegr() is negatively taken into account
2 for the according function\:
A(ml,mg) = 1/}(m1,m2) +
remaining attraction Clock * (dis(ml, mg) — agr(ml, mg))
c The constant,., > 0 is a scaling factor that allows to
overfit trade convergence speed with the amount of necessary overlap
between the maps to compute a successful merger, f is
zero then the merging algorithm will only merge maps that
have a large amount of overlap. #f,.; is increased then

smaller and smaller amounts of overlap are necessary to get
Fig. 3. The image distance functieihgenerates a kind of attraction betweena pmper'Y merged map. This is b(_JUth at the dlsadvantage
identical regions; andr» in two mapsm; andms (A), guiding a search that the time to compute the merging increases. The reason
algorithm to transform the maps to maximize similarity. This process shoufgr this is simply that only)) provides meaningful gradients

encounter a point in time where the identical regions are aligned (B). Th : : . _
% on these regions is zero indicating the overlap. Nevertheless, it is Iikg@r the motion planning, whereas(m., ms) —agr(mi, ms)

that there still is some attraction between other regionsinandms that ONly "locks” the two maps in place as soon as the iden-
?ave S_orﬁe SImII_IEnIty, e.lg., some free space ml §0t:r_1e rooms. Using soleltical regions are aligned. By increasing,.;, the influence
or A is hence likely to lead to some additional "shifting”(C). of dis(ml,mg) B agr(ml,mg) on A is increased and the

First, let us address the problem that overlapping regiol%qsﬂur_"nce ofy) decreases. Examples of the influencergf

are discussed in the results section.
r1 and ro are usually smaller than the maps; and ms
themselves. We denote with/r the set difference between o .
andr, e.g.,m1/r1 is the set of cells of mapr; excluding the D- ldentifying failure
ones fromr;. As illustrated in figure 3y guides the search There remains the problem that there is no guarantee of
process to transform the maps toward an overlap of identicaly overlap between the maps that are to be merged. In this
regions. As soon as identical regions and r, are aligned, case, the algorithm will do its best and determine a "good”



match that can only be wrong. Also, as a randomized seatble advantage that every transformation step takes the same
algorithm and a heuristic dissimilarity function is used, it caamount of time, namely about 4 msec. This allows to compare
very well be that a bad "solution” is found. Fortunately, theréhe results in terms of steps while providing a direct link to the
is a very easy way to rule out cases where the merging refal processing time used. Table | shows the exact runtimes
my andm failed. The so-called acceptance indicatof) is in step, which can be related to true time by multiplying with
defined as 4 msec, and the acceptance indicators of all merged maps
presented in this section. Each run was hence finished within
about a minute or two. For all successful mergers, deviations
of the centers of the maps from ground truth are so small that
Only if ai(my,m2) is very close tal.0 then there is an actual they can not be determined for our experiments, i.e., they are
overlap between a region af,; and a region ofn, that was in the order or even below the resolution of the grid cells of
successfully detected. The results discussed in the followipgecm x 25cm in a building that extends over more than 1,800
section V show that the distinction between failed attempts2,

and successful merging is indeed very easy. In all experimentsThe maps for the first set of experiments are generated in
successful runs lead to ari() of well above98% while the a special simulator (figure 4). It is based on the Unreal Game

agr(my, ma)

ai(my,mg) =1 — -
(M1, ma) agr(my, mo) + dis(my, ms)

"best” failed attempt had ani() of well below 90%. engine and it includes a physics engine and realistic noise
models [43]. The robot-models in the simulator are based on
V. EXPERIMENTAL RESULTS the IUB rescue robots [44], which are developed at IUB using

a special toolkit for fast robot prototyping [45], [46], [47] and

The map merging is implemented in C++ and run on Which are employed in several lines of research on multi robot
Pentium IV 2.2 GHz under Linux. Given a pair and m’ ploy

. .y systems [48], [49]. The environment is a detailed model of the
of maps, then the center ot is taken as origin of the world o . . :
. L - R1 research building at the International University Bremen
coordinate frame. The initial pose of in respect to the world

frame is determined by transformimg’ to 576 different poses (IUB). In the image representation of the maps, the color

. o . . ; L green corresponds to "free”, red to "occupied” and "white”
g:;?;g%g?;g;gfo?%/arr?;a“?hn:(;)rfi tihneoc;lr/lebntatlfgoo(f)z t'{ggsir? to unknown space. Please note that all maps are horizontally
- respectivel —diryec?ion TheQSYG diff)ér:nt 7os’;mdfare aligned in the following figures for display purposes. As input

 Tesp Yy ) P for the map merging algorithm, the origins of the maps have

evaluated viaA() to determine the best one, which is chosen_ . . . . i
arious locations as well as orientations in respect to the global

; ) AR ! Vi
to be the starting point of the optimization process with the .
Adaptive Random Walk minimizingh (). The optimization is coordinate frame.

stopped if there is no change A for 2000 steps, which is con-

sidered as an indication of convergence. In our experiments, s L
this led in several cases to a too early stop of the run, i.e., 2 [ .
unsuccessful mergers. All of these unsuccessful runs hat an L 'I

a(i) between43.06% and at most7.33%, i.e., well below
the ai() of 98.83% that was the worst case for a successful
run; hence failure is clearly detectable.

map steps  ai()

mis2 14733 99.58% Ll S

mé+4 8345 75.01% L B

mg+4 41587  99.46% L II

mspe 9935  99.11% =

me4+7 37083  98.98%

mris 16448 99.29%

ms48 11989 99.45%

m3tes 81031  98.83% Fig. 5. The mapsni (upper left) andnsy (upper right) showing parts of an
entrance hall explored by two robots. The mag2 (lower center) shows

TABLE | the result of merging the two maps.
THE RUN TIMES FOR MERGING THE DIFFERENT MAPS ON RENTIUM IV
2.2 GHz AND THE RELATED ACCEPTANCE INDICATORS AS CAN BE In figure 5a relatively Simple case of map merging is shown.
NICELY SEEN, mj_ 4 WITH AN ai() FAR FROM100% IS CLEARLY A FAILED The mapsn,; andm;y have a rather large amount of overlap.
ATTEMPT. MOST OF THE MAPS ARE PAIRWISE MERGERS EXCEPT3¢08 In the same figure also the successful merger, of m; and
WHERE SIX ROBOTS COLLECTED THE DATA FOR THE FINAL MAP mo IS shown. For the rest of this section, we use the convention
to denote the merger of two maps; andm; with m;;. If
k > 2 robots collected the maps x to mx ., the map that
The implementation is in no way optimized for computatiois generated from thé maps is denoted with x;o(x+&)-
speed. All maps are for example embedded in >44000 The mapsns andmy shown in figure 6 pose a much greater
matrices for which every cell is processed, even if the majorithallenge to map merging. Note that the overlap region only
of them contains "unknown” values and hence could bmmounts to 2.71% of the cells ofi3, respectively 8.54% of
disregarded. The processing of the fixed sized matrices hadls of m4. This case can serve as an excellent example of



Fig. 4. The map shown in the upper left corner was generated with a real IUB rescue robot (upper right) in the R1 entrance hall with boxes as obstacles
(upper middle). As mapping with the real robots is very time consuming, the maps for the experiments are generated in a simulator based on the Unreal
Game engine (lower pictures). The simulation includes a physics engine and realistic noise models leading to realistic conditions, making real and simulated
maps almost identical in terms of resolution and noise level.

Fig. 6. The mapsns (left) andmy (right). They show two hallways originating from an entrance hall where both robots started and then wandered off in
opposite directions.

Fig. 7. This mapmj, , shows the result of an unsuccessful attempt to metgeandmy. For demonstration purposeg,.;, was set to zero, hence letting
overfit by finding the minimum dissimilarity of the overall maps. Note the an acceptance indicatofrog, m4) = 75.01% clearly shows that this attempt
failed.

Fig. 8. In this mapm/, , the successful result of mergings andmy is shown. Note that this is a very difficult case as the overlap region only consists
of 2.71% of the cells ofns, respectively 8.54% of cells afi4. This is also reflected by the high lock factor @f,.;, = 7.5 used in this experiment. The
acceptance indicator afi(ms, ma4) = 99.46% confirms the success.



Fig. 11. The resulins;os of merging the maps gathered by six robots exploring the environment. Unlike in the individualhmapsmg, the structure
of the building becomes recognizable. Especially, the large entrance hall and the three corridors can be nicely identified.

Fig. 10. The results of several pairwise mergers between the map®
mg, namelyms_¢ (upper left),me7 (upper right),mr7g (lower left) and
m14s (lower right), wherem;; denotes the merger between map and

Fig. 9. The mapsns (upper left),mg (upper right),m7 (lower left) andmsg M-
(lower right) gathered by four different robots. Please note that they are here
horizontally aligned for the convenience of the reader. They all have different

orientations and positions in respect to the global reference frame when the

map merging starts. was even set to zero. As a consequence, the algorithm tries
to transformmy to larger regions of similarity withns and
to find an "optimum” by mainly aligning large regions of free
the influence of the constant,.;; on the algorithm and as anspace. This leads to a small value foétms,m4), but it is
indication that the acceptance indicator indeed does its jdar from a usable result. Fortunately, an acceptance indicator
Small values ofc,. lead to a strong influence af on A. of ai(ms,my) = 75.01% indicates that this attempt indeed
In the run producing the mam5_, shown in figure 7c,., failed.
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to ¢joer = 7.5. By increasing the contribution of the check for
overlap inA, mismatches get higher penalities. This advantage
of ensuring proper overlap is bought at the disadvantage of
increased computation time as the influence/dhat delivers
meaningful gradients for the search is lessened.

The results achieved with the maps; to mg (figure 10)
are again representative for the performance of the approach
presented here. Figure 10 shows several pairwise mergers
based on these maps. Finally, let us address the issue of
true multi-robot research, i.e., of using more than two robots.
As mentioned before, map merging scales very well with
increasing numbers of robots. To merge the data of some maps
my to my4 of four robots, the simplest way to do so is to
mergem, and my to getrig o, 3 andmy to getingyq,
and thenmy o and g4 t0 getrings.a. Given k robots this
strategy take®)(k) times the time for a pairwise merger. The
successful result of merging the maps; to mg from six
robots exploring the IUB R1 building is shown in figure 11.
The resulting mapns;,s shows nicely the core structure of
the building, which can not be recognized from any of the
individual maps.

Last but not least, an additional experiment shall indicate
that the presented map merging algorithm performs as well
with real world robot data as with the maps generated in
the high fidelity simulator. The real world data is taken from
the Robotics Data Set Repository (Radish) [50]. It is based
on the "aphill_07b” dataset provided by Andrew Howard,
which contains the raw sensor data from four robots. The
four individual maps were generated from the raw data with
a state-of-the-art SLAM algorithm by Grisetti et al.[51]. The
four input maps as well as the successful merger are shown
in figure 12.

For the successful merger of the real world maps, our
algorithm performed much like in the previous experiments
with the maps from the high fidelity simulator. The main
difference is that the real world maps are much larger than
the simulated ones, namely 1000x1000 grid cells in contrast to
the 400x400 cells in the previous experiments. All parameters,
except map size, of the algorithm were exactly the same as
in the previous experiments with simulated map data. The
computation time of each step hence went up to about 25 msec,
mainly due to the increased time needed to comp\itélhe
Fig. 12. Four mapsn) to m/, based on real world data (top and middle) ancnumber of steps in each run in contrast was not significantly

the result of their successful merger; _, (bottom). Thg raw sensor of the influenced by neither the |arger map sizes nor by the fact that
robots was taken from an open database, the Robotics Data Set Repos|

I - .
(Radish), and processed with a standard SLAM algorithm to produce the inﬁtﬁg data has been collected 'n_ a real world setting. The merger
maps. m} ., of the mapsn} andmy, (figure 12 top row) took 53772

steps. Mapsnj andm (figure 12 middle row) were merged
in 29634 steps. The final result of mag _, (figure 12 bottom
Figure 8 shows that it is possible to merge this extremetgw) was generated fromn/, 4o andml, , within 47822 steps.
difficult case ofms and m4 with our approach. Though it
has to be admitted that this is not a typical result and that
for this successful run there were several unsuccessful ones
in this case. But it is of general interest for the quality of Multiple robots can be used at first glance in a straightfor-
our approach that only the successful run had an optimeard way for mapping. Every robot can explore and map a
acceptance indicator afi(ms,m4) = 99.46% and that for different part of the environment. But the crucial question is
the other runs the acceptance indicators were well b8, how to integrate the data of the different robots. Here we take
thus clearly indicating failure. In addition to simply tryingan approach that simply lets all robots operate individually
multiple times, the lock factor was increased in this experimeahd then tries to integrate the different local maps into a

VI. CONCLUSION
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single global one, i.e., that does so-called map merging. The] J. Fenwick, P. Newman, and J. Leonard, “Cooperative concurrent map-

interesting aspect of the approach presented here is that it

needs absolutely no information about the poses of the robots
relative to each other. Instead, regions are identified that appRar N. Roy and G. Dudek, “Collaborative exploration and rendezvous: Al-

in more than one map. Such regions can then be used to "glue
the maps together.

(18]

ping and localization,” inProceedings of the 2002 IEEE International
Conference on Robotics and Automation, ICRAIEEE Computer
Society Press, 2002.

gorithms, performance bounds and observatioAsitonomous Robats
vol. 11, 2001.
J. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai, “A practical,

Concretely, we measure the similarity between maps, as decision-theoretic approach to multi-robot mapping and exploration,” in
known from computer vision for example for image regis-
tration and stitching. This measurement can then be used;ig
guide a search process that transforms one map to achieve ing for distributed robot navigation,” ifProceedings of the IEEE/RSJ
a maximum overlap with a second one. There are many

possible choices for both the similarity function as well aso

for the search algorithm. Here, a heuristic based on a special

image similarity function is used that can be computed ve
efficiently. Adaptive Random Walking is used for the sear

1]

process. Furthermore, a special function is introduced that can
indicate whether the merging was successful or not. Last t&%
not least, results were presented where maps from up to Si

robots are merged.
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