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Merging occupancy grid maps from multiple robots
Andreas BirkMember, IEEE, Stefano CarpinMember, IEEE

Abstract— Mapping can potentially be speeded up in a signifi-
cant way by using multiple robots exploring different parts of the
environment. But the core question of multi-robot mapping is how
to integrate the data of the different robots into a single global
map. A significant amount of research exists in the area of multi-
robot-mapping that deals with techniques to estimate the relative
robots poses at the start or during the mapping process. With
map merging the robots in contrast individually build local maps
without any knowledge about their relative positions. The goal is
then to identify regions of overlap at which the local maps can
be joined together. A concrete approach to this idea is presented
in form of a special similarity metric and a stochastic search
algorithm. Given two maps m and m′, the search algorithm
transforms m′ by rotations and translations to find a maximum
overlap betweenm and m′. In doing so, the heuristic similarity
metric guides the search algorithm toward optimal solutions.
Results from experiments with up to six robots are presented
based on simulated as well as real world map data.

Index Terms— cooperation, mapping, autonomous robot,
stochastic search, registration, stitching

I. I NTRODUCTION

Autonomous mapping is one of the tasks that could benefit
more from the effective deployment of cooperative multi-
robot systems [1]. Teams of robots can bring more sensors,
potentially heterogeneous ones, to the area where robots are
performing their task. A properly designed team of robots
can significantly reduce the time needed to map a given
environment, since they can explore different parts in parallel.
In addition, the overall team is more robust, since the failure of
one of the robots is not doomed to hinder the overall mission.
In order to maintain this robustness, distributed approaches
are a must. In fact, each robot has to operate completely
autonomously, and there should be no agents that have unique
features, in terms of software or hardware, that make them
critical for the mission success. In addition, scalability is an
important factor. The addition of a new robot to the team
should not require too much of restructuring or reconfigura-
tion.

Note that the ability to build a map of an unknown
environment is one of the fundamental capabilities a robot
must exhibit in order to operate outside the well designed
and protected laboratory setting. In [2], Thrun provides an
extensive coverage of single robot indoor mapping methods.
In particular he outlines that ”mapping unstructured, dynamic,
or large-scale environments remains largely an open research
problem”. The mapping problem is often addressed together
with the localization problem. The combination of the two is
referred to as simultaneous localization and mapping problem
(SLAM). In fact, once a map is given, the task of localizing
the robot inside the map using its sensors inputs is solved
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[3][4]. Conversely, if the robot pose is known, building a map
is also a task that can be effectively solved. When the two
tasks have to be solved at the same time the problem becomes
much more difficult. This motivates the different techniques
that have been developed.

We can say that there exist two main approaches to address
this challenge. SLAM can be solved using a Kalman filter
based approach [5]. In this case the produced map presents the
posterior probability of the location of some features (or land-
marks) that can be detected by the robot while exploring the
environment. The method has some drawbacks. For example,
a limited number of features can be handled by the algorithm
when building a map in real time while the robot is moving. A
map withN features requiresN2 parameters, and this in turn
implies that matrices withN2 elements have to be processed
(i.e. inverted and multiplied) at each iteration. In addition
the Kalman filter approach relies on specific conditions on
the superimposed noise (0 mean Gaussian noise), practically
rarely verified. Another challenging aspect of Kalman filter
based mapping methods is data association. The algorithm in
fact has to be able to identify features from the sensed data,
and to associated them with features previously inserted in the
map. If no good association is possible, the algorithm has to
decide that the observed feature is a new one, and it should
be inserted in the map.

A different approach is based on the expectation maximiza-
tion technique [6]. In this case the mapping task is solved using
an algorithm based on the expectation maximization principle
(EM). Differently from the previously described Kalman filter
algorithm, EM based mapping will not produce a full posterior,
but rather the most likely map. Another hard limitation is
the fact that EM cannot generate maps incrementally, because
of the iterative nature of the EM. On the other hand, EM
based mapping is pretty insensitive to the data association
problem, can be used to map huge environments, and, notably,
can successfully map environments where loops or cycles are
present.

The EM algorithm has been also used to address the multi-
robot mapping [7][8]. However, some inherent limitations have
been outlined. In particular, it is necessary to assume that
all the robots in the team start at positions where there is a
significant overlap between their range scans, and in addition
they must have an approximate knowledge of their relative
positions. Also Kalman filter based approaches have been
developed and implemented to address the multi-robot map
and localization problems [9][10], as well as other general
strategies for multi-robot exploration, mapping, and model ac-
quisition [11][12][13][14]. The re-occurring pattern is the need
of information about the relative positions of the robots. This
can be in form of the start conditions [7][8], the identification
of the position of a robot within the existing map of an other
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one [15][16] or explicit rendezvous strategies [17][18]. The
related general line of research can be dubbeddistributed
mapping.

Here a totally opposite approach to the problem is taken,
namely to completely ignore the issue of relative individual
robot poses. Robots first operate for some time independently
to generate individual local maps, for example in a scenario
where multiple robots enter the same building from different
locations. Possible applications include surveillance, search
and rescue, military reconnaissance and the alike. After the
local maps have been acquired, they are merged together to
form a global map. According to Konolidge et al. this problem
of map merging, ” is an interesting and difficult problem,
which has not enjoyed the same attention that localization
and map building have” [19]. If the exact initial positions of
the robots relative to each other would be known, the task
would be trivial. But no information at all about the poses of
the robots relative to each other is used here. Instead, regions
that appear in more than one local map are used to transform
the maps into a global one.

The rather limited amount of work on map merging has con-
centrated on feature based approaches [20][21][18][19], i.e.,
they rely on fixed landmarks that can be recognized through
suited processing of the robots’ data. So-called topological
maps for example are graphs where the vertices represent
recognizable places, e.g., doorways, different forms of junc-
tions between hallways, and so on. An edge in a topological
map represents a passage between the related two places. Map
merging of topological mapsm1 andm2 hence boils down to
finding suited identical subgraphs inm1 andm2 [20].

Our goal is to combine together maps not based on features,
but rather on occupancy grids, i.e., metric arrays where the
value in each cell represents whether the related location
is free space or part of an obstacle. As outlined by some
authors [22], occupancy grids are the predominant paradigm
used for environment modeling in robotics. They are indeed
very effective when robots are required to explore and map
unstructured environments where features extraction is hard to
perform. In the rest of the article, we always refer to occupancy
grids when using the term map.

Occupancy grids can be thought of as images where the
information of whether a cell corresponds to free space or
whether it is occupied is represented by a color. Map merging
then corresponds to the problem of moving one of the images
around until a part of it is aligned with an identical part in an
other image. For this purpose we use a function borrowed from
a metricψ introduced before by Birk to measure the similarity
of images [23]. There are several commonly used alternatives
to ψ, for example computing some form of correlation like
mean squared Euclidean distances between pixels of the same
color or using special functions like the Hausdorff distance
[24], [25]. Unlike these approaches, the similarity function
ψ can be very efficiently computed as explained in detail
later on. Furthermore, it provides meaningful gradients with
respect to rotation, translation and registration, i.e., it can be
used to guide a search algorithm to find a template in an
image, a process known as registration [26], [27], [28], [29].
Registration has been employed previously in the context of

occupancy grid mapping, namely for the purpose of improving
localization [30]. In the work of Schultz and Adam, a small
local occupancy grid is registered into a large global map to
compensate the accumulative error due to an odometry based
localization. This registration process searches only a small
neighborhood of the current erroneous position of the robot to
match the local map into the global one. It therefore can get
along with relatively crude matching metrics.

The task of map merging is much harder than registration.
Instead of locating a known template in an image, an unknown
region of overlap has to be identified in two maps. This is
comparable to image stitching [31], i.e., the technique that is
for example used to generate panoramic views from several
overlapping photographs. Solutions to solve this problem
usually need common reference points that are either provided
by the user by hand or identified using local image descriptors
like intensity patterns [32], [33]. But occupancy grids lack rich
textures like photographs. Also, we want to avoid any pre-
processing of the map data for efficiency reasons. Hence, a
simple combination of the image similarityψ and a heuristic
to identify the alignment of the overlap regions of two maps is
used. Furthermore, there is the problem that there may be no
overlap at all between the maps. This situation can be clearly
identified within our approach, automatically indicating when
map merging is prone to fail.

The rest of this article is structured as follows. The problem
of map merging is introduced in a formal way in section 2.
The search algorithm that is used in our approach is presented
in section 3. Section 4 deals with the special heuristic to guide
the search algorithm. In section 5, experiments and results of
merging the maps from up to six robots into a single one are
presented. Section 6 concludes the article.

II. M AP MERGING

A. Basic definitions

For sake of clearness, we formally define the problem we
informally described in the introduction. We start with the
definition of map.

Definition 1: Let N andM be two positive real numbers.
A N ×M map is a function

m : [0, N ]× [0,M ]→ R.

We furthermore denote withIN×M the set ofN ×M maps.
From a practical point of view, a discretization process is

needed when a map is processed. This leads to a straightfor-
ward representation of a map as a matrix withN rows, M
columns, and storing integer numbers. The functionm is a
model of the beliefs encoded in the map. For example, one
could assume that a positive value ofm(x, y) is the belief
that the point(x, y) in the map is free, while a negative
value indicates the opposite. The absolute value indicates the
degree of belief. The important point is that we assume that if
m(x, y) = 0 no information is available. These assumptions
are consistent with the literature on occupancy grids based
maps.

We next define a planar transformation which will be used
to try different relative placements of two maps to find a good
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merging. We assume that the location of a point in the plane
is expressed in homogeneous coordinates, i.e. the point(x, y)
is represented by the vector[x y 1]T , where the trailing upper
T indicates the transpose operation. The formal definition is
the following.

Definition 2: Let tx,ty and θ be three real numbers. The
transformation associated withtx,ty andθ is the function

TRtx,ty,θ(x, y) : R2 → R2

defined as follows:

Ttx,ty,θ(x, y) =

 cos θ − sin θ tx
sin θ cos θ ty

0 0 1

 x
y
1

 (1)

As known [34], the transformation given in equation 1
corresponds to a counterclockwise rotation about the origin
of the the point(x, y) of θ, followed by a translation of
(tx, ty). We denote withτ the space of possible transforma-
tions. Obviously, additional transformations could be used if
necessary. When the local maps are produced with approaches
that have known deficiencies that for example insert distor-
tions like bended geometries, shear transformations could be
employed to generate proper matches. As we will see in the
results section, state-of-the-art mapping algorithms produce
occupancy grids where rotation and translation transformations
are seemingly sufficient for merging real world data.

B. Pairwise Map Merging

In the map merging problem, given two partial maps we
look for the transformation that gives the best merging.Good
mergingis defined in terms of overlapping between maps, and
is captured by the following definition. The reader should note
that the following definition assumes that maps are represented
as matrices.

Definition 3: Let m1 andm2 be two maps inIN×M . The
overlappingbetweenm1 andm2 is

ω(m1,m2) =
N−1∑
i=0

M−1∑
j=0

Eq(m1[i, j],m2[i, j]) (2)

whereEq(a, b) is 1 whena = b and 0 otherwise.
The overlapping functionω measures how much two maps

agree. In an ideal world, where robots would build maps
which correspond to the ground truth and completely cover
the operating environment, there exist a transformation which
yields a perfect overlapping function, i.e.ω(m1,m2) = N ×
M . In the real applications this is obviously not the case, so the
challenge is to find a transformation which gives the highest
overlapping values.

Having set the scene, the map merging problem can be
defined as follows.

Definition 4: Given m1 ∈ IN,M , m2 ∈ IN,M , determine
the {x, y, θ}-map transformationT(x,y,θ) which maximizes
ω(m1, Tx,y,θ(m2)).

The devised problem is clearly an optimization problem,
where it is required to maximize a goal function, that in
our case is the overlappingω. The optimization has to be
performed over a three dimensional space involving two
translations and one rotation.

To solve this problem, there are many possible approaches.
For example, any of the well-known optimization algorithms
can be used to maximizeω(). One problem is thatω() has
many properties that make it badly suited for any optimiza-
tion technique. The main drawback is that the values of
ω(m1, Tx,y,θ(m2)) are arbitrarily spread over the space of
transformationsτ . The optimum may be located right next
to the worst case in the search space, for example if the
maps consist of spirals. The functionω() hence delivers no
meaningful gradients that for example could be used by hill-
climbing.

Therefore a heuristic function∆ is in general likely to be
necessary to guide the search process.∆ should provide a
kind of attraction between the overlap regions, hence providing
some feedback in which direction the search algorithm should
proceed. As mentioned in the introduction, several techniques
from image registration and image stitching could be adapted
for this purpose. Here, a metricψ introduced before by
Birk [23] to measure the similarity of images is used in
combination with a heuristic to identify the alignment of the
overlap regions. Also for the actual search algorithm, there
are many alternatives. Here, Carpin’s Gaussian Random Walk
[35][36][37] is used for minimizing∆ by searching overτ .

C. Multi-robot Map Merging

Map merging as defined above deals with an integration of
two maps into one, i.e., with data coming from two robots.
The questions is now how to deal with real multi-robots,
i.e., with k > 2 robots. The definitions can be extended in a
straightforward way to deal withk > 2 robots:

Definition 5: Let m1,m2, ...,mk bek maps inIN×M . The
overlappingbetweenm1 to mk is

ω(m1, ...,mk) =
N−1∑
i=0

M−1∑
j=0

Eq(m1[i, j], ...,mk[i, j]) (3)

whereEq(a1, ..., ak) is 1 whena1 = a2 = ... = ak and 0
otherwise.

Definition 6: Given k maps m1 to mk ∈ IN,M

determine the k − 1 {x, y, θ}-map transformations
T 1

(x1,y1,θ2)
to T k−1

(xk−1,yk−1,θk−1)
which maximize

ω(m1, T
1
x1,y1,θ1

(m2), ..., T k−1
(xk−1,yk−1,θk−1)

(mk)).

Fortunately, not only the definitions but also the map
merging implementation can be easily extended to deal with
k > 2 robots. To merge for example the data of some mapsm1

to m4 of four robots, the simplest way to do so is to merge
m1 andm2 to getm1+2 as well asm3 andm4 to get the
mapm3+4. Then, the mapsm1+2 andm3+4 can get pairwise
merged tom1to4. Givenk robots this strategy takesO(k) times
the time for a pairwise merger. In section V presenting results
from various experiments, it is shown that this approach is
indeed very successful.
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III. STOCHASTIC SEARCH OF TRANSFORMATIONS

A. Overview

The described optimization problem for the pairwise merger
can be thought of as a process where one map stays fixed
while the other one is moved around as a consequence of the
differently tried transformation. The process is conceptually
similar to the docking problem studied in computational
biology. Given a protein, called receptor, and a ligand, the
task is to find the so called binding pocket of the receptor. This
means moving the ligand to a site where the overall energy
of two compounds are minimized. Treating the ligand a rigid
body, this problem is nothing but a search in a six dimensional
space (three for rotations and three for translations).

Since a few years, there has been a trend to use robot
motion planning algorithms to solve this sort of problems
[38][39][40]. Though from the computational biology point of
view the obtained results are still not comparable with state
of the art molecular dynamics based approaches, significant
progresses have been achieved. In particular, the algorithmic
machinery developed along the years in the field of algorithmic
motion planning proved to be suitable to be extend for this
apparently unrelated problem. The most critical point is the
following. In motion planning both the starting point and
the end points are known. In the devised search problem,
only the starting point is known. The goal configuration is
obviously not available, since it is what we are looking for.
There are many possible algorithms that can be used for this
purpose. Here, Carpin’s Adaptive Random Walk planner is
used [35][36][37].

B. Adaptive Random Walk

Given a starting configuration, the algorithm explores the
given configuration space using a random walk. At each step
a random configuration is generated, and the corresponding
heuristic∆ is computed.

The new configuration is generated using a Gaussian distri-
bution whose meanµk and whose covarianceΣk are updated
at each step (hence the indexk). The updating is a function
of the last accepted point and of the lastM values obtained
for the heuristic∆, M being one of the few parameters of
the algorithm. The new sample is then retained or discarded
according to the new value of∆. Algorithm 1 illustrates the
principle.

TheRS function introduced in line 7 is a so calledRandom
Selector. Its role is to allow the acceptance of a new sample
even if its associated∆ value does not increase the obtained
overlapping. The reason for this criteria is to avoid a behavior
too similar to hill climbing, but rather like simulated annealing
[41]. In fact, it can be proved that by properly tuning theRS
function, simulated annealing and multipoint hill climbing are
special cases of the adaptive random walk.

In case of a stochastic search algorithm, it is important to
guarantee whether it will converge to the global optimum or
not. The following theorem, whose proof is omitted, assures
the convergence.

Theorem 1:Let s∗ ∈ S an element which maximizes
∆(m1, Ts(m2)), and let {T0, T1, T2 . . .} the sequence of

Algorithm 1 Random walk
Require: numSteps ≥ 0

1: k ← 0, tk ← sstart

2: Σ0 ← Σinit, µ0 ← µinit

3: c0 ← ∆(m1, Ttstart(m2))
4: while k < numSteps do
5: Generate a new samples← tk + vk

6: cs ← ∆(m1, Ts(m2))
7: if cs > ck OR RS(tk, s) = s then
8: k ← k + 1, tk ← s, ck = cs
9: Σk ← Update(tk, tk−1, tk−2, . . . , tk−M )

10: µk ← Update(xk, tk−1, tk−2, . . . , tk−M )
11: else
12: discard the samples

transformations generated by the transformation random walk
described in algorithm in equation 1. LetT k

b be the best
one generated among the firstk transformations, i.e. the one
yielding the highest value of∆.

lim
k→+∞

Pr[∆(m1, T
k
b (m2)) 6= ∆(m1, Ts∗)(m2))] = 0 (4)

While reading the former definition, the reader should remem-
ber that given two maps, the optimal overlapping value is
a finite natural number. It is also important to notice that
the theorem only guarantees that when the processing time
diverges, the optimal transformation will be found.

IV. T HE OPTIMIZATION FUNCTION

A. Overview

As motivated in section II-B, the direct overlapω() between
two maps is not a very well suited function for guiding
the search over the transformation spaceτ . The values of
ω(m1, Tx,y,θ(m2)) are spread in an unsystematic way overτ .
The optimum that we are looking for may be located right next
to the worst case value. Therefore, any stochastic technique
that tries to exploit gradient information fromω() is likely to
perform poorly.

A fundamental aspect of our approach to map merging is
hence the choice of the heuristic∆(). ∆() has two compo-
nents. One is a metricψ introduced to measure the similarity of
images [23]. As already mentioned in the introduction, there
is a large field in computer vision dealing with a problem
somewhat similar to map merging, namely so-called image
registration. There are hence alternative metrics that could
be used. The choice ofψ is mainly motivated by the fact
that it can be very efficiently computed, namely in linear
time. But map merging is a harder problem than image
registration. Not only a template has to be identified in an
image, respectively map, but two completely unknown regions
have to be registered with each other. Note that overlapping
regions may not even exist. Fortunately, there is a simple but
very reliable indicator introduced in section IV-D that clearly
indicates when a merger is not successful. Furthermore,ψ is
supplemented by additional heuristic presented in section IV-C
that identifies well aligned identical regions.
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B. The image similarityψ

Given two matricesm1 andm2 containing discrete values.
The picture distance functionψ betweenm1 andm2 is defined
as follows:

ψ(m1,m2) =
∑
c∈C

d(m1,m2, c) + d(m2,m1, c)

with

d(m1,m2, c) =

∑
m1[p1]=c min{md(p1, p2)|m2[p2] = c}

#c(m1)

where

• C denotes the set of values assumed bym1 or m2,
• m1[p] denotes the valuec of mapm1 at positionp =

(x, y),
• md(p1, p2) = |x1 − x2| + |y1 − y2| is the Manhattan-

distance between pointsp1 andp2,
• #c(m1) = #{p1|m1[p1] = c} is the number of cells in
m1 with valuec.

In the work presented here, the matricesm1 andm2 are
maps in form of occupancy grids. Probabilistic information in
the cells representing beliefs is discarded, i.e., a cell is marked
as either ”free”, ”occupied” or ”unknown”. Only occupied and
free cells are considered for computingψ, C = {occ, free}.
Cells with unknown information are not of interest.

As mentioned before, a strong point aboutψ is that it can be
computed very efficiently. Concretely, it is possible to compute
the functionψ in linear time. The algorithm is based on a so
called distance-mapd-mapc for a valuec. The distance-map is
an array of the Manhattan-distances to the nearest point with
valuec in mapm2 for all positionsp1 = (x1, y1):

d-mapc[x1][y1] = min{md(p1, p2)|m2[p2] = c}

Algorithm 2 Computingd-mapc for a matrixm
1: for y ← −1 to n do
2: for x← −1 to n do
3: if m(x, y) = c then
4: d-mapc[x][y]← 0
5: else
6: d-mapc[x][y]←∞
7: for y ← 0 to n− 1 do
8: for x← 0 to n− 1 do
9: h← min(d-mapc[x−1][y]+1, d-mapc[x][y−1]+1)

10: d-mapc[x][y] = min(d-mapc[x][y], h)
11: for y ← n− 1 downto0 do
12: for x← n− 1 downto0 do
13: h← min(d-mapc[x+1][y]+1, d-mapc[x][y+1]+1)
14: d-mapc[x][y] = min(d-mapc[x][y], h)

Figure 1 shows an example of a distance-mapd-mapc for
a matrix m. Algorithm 2 shows the pseudo-code for the
three steps carried out to built it. The underlying principle
is illustrated in figure 2. First, all locations ind-mapc where
cells inm have the valuec are set to zero. All other cells of
d-mapc are set to infinity; for a concrete implementation,∞
can be substituted by any constant larger thanN ·M for an

Fig. 1. An example of a distance map that can be used as basis to efficiently
compute the similarity between two maps. Given a matrixm with cells
marked with a particular valuec, here the color black (upper left figure).
The distance mapd-map(lower center figure) is a matrix containing in every
cell the Manhattan distance to the nearest cell with valuec in m. A gray-scale
illustration of thed-mapof m is shown in the upper right figure.
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Fig. 2. The working principle for computingd-mapc. It is a simple relaxation
algorithm that just takes one pass for initialization and two passes over the
map for processing.

Algorithm 3 Computingd(m1,m2, c)
1: computed-mapc for m2

2: d(m1,m2, c)← 0
3: for y ← −1 to n do
4: for x← −1 to n do
5: if m1(x, y) = c then
6: d(m1,m2, c)← d(m1,m2, c) + d-mapc[x][y]
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N ×M -matrix m. Then two relaxation steps follow. In the
first one, a pass ond-mapc starting from the upper left corner
is carried out. During this pass, the value of each cell ind-
mapc is updated based on the current value of this cell and
its left and upper neighbor. The second step is very similar
to the first one, except that it starts in the lower right corner
and that the value of each cell is updated based on the value
of the cell and its right and lower neighbor. The distance-map
d-mapc for a mapm can then be used as lookup-table for the
computation of the sum over all cells inm1 with valuec, i.e.,
d(m1,m2, c). The according code is illustrated in algorithm
3.

C. Map merging versus registration

Like any other image distance function,ψ is designed to
work best for registration, i.e., for finding a template matrix
mT in an input matrixmI . In an early version of this work,
ψ was used as the sole component of∆ [42]. But for merging
two mapsm1 andm2, the situation is quite different from
image registration. There is the need to identify a regionr1
in m1 and a regionr2 in m2 such thatr1 and r2 register
with each other to merge the maps. The problem is that there
is usually no a priori information available aboutr1 and r2.
There is even no guarantee that two according regions inm1

andm2 exist at all.

Fig. 3. The image distance functionψ generates a kind of attraction between
identical regionsr1 and r2 in two mapsm1 andm2 (A), guiding a search
algorithm to transform the maps to maximize similarity. This process should
encounter a point in time where the identical regions are aligned (B). Then,
ψ on these regions is zero indicating the overlap. Nevertheless, it is likely
that there still is some attraction between other regions inm1 andm2 that
have some similarity, e.g., some free space in some rooms. Using solelyψ
for ∆ is hence likely to lead to some additional ”shifting”(C).

First, let us address the problem that overlapping regions
r1 and r2 are usually smaller than the mapsm1 and m2

themselves. We denote withm/r the set difference betweenm
andr, e.g.,m1/r1 is the set of cells of mapm1 excluding the
ones fromr1. As illustrated in figure 3,ψ guides the search
process to transform the maps toward an overlap of identical
regions. As soon as identical regionsr1 and r2 are aligned,

their image distanceψ(r1, r2) is zero or for noisy data at least
close to zero. But thoughψ(r1, r2) is zero, there is still a
positive image distanceψ(m1/r1,m2/r2) between the other
parts of the maps. It is therefore likely that the ”optimiza-
tion” continues to minimizeψ by trading small increases in
ψ(r1, r2) with larger decreases inψ(m1/r1,m2/r2), hence
worsening the result in respect to the merging of the maps.
The best solution would be to detect whenψ(r1, r2) is zero
for two sufficiently large regionsr1 andr2. But an according
check would require to computeψ(r1, r2) for every possible
subsetr1 andr2 ofm1 respectivelym2 in every transformation
step.

An easy way out is to count the number of cells inm1

andm2 where there is agreement, respectively disagreement
whether the cell is occupied or free:

agr(m1,m2) = #{p = (x, y) | m1[p] = m2[p] ∈ C}

dis(m1,m2) = #{p = (x, y) | m1[p] 6= m2[p] ∈ C}

Note that only information is used from map parts that are
aligned with each other in the current transformation step. If
the content of the cell at positionp = (x, y) in m1 or m2

is ”unknown” then neitheragr() nor dis() are affected. For
every cell that is ”free”, respectively ”occupied” at a positionp
in bothm1 andm2, agr() is incremented. The functiondis()
is incremented when a cell at a locationp is ”free” in m1 and
”occupied” inm2 or vice versa. The according computations
can be done in a straightforward manner in linear time.

The functionagr() should be as large as possible,dis()
as small as possible. In the ideal case when two identical
regionsr1 andr2 are aligned thendis() = 0 andagr() is the
number of cells inr1, respectivelyr2, i.e., a positive integer
that directly reflects the size of the overlap. Dissimilarity is
to be minimized, henceagr() is negatively taken into account
for the according function∆:

∆(m1,m2) = ψ(m1,m2) +
clock · (dis(m1,m2)− agr(m1,m2))

The constantclock ≥ 0 is a scaling factor that allows to
trade convergence speed with the amount of necessary overlap
between the maps to compute a successful merger. Ifclock is
zero then the merging algorithm will only merge maps that
have a large amount of overlap. Ifclock is increased then
smaller and smaller amounts of overlap are necessary to get
a properly merged map. This is bought at the disadvantage
that the time to compute the merging increases. The reason
for this is simply that onlyψ provides meaningful gradients
for the motion planning, whereasdis(m1,m2)−agr(m1,m2)
only ”locks” the two maps in place as soon as the iden-
tical regions are aligned. By increasingclock, the influence
of dis(m1,m2) − agr(m1,m2) on ∆ is increased and the
influence ofψ decreases. Examples of the influence ofclock

are discussed in the results section.

D. Identifying failure

There remains the problem that there is no guarantee of
any overlap between the maps that are to be merged. In this
case, the algorithm will do its best and determine a ”good”
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match that can only be wrong. Also, as a randomized search
algorithm and a heuristic dissimilarity function is used, it can
very well be that a bad ”solution” is found. Fortunately, there
is a very easy way to rule out cases where the merging of
m1 andm2 failed. The so-called acceptance indicatorai() is
defined as

ai(m1,m2) = 1− agr(m1,m2)
agr(m1,m2) + dis(m1,m2)

Only if ai(m1,m2) is very close to1.0 then there is an actual
overlap between a region ofm1 and a region ofm2 that was
successfully detected. The results discussed in the following
section V show that the distinction between failed attempts
and successful merging is indeed very easy. In all experiments,
successful runs lead to anai() of well above98% while the
”best” failed attempt had anai() of well below 90%.

V. EXPERIMENTAL RESULTS

The map merging is implemented in C++ and run on a
Pentium IV 2.2 GHz under Linux. Given a pairm andm′

of maps, then the center ofm is taken as origin of the world
coordinate frame. The initial pose ofm′ in respect to the world
frame is determined by transformingm′ to 576 different poses
that consist of 725o rotations of the orientation ofm′ times 8
combinations of varying the origin ofm′ by +100, 0,−100 in
x-, respectively y-direction. The 576 different poses ofm′ are
evaluated via∆() to determine the best one, which is chosen
to be the starting point of the optimization process with the
Adaptive Random Walk minimizing∆(). The optimization is
stopped if there is no change in∆ for 2000 steps, which is con-
sidered as an indication of convergence. In our experiments,
this led in several cases to a too early stop of the run, i.e.,
unsuccessful mergers. All of these unsuccessful runs hat an
a(i) between43.06% and at most87.33%, i.e., well below
the ai() of 98.83% that was the worst case for a successful
run; hence failure is clearly detectable.

map steps ai()
m1+2 14733 99.58%
m′

3+4 8345 75.01%
m′′

3+4 41587 99.46%
m5+6 9935 99.11%
m6+7 37083 98.98%
m7+8 16448 99.29%
m5+8 11989 99.45%
m3to8 81031 98.83%

TABLE I

THE RUN TIMES FOR MERGING THE DIFFERENT MAPS ON APENTIUM IV

2.2 GHZ AND THE RELATED ACCEPTANCE INDICATORS. AS CAN BE

NICELY SEEN,m′
3+4 WITH AN ai() FAR FROM100% IS CLEARLY A FAILED

ATTEMPT. MOST OF THE MAPS ARE PAIRWISE MERGERS EXCEPTm3to8

WHERE SIX ROBOTS COLLECTED THE DATA FOR THE FINAL MAP.

The implementation is in no way optimized for computation
speed. All maps are for example embedded in 400×400
matrices for which every cell is processed, even if the majority
of them contains ”unknown” values and hence could be
disregarded. The processing of the fixed sized matrices has

the advantage that every transformation step takes the same
amount of time, namely about 4 msec. This allows to compare
the results in terms of steps while providing a direct link to the
real processing time used. Table I shows the exact runtimes
in step, which can be related to true time by multiplying with
4 msec, and the acceptance indicators of all merged maps
presented in this section. Each run was hence finished within
about a minute or two. For all successful mergers, deviations
of the centers of the maps from ground truth are so small that
they can not be determined for our experiments, i.e., they are
in the order or even below the resolution of the grid cells of
25cm× 25cm in a building that extends over more than 1,800
m2.

The maps for the first set of experiments are generated in
a special simulator (figure 4). It is based on the Unreal Game
engine and it includes a physics engine and realistic noise
models [43]. The robot-models in the simulator are based on
the IUB rescue robots [44], which are developed at IUB using
a special toolkit for fast robot prototyping [45], [46], [47] and
which are employed in several lines of research on multi robot
systems [48], [49]. The environment is a detailed model of the
R1 research building at the International University Bremen
(IUB). In the image representation of the maps, the color
green corresponds to ”free”, red to ”occupied” and ”white”
to unknown space. Please note that all maps are horizontally
aligned in the following figures for display purposes. As input
for the map merging algorithm, the origins of the maps have
various locations as well as orientations in respect to the global
coordinate frame.

Fig. 5. The mapsm1 (upper left) andm2 (upper right) showing parts of an
entrance hall explored by two robots. The mapm1+2 (lower center) shows
the result of merging the two maps.

In figure 5 a relatively simple case of map merging is shown.
The mapsm1 andm2 have a rather large amount of overlap.
In the same figure also the successful mergerm1+2 of m1 and
m2 is shown. For the rest of this section, we use the convention
to denote the merger of two mapsmi andmj with mi+j . If
k > 2 robots collected the mapsmX to mX+k, the map that
is generated from thek maps is denoted withmXto(X+k).

The mapsm3 andm4 shown in figure 6 pose a much greater
challenge to map merging. Note that the overlap region only
amounts to 2.71% of the cells ofm3, respectively 8.54% of
cells ofm4. This case can serve as an excellent example of
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Fig. 4. The map shown in the upper left corner was generated with a real IUB rescue robot (upper right) in the R1 entrance hall with boxes as obstacles
(upper middle). As mapping with the real robots is very time consuming, the maps for the experiments are generated in a simulator based on the Unreal
Game engine (lower pictures). The simulation includes a physics engine and realistic noise models leading to realistic conditions, making real and simulated
maps almost identical in terms of resolution and noise level.

Fig. 6. The mapsm3 (left) andm4 (right). They show two hallways originating from an entrance hall where both robots started and then wandered off in
opposite directions.

Fig. 7. This mapm′
3+4 shows the result of an unsuccessful attempt to mergem3 andm4. For demonstration purposesclock was set to zero, hence lettingψ

overfit by finding the minimum dissimilarity of the overall maps. Note the an acceptance indicator ofai(m3,m4) = 75.01% clearly shows that this attempt
failed.

Fig. 8. In this mapm′′
3+4 the successful result of mergingm3 andm4 is shown. Note that this is a very difficult case as the overlap region only consists

of 2.71% of the cells ofm3, respectively 8.54% of cells ofm4. This is also reflected by the high lock factor ofclock = 7.5 used in this experiment. The
acceptance indicator ofai(m3,m4) = 99.46% confirms the success.
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Fig. 11. The resultm3to8 of merging the maps gathered by six robots exploring the environment. Unlike in the individual mapsm2 to m8, the structure
of the building becomes recognizable. Especially, the large entrance hall and the three corridors can be nicely identified.

Fig. 9. The mapsm5 (upper left),m6 (upper right),m7 (lower left) andm8

(lower right) gathered by four different robots. Please note that they are here
horizontally aligned for the convenience of the reader. They all have different
orientations and positions in respect to the global reference frame when the
map merging starts.

the influence of the constantclock on the algorithm and as an
indication that the acceptance indicator indeed does its job.
Small values ofclock lead to a strong influence ofψ on ∆.
In the run producing the mapm′

3+4 shown in figure 7,clock

Fig. 10. The results of several pairwise mergers between the mapsm5 to
m8, namelym5+6 (upper left),m6+7 (upper right),m7+8 (lower left) and
m1+8 (lower right), wheremi+j denotes the merger between mapmi and
mj .

was even set to zero. As a consequence, the algorithm tries
to transformm4 to larger regions of similarity withm3 and
to find an ”optimum” by mainly aligning large regions of free
space. This leads to a small value forψ(m3,m4), but it is
far from a usable result. Fortunately, an acceptance indicator
of ai(m3,m4) = 75.01% indicates that this attempt indeed
failed.
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Fig. 12. Four mapsm′
1 tom′

4 based on real world data (top and middle) and
the result of their successful mergerm′

1−4 (bottom). The raw sensor of the
robots was taken from an open database, the Robotics Data Set Repository
(Radish), and processed with a standard SLAM algorithm to produce the input
maps.

Figure 8 shows that it is possible to merge this extremely
difficult case ofm3 and m4 with our approach. Though it
has to be admitted that this is not a typical result and that
for this successful run there were several unsuccessful ones
in this case. But it is of general interest for the quality of
our approach that only the successful run had an optimal
acceptance indicator ofai(m3,m4) = 99.46% and that for
the other runs the acceptance indicators were well below80%,
thus clearly indicating failure. In addition to simply trying
multiple times, the lock factor was increased in this experiment

to clock = 7.5. By increasing the contribution of the check for
overlap in∆, mismatches get higher penalities. This advantage
of ensuring proper overlap is bought at the disadvantage of
increased computation time as the influence ofψ that delivers
meaningful gradients for the search is lessened.

The results achieved with the mapsm5 to m8 (figure 10)
are again representative for the performance of the approach
presented here. Figure 10 shows several pairwise mergers
based on these maps. Finally, let us address the issue of
true multi-robot research, i.e., of using more than two robots.
As mentioned before, map merging scales very well with
increasing numbers of robots. To merge the data of some maps
m̂1 to m̂4 of four robots, the simplest way to do so is to
mergem̂1 and m̂2 to get m̂1+2, m̂3 and m̂4 to get m̂3+4,
and thenm̂1+2 and m̂3+4 to get m̂1to4. Given k robots this
strategy takesO(k) times the time for a pairwise merger. The
successful result of merging the mapsm3 to m8 from six
robots exploring the IUB R1 building is shown in figure 11.
The resulting mapm3to8 shows nicely the core structure of
the building, which can not be recognized from any of the
individual maps.

Last but not least, an additional experiment shall indicate
that the presented map merging algorithm performs as well
with real world robot data as with the maps generated in
the high fidelity simulator. The real world data is taken from
the Robotics Data Set Repository (Radish) [50]. It is based
on the ”aphill 07b” dataset provided by Andrew Howard,
which contains the raw sensor data from four robots. The
four individual maps were generated from the raw data with
a state-of-the-art SLAM algorithm by Grisetti et al.[51]. The
four input maps as well as the successful merger are shown
in figure 12.

For the successful merger of the real world maps, our
algorithm performed much like in the previous experiments
with the maps from the high fidelity simulator. The main
difference is that the real world maps are much larger than
the simulated ones, namely 1000x1000 grid cells in contrast to
the 400x400 cells in the previous experiments. All parameters,
except map size, of the algorithm were exactly the same as
in the previous experiments with simulated map data. The
computation time of each step hence went up to about 25 msec,
mainly due to the increased time needed to compute∆. The
number of steps in each run in contrast was not significantly
influenced by neither the larger map sizes nor by the fact that
the data has been collected in a real world setting. The merger
m′

1+2 of the mapsm′
1 andm′

2 (figure 12 top row) took 53772
steps. Mapsm′

3 andm′
4 (figure 12 middle row) were merged

in 29634 steps. The final result of mapm′
1−4 (figure 12 bottom

row) was generated fromm′
1+2 andm′

3+4 within 47822 steps.

VI. CONCLUSION

Multiple robots can be used at first glance in a straightfor-
ward way for mapping. Every robot can explore and map a
different part of the environment. But the crucial question is
how to integrate the data of the different robots. Here we take
an approach that simply lets all robots operate individually
and then tries to integrate the different local maps into a
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single global one, i.e., that does so-called map merging. The
interesting aspect of the approach presented here is that it
needs absolutely no information about the poses of the robots
relative to each other. Instead, regions are identified that appear
in more than one map. Such regions can then be used to ”glue”
the maps together.

Concretely, we measure the similarity between maps, as
known from computer vision for example for image regis-
tration and stitching. This measurement can then be used to
guide a search process that transforms one map to achieve
a maximum overlap with a second one. There are many
possible choices for both the similarity function as well as
for the search algorithm. Here, a heuristic based on a special
image similarity function is used that can be computed very
efficiently. Adaptive Random Walking is used for the search
process. Furthermore, a special function is introduced that can
indicate whether the merging was successful or not. Last but
not least, results were presented where maps from up to six
robots are merged.
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