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Robotic Assessment of a Crop’s Need for Watering
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I. INTRODUCTION

Agricultural robotics and automation technology play an in-
creasingly critical role across several crop production stages to
improve sustainability (e.g., water use optimization). Robotics
has been applied for remote and proximal sensing, as well
as physical sampling. The procedure of physical sampling
and follow-on analysis of plant specimens such as leaves or
shoots, which is the focus of this work, often constitutes the
only accurate way to measure some essential parameters that
affect crop production, such as stem water potential which
helps determine a crop’s need for watering.

However, both physical sampling and specimen analysis can
be quite laborious and often vary among different types of
crops. Given the growing agricultural workforce shortages [1],
the labor-intensive nature of these measurements poses a
severe limitation on how many samples can be collected and
analyzed, and restricts how growers and farm consultants can
assess local conditions and optimize operations in support
of sustainable crop production. This is particularly critical in
high-value perennial crops, such as avocados, citrus, almonds,
nuts, and vines. Hence, robotics and automation technology
can be employed to support physical sampling and specimen
analysis.

The goal of this work is to develop robotics and automation
technology tools that can help assess watering needs for tree
crops. The primary focus lies in automating the process of
measuring stem water potential (SWP). SWP is a metric fre-
quently used by agronomists and growers to optimize irrigation
schedules for crops [5], with the intent of reducing water waste
and maximizing profits [15,19]. The current industry standard
for obtaining SWP measurements is the Scholander pressure
chamber method [16], which involves the insertion of a leaf
sample into a pressure chamber with its stem’s excised end
exposed (Fig. 1(a)). After the sample is secured, a human
operator slowly activates a valve to pressurize the chamber
while also observing the water expression at the end of the
exposed stem through a magnifying glass (Fig. 1(b)). The
pressure necessary to force water out of the stem determines
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the SWP. The process measures the capacity of the cells to
retain water by pressurizing the leaf. The less free water there
is in the plant, the greater the pressure required to cause the
leaf to exude water. When taken in pre-dawn conditions (i.e.
performed before sunrise) and plant stomata are closed, the
measurement is at equilibrium with soil moisture conditions.
Subsequent measurements can then precisely determine water
deficit, and thus irrigation demand to meet evapotranspiration
loss. A precise measurement of the SWP is essential to assess
the water deficit of the plant and to therefore adjust irrigation.
Given that 80% of managed freshwater in the US is consumed
by agriculture [21] and that evapotranspiration model estimates
widely diverge [8], even modest improvements in irrigation
practices can have huge impacts, especially in the semi-arid
southwestern US that periodically undergoes drought periods
while providing a large fraction of fruits and vegetables.

Considering the aforementioned labor-intensive steps in
measuring SWP using the pressure chamber method, but rec-
ognizing its significance in crop production, some alternative
methods have been proposed. Some rely on remote sensing
using spectral reflectance or multi-spectral imaging to deter-
mine water potential [20,25]. Their greatest values are their
non-invasive characteristic, much like the pressure chamber
method, and scalability since these methods are intended as a
faster alternative to the pressure chamber for mass assessment.
Though initially promising, these methods are highly sensitive
to an intractable external factor, i.e. light variability due to
weather and solar motion. Zhao et al. [25] mounted multi-
spectral cameras on a small UAV to take high-resolution multi-
spectral images of orchards for SWP prediction using the
canopy Normalized Difference Vegetation Index (NDVI), but
mentioned the high variability in data collected from different
flights within the same day due to solar motion. Vila et al. [20]
used remote sensors and spectral reflectance as a proxy for
SWP measurements but had a low correlation coefficient and
thus concluded this method cannot serve as a replacement for
the pressure chamber method. Since the concepts of spectral
reflectance and imaging may not be mature yet for this
application, our work seeks to directly automate the pressure
chamber method for assessing SWP.

Specifically, we are developing a robotic system that can
physically collect and analyze plant specimens in the field
at scale to determine the SWP, thus removing some of the
main practical obstacles to the implementation of precision
agriculture, and providing growers and farm consultants with
granular data currently not available. The overall system
developed in this work aims to automate time-consuming and
difficult to perform tasks, namely collecting multiple leaves
from tree crops and automating some parts of the follow-
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Fig. 1: (a) Working principle of the pressure chamber. (b) Manual visual inspection is currently performed in the field for SWP
analysis. (c) Illustration of the concept proposed in this work. A mobile robot autonomously selects multiple measurement
locations for sample collection and retrieves leaves. These are later on conveyed to a human operator who uses a pressure
chamber retrofitted with our machine-vision-assisted technology to determine the pressure defining the SWP.

on SWP analysis. With reference to Fig. 1(c) which outlines
the overall idea, our system first determines the location of
trees in the field to sample leaves from (Section II). This part
contributes to informed path planning under motion energy
constraints for autonomous mobile robots. Once sentinel trees
have been selected, a mobile manipulator with a custom-
designed end-effector is tasked to autonomously retrieve leaf
samples and transport them back to a SWP analysis station
(Section III). Our work here contributes key information
regarding component selection, system design, and system in-
tegration features underlying autonomous perception-actuation
loops for mobile manipulation. When the robot has reached
the SWP analysis station, a human operator loads the samples
into a machine-vision-assisted pressure chamber to determine
the exposed leaf stem’s wetness (Section IV). This last part
contributes data and methodologies to employ machine vision
and machine learning to help automate the very labor-intensive
process of determining the point of xylem water expression
during SWP. In the remainder of the manuscript, we detail
the aforementioned process and contributions. Finally, we
summarize lessons learned and sketch ideas for future research
enabled by the work described herein (Section V).

II. INFORMED PLANNING FOR SELECTION OF SAMPLING
TREE LOCATIONS

The overall process initiates by determining a sequence
of trees to collect leaf samples from. A direct, brute-force
approach would be to sequentially sample from all trees in
the field. However, such a process would not scale with
commercial field sizes. To make this process tractable, growers
currently rely on sampling from a small number of so called
sentinel trees. When measurements are taken manually, a
small fixed set of sentinel trees are preselected and sampled
throughout the growing season. A drawback of this approach
is that samples from a small number of trees are used to

extrapolate the values of relevant parameters over significantly
larger areas, a process which may yield inaccurate results and
hence lead to sub-optimal watering decisions.

Deployment of one [10] or more [9] autonomous mobile
robots in the field to collect samples opens up the possibility
of considering a larger set of sentinel trees, and also to plan a
sequence of sampling locations on the fly, ideally based on the
outcome of former measurements. This process is subject to
an energy constraint, i.e. the motion planning algorithm that
determines the next tree for sample collection has to ensure
that the robot will not run out of energy before returning to a
preassigned location, where its battery can be either recharged
or swapped for a new one. With this approach, a much larger
set of potential sentinel trees can be considered, and the
planner task is to select at run time the most suitable subset
for sampling. While in previous precision agriculture works
we studied this problem as an instance of the orienteering
problem [11], we here cast it as an instance of the informed
path planning problem (IPP) where the goal is to solve the
following optimization problem:

p∗ = argmax
p∈Π

f(p) s.t. C(p) ≤ B .

Here, Π is the set of all paths through the set of sentinel
trees, f(p) is the quality of the path, and C(p) is the cost
of the path that is bounded by the available energy budget
B. Ideally, the quality of a path f(p) would be assessed by
the root mean squared (RMS) error of the scalar field being
estimated. Because in practice the ground truth is unknown,
RMS cannot be directly computed, and we rather aim at
collecting samples that reduce this metric. To this end, we
use Gaussian Processes (GPs) to model the underlying scalar
parameter being estimated, i.e. SWP [17]. GPs are an ap-
pealing modeling approach because of their efficient posterior
update, and they are also widely used in geostatistics to model
physical phenomena (where the approach is usually referred
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to as kriging.) Specifically, we use a Matérn kernel with
smoothness ν = 1.5 as this has proven to be an appropriate
choice in agricultural applications.

Using GPs, after each sample is collected we can update the
uncertainty associated with the scalar field being estimated,
and then iteratively build a path collecting more samples
at sentinel trees located in regions with high uncertainty.
Therefore, after each sample is collected the importance of
each sentinel tree is reassessed based on the values collected
up to that point. Note that in our approach samples are
collected only at the selected sentinel trees, and not along
the way. This differs from our previous work [11] where
each candidate sampling location’s value was predetermined
and fixed. Different metrics can be used to estimate the
value of collecting a sample at a given location. In some
instances the variance of the GP estimate is used [2], with
the goal of collecting samples in high variance regions to
reduce uncertainty. In our work we are currently focusing on
mutual information (MI). Let S be the set of sentinel trees,
and A ⊂ S a subset of already sampled sentinel trees. The
mutual information between these two sets is defined as

MI(A;V \ A) = H(V \ A)−H(V \ A|A) ,

where H is the entropy associated with the given sets, based
on the current estimate. Owing to the fact that GPs are used
for the underlying estimates, closed-form expressions can be
be obtained for MI [17]. Then, the path p can be iteratively
extended by adding the sentinel tree

t = arg max
t∈V\A

[H(Vt \ At)−H(Vt \ At|At)]

where Vt = V \ {t} and At = A ∪ {t} subject to the
constraint that after having reached the tree being added to
the path there must be enough energy left to reach the final
destination, i.e. the location where the pressure chamber is
located. Once a new sampling point is selected, a path to it
is computed using the rapidly-exploring random tree (RRT)
motion planning algorithm informed by the fixed locations of
the trees in the orchard. This process is iterated until the end
point is selected and reached.

To test the viability of this approach, we performed ex-
tensive tests in a simulated environment, where under con-
trolled conditions we varied the underlying scalar field being
estimated, as well as the number of sentinel trees. Figure 2
displays a subset of our obtained results, and shows that the
proposed approach is capable of reconstructing the underlying
field even with a small budget by visiting the most significant
(i.e. informative) locations. Figure 2(c) also displays the path
produced by the planner. (The path in Fig. 2(e) is omitted
for figure clarity.) Additionally, deployment of the developed
strategy for determining sampling locations during actual field
experiments is presented in the following section.

III. ROBOT DESIGN AND DEPLOYMENT FOR
AUTONOMOUS LEAF RETRIEVAL

Once a desired sequence of sentinel trees has been selected,
the deployed robot (a wheeled mobile manipulator–see Fig. 3)

(a) (b)

(c) (d)

(e) (f)

Fig. 2: (a) Underlying scalar field (ground truth) and the
location of 100 candidate sentinel tree locations; (b) GP
reconstruction obtained if the robot is allowed to collect
samples at all locations (used for benchmarking purposes).
(c) Sampling points and path selected by the algorithm with
a budget C of 750 (small value) and (d) reconstructed scalar
field obtained using these sampling locations. (e) Sampling
points (path not shown for image clarity) selected by the
algorithm with a budget C of 2000 (average value) and (f)
reconstructed scalar field obtained using the latter locations.
In the simulation, distances and budgets are in meters.

needs to navigate toward the corresponding field locations
to physically sample leaves. We can perform this process
autonomously by integrating four core functionalities: 1) end-
effector design to cleanly cut and retain leaves; 2) on-board
visual perception to detect and localize candidate leaves; 3)
robot arm manipulation to enclose a candidate leaf with the
end-effector and cut it; and 4) waypoint navigation of the
wheeled mobile robot based in the field to travel from one
sampling location to another and back to the SWP analysis
station. Our previous work [3] has focused on studying the
third functionality, namely co-optimizing perception and ac-
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Fig. 3: The agricultural robot used in this work for robotic
assessment of a crop’s need for watering.

tuation for autonomous leaf retrieval in static cases. Herein
we present research findings on the important components of
the development and assessment of the end-effector, camera
selection and assessment to enable visual leaf identification
and pose estimation, and overall system integration and field
deployment and testing. We anticipate that the information
included herein can also help other researchers working on
related topics of robotic visually-informed physical sampling.

A. End-effector Design

To be appropriate for SWP analysis, the end-effector needs
to cleanly cut the leaf stem to separate the test specimen from
the host tree, as well as retain the cut leaf for the subsequent
pressure chamber analysis since a damaged specimen can
negatively impact the analysis.

1) Requirements and Benchmark Testing for Efficient
Cutting: Given the radius of a leaf stem (r), we can calculate
the required cutting force as F = πr2τ , with shear stress
τ ∈ [0.85, 5.90] MPa for cutting organic plant matter [24]. We
measured the diameter of 10 leaves from four different tree
crops (avocado, clementine, grapefruit, and lemon) for a total
of 40 leaves. The average leaf stem diameter was 2.09 mm
with a standard deviation of 0.51 mm. With this information,
we were able to estimate that the force required to cut the
average leaf ranged from 2.9 to 20 N. However, organic matter
such as leaf stems exhibit visco-elastic properties. When stress
is applied, the material resists the deformation linearly with
time. When stress is removed from an elastic material, the
material returns to the original non-deformed state. Based on
visco-elastic material principles, faster cuts will require less
force and result in less deformation of the leaf stem. Hence,
the rate of cut is equally important to the delivered force.
For this reason, we conducted a set of cutting experiments to
determine the optimal cutting rate.

Specifically, an initial prototype leaf cutter was placed
on a level platform above a measuring stick with a high-
speed camera positioned to face the cutting blades. Three
distinct gear sets were 3D-printed so that they could be
inserted between the servo motor and the cutting mechanism
to adjust the speed. For each gear ratio (7:13, 22:13, 41:13),

TABLE I: Leaf Cutting Velocity Tests
Gear Ratio Frame Count Time (s) Speed (m/s) Success

7:13 48 0.200 0.095 No
7:13 40 0.167 0.114 No
7:13 39 0.163 0.117 No
7:13 41 0.171 0.112 No

22:13 20 0.083 0.229 No
22:13 25 0.104 0.183 No
22:13 17 0.071 0.269 No
22:13 18 0.075 0.254 No

41:13 16 0.067 0.286 Yes
41:13 20 0.083 0.229 Yes
41:13 11 0.046 0.416 Yes
41:13 14 0.058 0.327 Yes

four leaves were inserted into the mechanism and the high-
speed camera recorded the cutting attempt for each leaf. The
selected motor had sufficient torque margins so that the desired
cutting force could be delivered with all tested gearing setups.
Recorded frames were analyzed to determine the terminal
speed of the cutting mechanism. With known camera frame
rate (240 fps) and travel distance (19.1 mm), the cutting speed
of the mechanism can be determined as

V =
δx

δt
≈ ∆x

frame rate × frame count
.

Of the three gear ratios, only the fastest gearing resulted in a
cleanly cut leaf. Table I shows results from all trials. From this
analysis, we determined that the minimum cutting speed for
the cutter should be 0.312 m/s. With both the cutting force and
rate determined, we proceeded to develop an end-effector with
a desired target force of 20 N at 1.1 m/s. This rate provides
sufficient margin over the empirically determined minimum
cutting speed of 0.312 m/s to account for any losses and work
with a wide variety of tree leaves.

2) Prototype End-effector Assembly: The cutting mech-
anism utilizes two four-bar linkages to actuate a set of sliding
gates, one of which contains a razor blade to cleanly sever the
stem without damaging the leaf (Fig. 4). The gates also help
retain the leaf within the end-effector’s chamber after removal
from the tree. These four-bar mechanisms are connected via
a geartrain to achieve synchronized motion. A low-cost, high-
torque R/C servo (FEETECH FT5335M) drives the geartrain
while being amenable to adequate position control. The end-
effector’s chamber has an opening of 110 mm × 45 mm and a
depth of 185 mm to accommodate for typical avocado leaves
(which are the largest of the four tree crops considered in
this work). The end-effector is constructed with miniature
aluminum extrusions, lightweight 3D printed parts, and laser-
cut acrylic panels. The assembly weighs a total of 1.09 kg,
which is 42% of the robotic arm’s 2.6 kg payload we used to
integrate our end-effector onto (Kinova Jaco 6-DoF).

The end-effector was designed to operate symbiotically
with the Robot Operating System (ROS). High-level control
commands can be handled via a ROS node. The node receives
commands from published ROS topics and issues commands
to the end-effector via Serial UART communication. The end-
effector contains an embedded microcontroller (Arduino Due)
to parse the received serial commands and control the motor
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Fig. 4: Exploded view of the end-effector. Key components
of the assembly include an Intel RealSense D435i Depth
Camera (A) and an interchangeable robotic arm mount (B).
The FEETECH FT5335M R/C servo (C) is connected via a
geartrain (D) to four-bar linkages (E). This mechanism closes
the gates (F) to cut the leaf with the razor blade (G). This
separates the leaf from the tree and retains it within the
enclosure for subsequent SWP analysis.

that drives the cutting mechanism. A breakout board connected
to the Arduino contains a “safe/armed” switch along with LED
indicators to reduce the risk of accidental injury from the razor
blade (for redundancy, the high-level ROS control node also
has a software “safe/armed” switch). A 7.4 V 2S LiPo battery
powers the assembly. The overall prototype was mounted on
top of a commercial mobile manipulator (Clearpath Husky
wheeled robot with Kinova Jaco robot arm) also running ROS.

B. On-board Perception

Our work considers an “eye-on-hand” configuration
whereby a camera mounted on top of the end-effector (Fig. 4)
is used to provide information regarding leaves to sample as
well as their position and orientation (pose) in 3D space.

1) Camera Selection & Placement Evaluation: Several
cameras were considered as the sensing modality for the
proposed end-effector (Table II). Although the ZED and ZED2
have solid performance, they were excluded because of their
wide baselines which do not fit our intended eye-on-hand
configuration. We evaluated the performance of the three other
cameras in different conditions including indoor and outdoor
environments. The obtained results show that the Realsense
(RS) D435i has the best performance, especially outdoors
where it is able to provide a viable depth image at close ranges.
Furthermore, we were able to obtain high-quality point clouds
at depth ranges lower than those provided in manufacturer
specifications (0.1 m). Sample images collected using the RS
D435i are shown in Fig. 5.

Two eye-on-hand configurations were considered, one look-
ing straight ahead and one looking downward at a 45◦ angle.
While the former case can lead to longer look-ahead distances,
the latter one was ultimately selected. This configuration
balances between providing useful depth information about
the tree (needed for obstacle avoidance and navigation around
tree branches) and allowing for leaf detection and localization
(needed for aligning the end-effector with the leaf to cut it).

TABLE II: Candidate Cameras Specifications

Camera Baseline Depth Range Field of View(mm) (m)

ZED 120 0.3 – 25 90◦ x 60◦ x 100◦
ZED2 120 0.3 – 20 110◦ x 70◦ x 120◦
ZED mini 63 0.1 – 15 90◦ x 60◦ x 100◦
RS D435i 50 0.2 – 3 87◦ x 58◦ x 95◦
RS D455 95 0.4 – 6 87◦ x 58◦ x 95◦

Fig. 5: Sample RGB and depth images collected from RS
D435i in an outdoor environment at (a)–(b) 15 cm, (c)–
(d) 20 cm, and (e)–(f) 25 cm.

2) Scene Understanding: The on-board camera yields a
3D point cloud which we are consequently using to detect and
localize appropriate leaf candidates via 3D bounding boxes.
The process is visually exemplified in Fig. 6 and described
next. First, we removed outliers caused by noise in sensor
measurements and segment out the background. The degrees
of outlier detection and background removal depend on user-
tuned hyperparameters. Then, we applied downsampling for
computational expediency without loss of performance. Next,
we grouped the remaining point cloud segments into clusters
using the Density Based Spatial Clustering of Applications
with Noise (DBSCAN) approach. DBSCAN relies on two key
parameters, the minimum distance between two points to be
neighbors (eps) and the number of minimum points to form
a cluster (MinPoints). Each resulting cluster is considered a
potential leaf and described by a 3D bounding box defined
by center C = [cx, cy, cz]

T , dimensions D = [h,w, d], and
orientation R(θ,Φ, α). Then, we filtered the clusters using
geometric features of the bounding box: number of points,
volume, and leaf ratio. Finally, the pose of the center of each
bounding box was set as the 6D pose of a leaf candidate.

To validate our approach, ROSbags were collected both
in indoor (lab with constant light conditions) and outdoor
(local orchard with varying light conditions) settings. In indoor
experiments, the robot arm with the camera was placed at
different distances (0.2 − 0.3 m) from a potted tree, whereas
outdoor data were manually collected over a wide range
(0.5−1.6 m) of distances from trees. A total of 25 point clouds
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Fig. 6: Key steps in our proposed leaf detection and local-
ization process. The sample here corresponds to an outdoor
point cloud: (a) corresponding RGB image of the tree, (b) raw
point cloud, (c) background removal, (d) downsampled point
cloud, (e) segmented clusters, and (f) detected candidate leaves
without 6D pose bounding boxes. (Image taken from [3].)

were collected (10 indoor and 15 outdoor) and tested offline
with different combinations for eps and MinPoints parameters,
to determine appropriate values.

Results demonstrated detection 80.0% on average (maxi-
mum: 90%) in the indoor dataset and detection 79.8% on
average (maximum: 85%) outdoors (see Table III). Further,
we observed that the distance between the camera and the
tree affects parameter selection for point cloud processing. As
the distance increases, values for eps and MinPoints should
increase and decrease, respectively.

TABLE III: Leaf Point Cloud Detection
Point

Clouds
Total #
Leaves

Average
Detection Percentage

Indoor 10 20 16 80.0%

Outdoor 15 99 79 79.8%

C. Evaluation of Autonomous Leaf Extraction Efficacy in
Controlled Settings

The system operation flow diagram regarding how to detect
and extract a leaf from a tree is depicted in Fig. 7. First,
the robot base needs to be in close proximity to a tree to
sample leaves from.1 Once in place, obtained point cloud data

1 In detail, the mobile base needs to be at an offset distance from the tree
canopy so that the intersection of the reachable workspace of the robot arm
and the outer canopy is maximized. Note that considering the leaf and end-
effector 3D orientations is crucial, hence the robot should also avoid being
too close to the canopy as this can lead to singular configurations for the arm.
This trade-off is captured in our work via the notion of viable leaves. These
are leaves that are detected, within the reachable workspace of the robot, and
away (in a topological sense) from singular configurations that could bring
the robot arm to a locked status.

Fig. 7: Our approach for autonomous leaf extraction integrates
perception and actuation. Point cloud data are processed at
runtime to segment leaves and add leaf candidates into a
queue. Candidate leaves are then passed to the robot arm and
end-effector. If a cut is successful, the routine ends but if not,
the next leaf in the queue is requested and the process repeats.

from the camera mounted on the end-effector are processed in
real-time using Open3D [26] running on an Intel i7-10710U
CPU, without any additional GPU acceleration. Identified and
segmented leaves serve as target for the arm to move and align
the end-effector along a detected leaf candidate within the end-
effector’s workspace, at an offset position from the center of
the leaf. The offset distance can be selected in relation to the
length of the leaf. When the end-effector reaches the target
offset, the arm is commanded to move along a linear path
toward the leaf. When the leaf is enclosed, the end-effector
cuts the leaf and retains it. Then, the arm returns home, and the
process may repeat as part of a larger field sampling procedure;
see next subsection.

We evaluated our developed autonomous leaf extraction
pipeline in controlled settings indoors, with a real potted
avocado tree. The end-effector was initialized at random
poses near the base of the tree at distances ranging between
0.2−0.3 m from the edge of the tree canopy. An experimental
trial consisted of collecting a point cloud, storing the identified
and localized potential leaves in a queue, and then sending
the queued leaves to the arm for a retrieval attempt. Each
trial concluded once the queue was depleted and the tree was
repositioned for the next trial. Figure 8 outlines this process.
Out of 46 trials, 63 potential leaves were detected by the point
cloud.2 After filtering the potential leaves to remove the leaves
outside of the work space, 39 viable leaves remained. Out
of these leaves, 27 were captured successfully (69.2%) while
21 of the 27 captured leaves were cut (77.8%). The mean
point cloud processing (perception) time was 5.6 sec and the
mean cutting (actuation) time was 10.6 sec. The mean total
retrieval time was 16.2 sec. These findings demonstrate that
the developed system can successfully cut and retain leaves in
controlled settings.

2 Note that each point cloud in the trial may produce a variable amount of
leaves, hence the higher number of potential leaves than trials.
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Fig. 8: Sample leaf retrieval process. (a) Point cloud data are processed to determine a potential leaf. (b) Given a detected
leaf within the workspace, the arm will move to an offset position. (c) The arm moves in a linear motion toward the leaf to
enclose it. (d-e) When in place, the end-effector will cut the leaf and retain it into the enclosed chamber. (f) After completing
the cut, the arm will return to the home position. (Image taken from [3].)

D. Overall System Integration and Field Experiments

The final step toward enabling autonomous leaf retrieval
comprises the integration of waypoint navigation and deploy-
ment in real-world field experiments. To assess the robustness
of our framework, consider a list of sentinel tree locations.
This information is used to create desired waypoints that
serve as the locations the robot should visit and attempt to
sample leaves from the corresponding sentinel trees. Then, we
integrate the leaf extraction steps outlined in Fig. 7 for every
encountered tree. When the leaf extraction process terminates
for each sentinel tree, the robot moves to the next sampling
area and the process repeats, or returns to the analysis station
where collected leaves are retrieved by the human co-worker
and placed into the pressure chamber for automated stem water
potential analysis (see Section IV that follows).

Field experiments were conducted in an avocado tree
field at the Agricultural Experimental Station (AES;
33◦ 58′ 3.2592′′ N, 117◦20′ 7.0296′′W ) at the University of
California, Riverside. We use satellite imagery to construct an
outline of the geometry of the field, including tree positions.
As an example demonstrating how to reduce the general plan-
ner to practice, we consider the case of sampling from three
sentinel trees within an area of interest measuring 11× 6 m2.
Selected sentinel trees and the underlying GP reconstruction
are shown in Fig. 9. The computed path for the robot to follow
as per our planning algorithm in Section II is also highlighted
in the figure.

The satellite-based map is described in the World Geodetic
System 1984 (WGS-84), but to be usable from the robot
it needs to be linked with the mobile robot’s local map
which is in turn used for robot navigation. We use the

Universal Transverse Mercator (UTM) projection to express
the satellite-based sampling points into desired waypoints in
the robot’s local coordinate system. The mobile robot base we
use (Clearpath Husky) can obtain odometry information from
its wheel encoders, orientation, linear velocity and angular
acceleration measurements from its embedded inertial mea-
surement unit (IMU) module, and positioning data captured
by its onboard Global Navigation Satellite System (GNSS)
receiver. This information is used onboard and in real time
by the navsat transform node3 from the built-in ROS
navigation stack, to broadcast the pose (i.e. position and orien-
tation) of the mobile robot base in the UTM local coordinate
system. The robot’s pose is updated in the local frame while
moving, by using fused information from the three onboard
sensory modules. The movement actions in the local frame are
handled by the move base 4 ROS package, which generates
velocity commands for the mobile platform in order to acquire
the desired pose in the local frame. For additional safety,
our developed system allows a human operator/supervisor to
trigger when the robot switches between navigation and leaf-
picking modes, as well as to skip a sampling location and move
to the next one. The robot arm is rigidly affixed to the mobile
base; coordinate transforms between the mobile base and each
arm link frame as well the end-effector frame are all readily
computed via closed-form forward kinematics expressions.

In our experiments, the mobile robot starts from a known
position on the map. The robot arm is initialized turned toward
the right-hand side of the mobile base, so that the camera

3 http://docs.ros.org/en/jade/api/robot localization/html/navsat transform\
node.html

4 http://wiki.ros.org/move base
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Fig. 9: GP reconstruction of the avocado field with three
sentinel trees considered during field experiments.

mounted on the end-effector has an unobtrusive view to the
tree canopies from the right-hand side of the robot as the latter
moves forward.5 The first desired pose is transmitted to the
platform, which in turn moves toward the target tree at the
desired position using the generated trajectory. As the first
goal pose is reached, the mobile platform stops and the leaf
retrieval process subsequently initiates. The perception module
processes the collected point cloud and returns the center
and dimensions of each candidate leaf with respect to the
camera frame. The tip and stem positions are then estimated
with respect to the end-effector’s frame, and the manipulation
planning procedure outlined in Fig. 7 is executed. Figure 10(a)
illustrates an instance of the mobile robot when sampling at
the third desired location. Three candidates leaves have been
successfully detected, and the process can then proceed to the
actuation procedure. Figure 10(b) depicts the path followed
by the robot in the field experiment until reaching the third
sentinel tree. The complete field experiment can be viewed in
the supplemental video at https://youtu.be/xu4zrTe S-U.

IV. MACHINE-VISION-ASSISTED IDENTIFICATION OF
LEAF STEM WETNESS IN SWP ANALYSIS

The final stage of this work concerns the automated iden-
tification of leaf stem wetness during stem water potential
(SWP) analysis. We consider that leaves have been collected
by the mobile manipulator and transported back to the SWP
analysis station. There, a human operator loads/unloads a leaf
into the pressure chamber. The latter, is retrofitted with both
additional hardware as well as machine-vision software to
enable automated visual identification of the status of the leaf
xylem (dry/wet). Our approach provides live feed of the stem
as the pressure in the chamber increases. When the status
changes from dry to wet, our developed system identifies the
transition and alerts the operator so that they can note down
the pressure. To accommodate for the large variability that is
typically present in this process, our proposed solution hinges
on learning-based machine vision. In the following we detail
the data acquisition, hardware and software development, and
algorithm training and evaluation components that are neces-
sary to automate this labor-intensive process of determining
the leaf xylem wetness status.

A key part of our work is the creation of a new stem image
dataset, collected over the course of two sessions (a two-

5 This configuration helps distribute the load to the mobile base as
evenly as possible given other embedded parts, and minimizes occlusions
to an embedded LiDAR sensor that is currently used to collect data during
operation to create the visualizations shown in Fig. 10).

(a)

(b)

Fig. 10: (a) Visualization (in ROS RViz) of the mobile robot
at the third sentinel tree location. Each depicted coordinate
system represents the corresponding state at the captured mo-
ment. Three leaf candidates, namely leaf {0, 1, 2} tip, have
been detected. Given these candidates, the actuation module
will decide to reach the closest one and attempt to cut and
retain. (b) Visualization of the path followed in the avocado
experimental field. The captured moment shows the robot in
the third leaf sampling position, while at the leaf detection
procedure. Red arrows illustrate the odometry poses along its
path from the starting position to the sampling position.

week long in July 2022 and another one-week long in June
2023) at UCR AES fields in an arid hot climate. We collected
upwards of 80 avocado and orange leaf samples (for system
training and validation) and 20 lemon and grapefruit leaf
samples (for preliminary evaluation of the developed method’s
generalization capacity), performed conventional stem water
potential (SWP) analysis while video recording each session,
and extracted frames from the recordings to build the dataset.

A. Data Acquisition

1) Setup and Procedures: We considered two pressure
chamber setups, the Pump-up and 600D models from PMS
Instruments. The former is powered manually by performing
alternating upward and downward strokes that increase the
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Fig. 11: Diagram showing how the custom-made mount and
camera setups (left: endoscope, right: high quality Picamera)
are mounted onto the manual pump-up chamber. The mounting
onto the 600D nitrogen gas pressure chamber follows a very
similar manner and is not shown here for brevity.

pressure inside the chamber (similarly to a hand pump). The
latter uses compressed nitrogen gas which enters the chamber
by rotating a knob connected to a valve.6

We also considered two different miniature cameras to be
mounted onto the chambers. These included a high quality
miniature camera (HQ Picamera) together with a Raspberry
Pi 3 B+ single board computer to store the video footage and
a wireless endoscope camera that was streaming the video
footage wirelessly to a smartphone. The rationale under these
two selections is that the first camera setup allows for a
fully-customizable means that can support further robotics
and automation integration. The second camera (a low-cost
commercially-available endoscope) can serve as an off-the-
shelf solution to make the work herein self-contained as an
intuitive and low-cost way to stream and assess the video
footage by the user in a standalone device fashion. Both
cameras (one at a time) were mounted onto the chambers
via a custom-made 3D printed carbon fiber reinforced mount,
which attaches directly on top of the chambers’ point of
loading the stem of the cut leaf (Fig. 11). The assembly can
be removed between measurements and facilitates focal and
aperture adjustments to produce clear images of stem samples.

We followed the proper protocol when performing SWP
analysis and data acquisition. Sampling was performed mid-
day (12PM - 3PM) as per recommendations from relevant
literature [5], and leaf samples were bagged with reflective
foil bags for at least ten minutes before excision to mitigate
water loss through transpiration. During the first session, the
excised leaves were placed in an opaque, ice box storage
container (not touching the ice) and transported back to the lab
for SWP analysis. While earlier literature was recommending
making the measurements on the spot and avoid transportation
of samples, the work of [14] suggested immediate storage
of excised leaf samples in a cold and moist environment
helps stabilize the sample’s water potential and preserve the
condition for hours or even days, depending on the plant
species [14]. We followed the standard SWP analysis proce-
dures and proper protocol for sample collection and storage
to ensure our image dataset is representative of the real-world
underlying conditions. However, in an effort to gather a dataset

6 For more details about these chambers please see the manufacturer’s
manuals at https://www.pmsinstrument.com/.

with more variability to enable more thorough evaluation of
our method, in the second session we processed the excised
leaves on the spot in the field.

2) Dataset Creation: The developed image dataset used
for network training, testing and validation consists of 10713
images of dry and wet excised leaf stem cross sections from
avocado and orange trees, with a binary class partition of
50.6% dry and 49.4% wet. These images are video frames
extracted from our recordings of SWP analysis with the
conventional pressure chamber method using all four different
setups (recall we used two different pressure chambers and two
different miniature cameras). Considering we also use leaves
from two distinct tree species, the overall dataset contains
images from eight distinctive real-world cases. The majority
of the images at this stage, however, are taken from setups
involving the static 600D pressure chamber model.

As with any image dataset, the frames were first pre-
processed. The video recordings from the Raspberry Pi were
first imported to a desktop and converted from h264 to MP4
format. The video resolution was redefined from 1920x1080
to 640x640 (footage was resized to maintain true aspect),
to match the expected input image size for the YOLO net-
works [13] we employed in our learning-based machine vision
approach. Videos from the endoscope camera were already of
a uniform aspect ratio, so a quick resize from 720x720 to
640x640 was applied to all videos from this setup. Once the
video resolutions were redefined, we extracted video frames
of interest as images and saved them in the working directory.
Finally, all images in the working directory were manually
annotated with an open-source YOLO format annotation tool.7

The resulting labels and frames were then compiled into our
stem image dataset with a partition of 7759 training, 1952
validation, and 1002 testing images.

A similar procedure was also performed for the second
session which contained images sampled from 20 video in-
stances from leaves excised by lemon and grapefruit trees (10
from each species). In this setting we used one setup, i.e.
the pump-up chamber with the high quality Picamera, and
conducted measurements in the field under variable ambient
light conditions. For this dataset part we extracted and eval-
uated a total of 45000 images and manually classified them
based on xylem wetness status (dry/wet). This dataset part was
not used in training, testing, and validation at all. Instead it
was used as a way to test the preliminary feasibility of our
method to generalize to very diverse out-of-sample cases. In
subsection IV-B that follows we employ the first dataset part,
whereas subsection IV-C considers the second dataset part.

B. Object Detection of Dry over Wet Stem Condition

YOLO (You Only Look Once) is a single-stage detector
capable of performing both object identification and classi-
fication in a single shot allowing the network to be smaller
and faster [13]. Since its original release, the YOLO family
of models has continued to evolve and improve in terms of

7 For details on the Yolo Annotation Tool please see https://github.com/
ManivannanMurugavel/Yolo-Annotation-Tool-New-.
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TABLE IV: The three distinctive YOLO networks and variations considered in this work, and training results on our developed
stem image dataset with base and tuned hyperparameters and augmentations.

Network Size (MB) Training Time (hrs) Epochs Recall Precision mAP@0.5 mAP@0.5:0.95

YOLOv5 Base 13.8 2.1 80 0.999 1.0 0.995 0.929
YOLOv6 Base 36.3 6.1 80 0.940 0.995 0.995 0.910
YOLOv7 Base 71.4 10.0 80 0.999 1.0 0.998 0.910

YOLOv5 Tuned 13.8 2.4 80 0.999 0.995 0.995 0.885
YOLOv6 Tuned 36.3 6.6 80 0.910 0.995 0.995 0.881
YOLOv7 Tuned 71.4 10.0 80 0.999 0.994 0.998 0.884

structure and performance. In this work, we focused on three
YOLO iterations: YOLOv5, YOLOv6, and YOLOv7.8

Each network structure consists of 3 main parts: backbone,
neck, and head. The YOLOV5 backbone is based on a cross-
stage partial network (CSP) [23] to reduce the amount of
calculation and increase the speed of inference, and spatial
pyramid pooling structure (SPP) [7] to help improve detection
accuracy. The adaptive anchor frame calculation on the input
image enables automatic setting of the initial anchor frame
size and adapting to dataset changes. The neck includes feature
pyramid structures of PANet [12] that aim to strengthen the
feature extracted from the backbone and further improve the
detection capability. The head predicts targets of different sizes
based on the obtained feature maps.

The following version, YOLOv6, introduces EfficientRep
Backbone and Rep-PAN Neck by replacing the CSP-Block
used previously with RepBlock [4]. The new structure has
a decoupled head which adds layers separating the features
from the final head and has been found able to increase
performance. It uses an anchor-free paradigm and SimOTA, a
simplified version of OTA (Optimal Transport Assignment) [6]
to enhance training speed and detection accuracy.

In the YOLOv7 version, several changes and enhancements
were made. Notably, extended efficient layer aggregation net-
works (E-ELAN) [22] serve as the backbone to improve the
learning ability. Compared to the original architecture ELAN,
E-ELAN only changes the architecture in computational block
as the architecture of transition layer is unchanged. The
authors in [22] proposed a new compound scaling method
to employ parameters and computation more efficiently and
planned a re-parameterized model that can optimize the scaling
process and can be applied to concatenation-based models.
The head consists of an auxiliary, a lead head, and a soft label
assigner for coarse and fine labels.

The efficacy of the trained models was evaluated in terms of
three criteria: 1) localize accurately the stem in an image, 2)
perform classification of the two states DRY and WET, and 3)
have a stable transition from DRY to WET in a video setting.

1) Network Training Parameters: Since the three YOLO
networks employ distinctive structures, we trained each ver-
sion from scratch on 7759 training images in two ways:
baseline and tuned. The baseline variation features the baseline
hyperparameters provided by the developers of the methods

8 We wish to highlight here that other learning-based machine vision
methods are in principle applicable. However, we elected to work with YOLO
in this work due to its widespread use and solid outcomes in a number of
distinctive applications. As we show shortly, this method can help reach very
high classification accuracy which was deemed sufficient in this work.

in their respective repositories. In the tuned variation, we
performed tuning of selected hyperparameters to assess the
impact of different data augmentations on each model’s per-
formance and training time. Tuned hyperparameters include
a decrease in saturation augmentations (↓ 0.3 probability),
an introduction of rotation augmentations (± 45◦), and a
deletion of the mixup and paste-in augmentations. The baseline
hyperparameters feature more emphasis on color space aug-
mentations and less on spatial-level transformations, whereas
our tuned hyperparameters emphasize more on spatial-level
transformations and less on color space augmentations. We
justify our tuning choices by reiterating the findings of [18],
where color is not an invariant feature in wetness detection.
By training a model on more spatial-level and less color
augmentations, we enforce the model to be more sensitive to
color space discriminant features and less sensitive to shapes
since every sample is unique. All models were trained on a
Tesla P100 GPU for 80 epochs, with an initial learning rate of
0.01. For optimization, an SGD optimizer was applied with a
momentum of 0.937 and a weight-decay of 0.0005.

2) Evaluation of Networks’ Inference Capabilities: We
evaluated each trained network on the basis of test clas-
sification accuracy, mean average precision, and inference
speed. Inference was performed on both cloud and edge
computing hardware with test images, and on edge computing
hardware with a test video. Table IV presents the training
results of all YOLO models with their baseline and tuned
hyperparameter variants. Both the baseline and tuned YOLOv5
models achieved the highest mAP@0.5:0.95 scores within
their corresponding variants. This means both YOLOv5 mod-
els predicted accurately and with high confidence (≈ 0.95) on
their detection. Out of all models trained, the tuned YOLOv7
scored the highest mAP@0.5 score, indicating its ability to
detect stems close to their ground truth bounding boxes.

Regarding the models’ cloud-based inference, we can ob-
serve from Table V that our tuning of hyperparameters and
augmentations increased the classification performances of
YOLOv5 and YOLOv7. Additionally, the inference speed
increases marginally for both models. Conversely, YOLOv6
degraded in both classification performance and inference
speed under our tuning parameters. Our results for cloud-based
inference using a Tesla P100 GPU yielded inference speeds
within approximately 30 ms per frame (≥30 FPS), and thus
proves real-time water detection with our approach is possible,
given equivalent or more powerful computing hardware.

With respect to edge-based inference, and with reference to
Table VI, both YOLOv5 models are able to perform predic-
tions within every half second on the NVIDIA Jetson Xavier
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NX, and both models also attained a 100% classification
accuracy metric on the test images. We observe that all other
models attained high classification metrics as well, with the
tuned YOLOv7, in particular, scoring a 100% success rate on
the test images. Yet, given it is five times larger than YOLOv5,
its inference speed was about five times slower than that of
the YOLOv5 model, making it less practical for deployment
on less powerful edge devices. YOLOv6 experienced a slight
inference speed performance boost with our tuning parameters.

TABLE V: Cloud-based inference results with a Tesla P100
on the image test set.

Network Execution Average Inference Classification
Time (s) Speed per Image (ms) Accuracy

YOLOv5 Base 27.2 10.4 99.3%
YOLOv6 Base 25.0 25.5 99.5%
YOLOv7 Base 38.1 21.5 99.7%

YOLOv5 Tuned 26.5 8.8 100%
YOLOv6 Tuned 30.0 30.1 99.4%
YOLOv7 Tuned 37.6 21.4 100%

TABLE VI: Edge-based inference results with a Jetson Xavier
NX on the image test set.

Network Execution Average Inference Classification
Time (min) Speed per Image (ms) Accuracy

YOLOv5 Base 8.04 481.6 100%
YOLOv6 Base 19.57 1171.7 99.5%
YOLOv7 Base 38.69 2316.5 99.7%

YOLOv5 Tuned 7.49 448.4 100%
YOLOv6 Tuned 17.35 1038.9 99.4%
YOLOv7 Tuned 46.24 2769.0 100%

TABLE VII: Edge-based inference results with Jetson Xavier
NX on the test video.

Network Average Inference Stable State
Speed per Frame (ms) Transition

YOLOv5 Base 471.4 No
YOLOv6 Base 1020.0 Yes
YOLOv7 Base 2863.3 Yes

YOLOv5 Tuned 568.1 Yes
YOLOv6 Tuned 1030.9 Yes
YOLOv7 Tuned 2811.6 Yes

Regarding image inference speed, Tables V and VI indicate
a direct relation between model size and inference speed.
Smaller models tend to perform faster and are thus suited
for deployment on devices with limited computational power.
Table VII contains the average edge device inference speed
results for each model on a test video taken from the dataset
preprocessing phase earlier in this work. Similarly to the image
inference results, smaller models have faster video inference
speeds. As expected, the average inference speed per frame for
each model resembles the corresponding metric in edge-based
image inference (Table VI).

3) Qualitative Analysis: Figure 12 juxtaposes the wetness
detection results on a single orange sample test case by all
YOLO models trained on our dataset. Detection confidence is
approximately 0.95 and it remains consistent with the bulk of

our test results. Comparing the baseline and tuned versions
of each model, we can observe that the bounding boxes are
slightly tighter around the stem detection for the baseline
networks compared to their tuned counterparts. One possible
explanation is that the combination of the rotation augmenta-
tion and training samples with oversized bounding boxes may
have led to removing less amount of the background. As a
result, the tuned models have a higher propensity for fitting
slightly looser bounding boxes.

When inference is executed at a low confidence threshold
(i.e. 0.1), some of the models may occasionally raise a false
detection in some of the test cases. Figure 13 shows two
illustrative examples of falsely detected instances of dry and
wet classes by the baseline YOLOv7. The falsely detected
dry case is of only a 0.13 confidence score and can hence
be filtered out by specifying a higher confidence threshold of
0.6 as implemented during the evaluation phase. This detection
occurred most likely because of some of the training instances
featuring a dryer and more heavily brown-colored pith. The
reflected light from the chamber lid interface does remotely
resemble some of the features present in the aforementioned
training instance, but its effects are negligible since the model
detected with a low confidence rather than a high confidence
(this would have been concerning). In contrast, the false
wet detection occurred most likely because of the model
recognizing the smooth side of the petiole as wet. The wet
confidence score is 0.12.9 This case emphasizes the importance
of aligning the stem sample properly with the camera, as the
models may be sensitive to misalignment.

In Table VII, the rightmost column refers to the quality
of classification during the video’s transitional frames where
the state of the stem sample changes from dry to wet. The
transitional frames are not considered wet, even with the onset
of moisture, because proper SWP analysis protocol defines the
wet point as full water expression, whether that be a full clear
water drop or a water drop with vigorous bubbling. This helps
enforce consistency with SWP measurements. We observed
that the tuned models can reach the final WET state more
smoothly through the transition phase compared to baseline
models. Most notably in the tuned variants of YOLOv6 and
YOLOv7, there is minimal classification oscillation during
the transitional phase as both models classify consistently
dry, until full water expression, when they both classify
consistently wet after a brief lull in classification accuracy.

C. Preliminary Evaluation of Generalization Capacity

To assess the generalization capabilities of the proposed
models, we further tested the six trained networks on the
never-seen-before second dataset part. Note that this dataset
part is significantly more challenging because of ambient
light variations and large oscillations observed while operating
manually the pump-up chamber. Figure 14 highlights some of
these challenging instances.

The extracted images were used to evaluate the precision
and recall for each model. Obtained results are reported in

9 Its view in the figure is obstructed by the dry bounding box since we
increased the line width and font size for inference to improve visibility.
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Fig. 12: Correct wetness detection results on a single orange stem by all YOLO models. Top row panels correspond to dry
status while bottom row panels to wet status.

Fig. 13: (Left) Falsely detected dry instance by YOLOv7 base.
(Right) Falsely detected wet instance by YOLOv7 base.

Fig. 14: Examples of how ambient light variation and motion
of the pump-up chamber can impact the dataset. Top panels:
(a)-(c) Effect of ambient light changes on the xylem state as it
evolves from WET in (a) to DRY in (b) and returns to a WET
state in (c)–true classification is DRY in (a)-(b) and WET in
(c). Bottom panels: (d)-(f) Motion effects impact the detection
of the stem in addition to resulting in classification shifts in
xylem wetness state: WET in (d) to a no detection in (e) and
then DRY in (f)–in all cases true classification is WET.

Table VIII (first six entries in the table). It can be observed
that the baseline structures were less efficient as suggested

by their precision and recall scores compared to their tuned
counterparts. The only exception is the YOLOv5 models
which offered the same performance, with a precision of 0.39
and a recall of 0.34. The tuned YOLOv7 network had the
highest performance, with a precision score of 0.75 and a
recall score of 0.49. A recurring classification error across
all networks was the detection of a DRY state as a WET
state. This can be attributed to the ambient light variations
and motion of the pump-up pressure chamber throughout the
analysis, resulting in blurred or distorted images as shown
in Fig. 14. However, and in spite of those incorrect state
detections, all of the networks were able to properly detect
the stem; this feature can be exploited to facilitate network
fine-tuning with additional datasets, such as the second dataset
part considered herein.

TABLE VIII: Inference results on the dataset evaluating gen-
eralization capacity.

Network Precision Recall

YOLOv5 Base 0.38 0.34
YOLOv6 Base 0.43 0.32
YOLOv7 Base 0.59 0.47

YOLOv5 Tuned 0.38 0.34
YOLOv6 Tuned 0.56 0.35
YOLOv7 Tuned 0.75 0.49

YOLOv7 Fine-tuned 0.98 0.57

In an effort to assess the effect of fine-tuning on network
performance, we retrained the tuned YOLOv7 network using a
small sample of the newly obtained data; that is, 1180 images
with a ratio of 50% for each wet/dry state. Owing to the fact
of training on a small dataset, the model was trained on a
Tesla P100 GPU for only 30 epochs at an initial learning rate
of 0.01. An SGD optimizer with a momentum of 0.937 and a
weight-decay of 0.0005 was used for optimization. Obtained
results (last entry of Table VIII) demonstrate a considerable
improvement in detection since the accuracy increased from
0.75 to 0.98, suggesting that the structure can now detect the
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stem in difficult scenarios. The recall increased modestly to
0.57, yet the fine-tuned network was able to provide over
50% more accurate detections. These results demonstrate that
more extended fine-tuning, but not a full network retraining,
may in fact be sufficient for the methods developed herein to
generalize to other tree crop species as well; extending this
dataset is part of ongoing work.

V. DISCUSSION AND OUTLOOK

Contributions and Key Findings: In this work, we have
presented what, to the best of our knowledge, is the first robot-
assisted system for stem water potential (SWP) measurements.
The value of this system lies in its capability to autonomously
collect samples at scale by automating time-consuming (e.g.,
leaf collection) or error-prone processes (e.g., identification
of the status of the leaf xylem). These are core building-
blocks toward enabling complete robot autonomy in physical
specimen sampling and transport in the field.

Notably, accurate SWP measurement is instrumental to
implement precision agriculture practices to conserve water.
Our work demonstrated how it is possible to employ learning-
based machine vision to help determine the dry/wet status of
the xylem. Results from testing with the static benchtop pres-
sure chamber demonstrated that we can provide stable, crisp,
and high resolution and high refresh rate video feed that is
annotated in real-time and auto-determines the wetness status
of the xylem. This alone can be a major aid to reduce false
positive xylem status determination as well as human errors
and reading variability when compared to the manual, “look-
through-the-hole” approach that is currently the only way to
manually observe the wetness status of the xylem. Further,
we believe that the produced datasets can stimulate further
research on robotics, machine perception, and agronomy, but
in addition, lend themselves as a tool to help train human
operators in determining stem water potential via the pressure
chamber method.

Directions for Future Work: The project outcomes
achieved thus far enable various opportunities for future work.

One key direction involves enhancing the detection of
xylem water expression by giving heavier consideration to
smoothing the transitional phase. Further, we seek to extend
the dataset and evaluate the models’ performance in other tree
crops such as olive and almond trees. Preliminary findings
from evaluating the generalization capacity indicated that fine-
tuning the networks, or fully retraining with additional data can
help expand the method to other tree crops. Two critical factors
affecting generalization capacity (especially when using the
manual pump-up chamber) are ambient light variations and
induced motion. The former can be addressed by possibly
adding a cover around the exposed stem. The latter is a
challenge inherent to the pump-up chamber, which operates
by manual upward/downward strokes (like a pump), but image
stabilization techniques can be employed. Nonetheless, we
would recommend the use of the static benchtop chamber if
possible (at the expense of higher cost to acquire and operate)
since it can lead to consistent and high-quality footage.

During the leaf-cutting experiments, we observed that some
successful cuts were not accurate enough to be used for SWP

analysis (i.e. leaving long-enough stem length to be able to
secure the leaf into the pressure chamber’s gasket). One main
issue was that the front face of the end-effector may push
other interconnected leaves and/or branches away, hence the
linear approach may not always suffice. Ongoing work aims to
improve the end-effector design to a more minimal assembly,
and in addition, enhance the perception capabilities of the end-
effector to determine when the stem is aligned with the cutting
plane to trigger the cutting action. Also relevant is to extend
the vision pipeline to determine and localize leaves bagged
into reflective foil bags (which allows leaves collected in
stem water potential analysis to reach an internal equilibrium
thus providing more accurate information regarding the whole
tree’s water stress).

Another aspect worth exploring is whether it is possible to
mount the pressure chamber directly on the robot, to eliminate
the need for manual insertion of the leaves into the pressurized
chamber. The main challenge to achieve this functionality is
in manipulating the stem without compromising its integrity
for assessing the leaf xylem.

Finally, more extensive in-field experimentation is needed to
test the validity of the system integration we have developed
so far. One critical aspect is to further vet these developed
tools by growers and agronomists, who can further assess
advantages and limitations of the robotic means to estimate
crops’ needs for watering we have developed so far.
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