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Abstract— When robots navigate through vineyards to per-
form irrigation adjustments, an optimization problem emerges
whereby robots are tasked with performing adjustments hav-
ing the highest cumulative outcome within a given temporal
budget due to limited battery charge. To this end, the robot
needs to reach a set of spatially distributed sites, and the
specific structure of the vineyard imposes various constraints on
possible motions. In this paper we first demonstrate that this
type of orienteering problem remains NP-hard even for the
restricted class of graphs associated with precision irrigation.
Then, we devise and analyze two greedy heuristics informed by
the problem we consider. Finally, these algorithms are evaluated
on settings associated with a commercial vineyard and we show
that our methods favorably compare to solutions proposed in
the past.

I. INTRODUCTION

Agriculture is the major consumer of freshwater in the
world, with some studies estimating that more than 70% of
freshwater is used in this domain. In the US this percentage
is even higher, likely around 85% [17]. Despite extensive
use of water resources, many commercial orchards still rely
on irrigation systems that cannot control water use on a per-
tree basis. This problem is particularly daunting in vineyards,
where the quality of the final product is highly correlated
with the amount of water absorbed by the vine. Ideally,
vineyards should be subject to localized stress irrigation,
customizing the amount of water delivered to each vine.
The appropriate amount of water depends on a variety of
factors, including the soil characteristics, age of the vine, sun
and wind conditions, and season, to name a few. However,
over-stressing a vine would result in inferior quality grapes,
and potentially even death of the vine, with a consequent
multi-year economic loss. For this reason, growers and
farm managers often tend to over-irrigate with the double
drawback of wasting water and obtaining an inferior product.
RAPID (Robot Assisted Precision Irrigation Delivery) is a
multi-year, multi-university project aiming at developing a
robotic system capable of making fine grain adjustments
to water delivery, ideally on a per-plant level, with the
objective of reducing water use while preserving the quality
of the final product. RAPID will explore: 1) novel sensing
infrastructures based on remote and terrestrial sensing; 2)
learning-based models to infer current moisture levels in the
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soil and suggest adjustments to be made to the irrigation
infrastructure; 3) passive variable rate water emitters and
robotic actuators that can adjust them; 4) mobile platforms
that carry the actuation system through the vineyard to
perform the adjustments formulated by the decision support
system. Figure 1 visualizes this concept.

Fig. 1: RAPID concept: a robot performing adjustments on
water emitters placed on irrigation lines. Note that irrigation
lines prevent the robot from moving across plant rows.

In [12] the design of a portable emitter actuation device
(PEAD) was presented, while a first version of the learning
based decision infrastructure is still being developed and
tested. In this paper we address a routing problem associated
with actuating the water emitters. In commercial vineyards,
once a robot enters a row it is constrained to move forwards
or backwards inside the row; sideways motions to adjacent
rows are not possible. This is due to the fact that, as
shown in Figure 1, irrigation lines are above the ground and
prevent moving across rows. Moreover, robots can operate
only for a limited amount of time due to having a finite
battery capacity. We assume that the decision support system
indicates how the water flow should be adjusted for each
water emitter in the vineyard. Large adjustments indicate
significant mismatches between the desired soil moisture
and the measured (or inferred) soil moisture. Therefore, the
robot should ideally adjust those emitters first. However,
since these can be spatially distributed over the vineyard,
an optimization problem emerges, whereby the robot has
to decide which subset of emitters to adjust subject to the
motion constraints imposed by the field structure and the
bounded distance it can travel.

In this paper, we show that this problem can be cast
as a special instance of the Orienteering Problem, where



the graph structure is defined by the motion constraints
associated with navigating the vineyard. We formally prove
that, even though the graph has a very regular structure and
we consider special cases where travel costs are constant (a
reasonable approximation in vineyards, since all vines and
emitters are uniformly spaced), the problem remains NP-
hard. Motivated by this computational bottleneck, we then
propose and examine two heuristic approaches and compare
them to the optimal solution (for small problem instances)
and other heuristics. Our findings show that our proposed
algorithms provide high quality solutions, but are much faster
and do not depend on a careful selection of parameters
governing their performance.

The rest of this manuscript is organized as follows. Related
work is presented in Section II, whereas in Section III we
formally define the problem and prove its NP-hardness. Our
proposed routing algorithms are described in Section IV and
experimentally validated in Section V. Finally, conclusions
are given in Section VI.

II. RELATED WORK

A. Orienteering

Precision irrigation adjustment is related to the Orienteer-
ing Problem originally introduced in [13] and also known
as the “bank-robber-problem.” In orienteering, one is given
a graph where every edge has a weight and every vertex has
a reward. A path in the graph collects the rewards of all
traversed vertices, but if a vertex is visited multiple times
its associated reward is collected only once. A path also
incurs a cost equaling the sum of costs for all traversed
edges1. The problem is to determine a path maximizing
collected rewards subject to a given bound on the total path
cost. The orienteering problem was shown to be NP-hard
in [13] and APX-hard in [4]. Numerous variations of the
original problem have been proposed through the years and
the reader is referred to [14] for a recent comprehensive
review. Due to its intrinsic complexity, various heuristic
approaches have been proposed, though the design of a
general purpose, efficient heuristic remains a challenge [14].
Approximation algorithms have been extensively studied,
where the produced path obeys the bound constraint and
collects a guaranteed fraction of the optimal reward, i.e.,
a c-approximation produces a path with reward Π/c where
Π is the optimum maximum reward. As shown in [1], the
unrooted version of the problem, where the start vertex of
the path is not fixed, is related to the k-TSP problem, and
for this version of the problem a polylogarithmic and a 2-
approximation has been known for a while [1], [11]. The
first constant factor approximation for the rooted version of
the problem, where the start vertex is fixed, was given in
[4], where a 4-approximation is given. This algorithm was
then improved in [2] where a 3-approximation was given for
the more general case with both the start and end vertices
are given. To the best of our knowledge, the best known
algorithm is a (2 + ε)-approximation given in [6] with a

1Contrary to vertices, every time an edge is traversed its cost is incurred.

running time of nO(1/ε2) where n is the number of vertices
in the graph. For the special case of planar graphs with full
connectivity, a (1+ε)-approximation is known [7], but is not
applicable to our case. Alternatively, starting from the exact
formulation of the orienteering problem based on integer
programming, specialized branch-and-cut methods have been
proposed as well [9]. Such algorithms can deal with instances
where the number of vertices is less than 1000, whereas in
our domain we deal with graphs whose size is two orders of
magnitude larger.

B. Robotics in precision agriculture

Mechanization and automation have been used in agri-
culture field operations for a long time. However, in recent
years there has been a marked increase in the use of robotic
systems for precision agriculture in a variety of domains,
such as information gathering [19], yield estimation [3], pick
assistance [18] and many others. The most similar work
to ours is presented in [5], where routing problems for
orchard operations are discussed. However, their problem
differs from ours because they do not deal with a limited
budget and are therefore interested in finding the optimal
permutation for the rows to cover the entire orchard. In our
case, due to the limited budget we also need to select a subset
of vertices to cover that is compatible with the given budget,
thus generating a different combinatorial problem.

III. THEORETICAL BACKGROUND AND
COMPUTATIONAL COMPLEXITY

Classic textbooks such as [8] and [10] provide extensive
introductions to the basics of computational complexity and
graph terminology, and we assume the reader is familiar with
it.

We start defining a specific class of graphs, i.e., graphs that
are bipartite, planar, and have degree at most 3. We indicate
this class of graphs as BP3. The following theorem due
to Atai et al. [15] establishes the hardness of the Hamilton
circuit problem for graphs in BP3.

Theorem 1: The Hamilton circuit problem for bipartite
planar graphs with maximum degree 3 is NP-complete.

An immediate consequence of this theorem is that the
decision version of the TSP problem is NP-complete on
BP3.

Lemma 1: The decision version of the TSP problem is
NP-complete on BP3.
Proof. Recall that the decision version of the TSP problem
asks whether for a given weighted graph and bound T there
exists a tour of cost at most T . The classic reduction from
Hamilton circuit to TSP is applicable to graphs in BP3. That
is, let G = (V,E) be an instance of the Hamilton circuit
problem. We then build an instance of the TSP with the
same graph where all edge costs are 1 and we set T = |V |.
The answer to the TSP instance is yes if and only if there
exists a Hamilton circuit. �.

For BP3 graphs we next introduce two functions, i.e.,
a cost function c : E → R≥0 and a reward function r :



V → R≥0. Next, let us define the orienteering problem for
a special class of graphs.

Constant Cost Orienteering on BP3 Problem
(CCOBP3P): let G = (V,E) be a graph in BP3,
r a reward function and c a constant cost function,
i.e., c(e) = k for each e ∈ E. Moreover, let v1, vn
be two vertices in V . For a given constant TMAX ,
find a route of maximum reward from v1 to vn of
cost no greater than TMAX .

In the next theorem we show that even when restricted on
this specific class of graphs the orienteering problem remains
NP-hard.

Theorem 2: The CCOBP3 problem is NP-hard.
Proof : The proof is by reduction from the TSP problem on
BP3. Accordingly, let G = V (V,E), c, T be an instance
of the decision version of the TSP problem, where G is a
BP3 graph, c is the weight function for the edges, and T
is the bound. Without loss of generality, let us assume that
all costs of the edges in E are natural numbers. We build
an instance of CCOBP3P as follows: We start building a
graph G′ = (V ′, E′) = G and assign a reward r(v) = 1
to all vertices. Next, for each edge e = (vi, vj) ∈ E with
cost c(e) = p > 0 we introduce p − 1 new vertices in V ′

and p edges between vi and vj . The reward of each newly
introduced vertex is set to 0 and the cost of each newly
introduced edge is 1 (see Fig. 2 for this construction). Finally,
we set TMAX = T .

vi vj
c(e) = p

vi vj
c(e) = 1 c(e) = 1

| {z }
p � 1 vertices

p edgesz }| {

Fig. 2: Transformation

Note that the graph we just built is still planar and has
maximum degree 3. However, it may not be necessarily
bipartite. That is, for example, the case where the weight of
and edge e between vi and vj is even, and therefore an odd
number of vertices is introduced between vi and vj . This
problem is easily remedied by introducing an extra vertex
with 0 reward and two extra edges with 0 cost. This new
graph is therefore also in BP3. It follows that an instance
of the CCOBP3P graph we just built has a solution of score
TMAX if and only if the answer for the TSP problem is yes.
Therefore CCOBP3P is NP-hard. �.

As a corollary of the above theorem, we can conclude that
the orienteering problem with unconstrained costs is NP-hard
on BP3 graphs.

Having established the complexity of the orienteering
problem for the BP3 class of graphs, we now introduce a
new class of graphs that is useful for the routing problems
we consider in this paper.

Let R(m,n) be the set of m × n couples of integers
of type (i, j) with 1 ≤ i ≤ m and 1 ≤ j ≤ n. In the
following, without loss of generality2, we assume m,n ≥ 3.
We consider an undirected graph IG(m,n) = (V,E) where
the set of vertices is V = R(m,n) and the set of edges E
is defined as follows:
• each vertex of type (i, j) with 1 < j < n has two edges,

one towards (i, j − 1) and the other towards (i, j + 1).
• each vertex of type (i, 1) with 1 < i < m has three

edges, i.e., one towards (i − 1, 1), one towards (i +
1, 1), and one towards (i, 2). Symmetrically, each vertex
of type (i, n) with 1 < i < m has three edges, i.e.,
one towards (i− 1, n), one towards (i + 1, n), and one
towards (i, n− 1).

• we add four additional edges: one between vertex (1, 1)
and (1, 2); one between vertex (1, 1) and (2, 1); one
between (m,n) and (m−1, n) and one between (m,n)
and (m,n− 1).

Figure 3 displays the structure of this graph. IG graph stands
for irrigation graph because its structure captures the motion
constraints that a robot will face when navigating a vineyard
or an orchard with an installed irrigation infrastructure (see
also Figure 4). In a vineyard the robot can only move along
rows, but to switch row it has to first reach either end of the
row, i.e., a vertex of degree 3.

(1, 1) (1, 2) (1, n)

(m, n)(m, 1)

(2, 1)
(2, 2)

. . .

...
. . .

. . .

...

Fig. 3: Structure of the IG(m,n) graph.

The reader should note that this graph is planar, and by
construction each vertex has a degree of at most 3. Moreover,
the graph is bipartite if one partitions the vertices between
those for which i + j is even or odd. Next, we introduce
two functions, c (cost) and r (reward). The cost function c
associates a non negative cost to each edge, i.e., c : E →
R≥0, while the reward function associates a non negative
reward to each vertex, i.e., r : V → R≥0. For IG graphs,
we define two related orienteering problems.

2If this is not the case, then the problem we introduce later on becomes
trivial.



IG Orienteering Problem (IGOP): let G be a
graph IG(m,n), v1, vn ∈ V be two of its vertices
and c, r be a cost and reward function on G. For
a given constant TMAX , find a route of maximum
reward starting at v1 and ending at vn of cost no
greater than TMAX .
IG Constant Cost Orienteering Problem (IGC-
COP): let G be a graph IG(m,n), v1, vn ∈ V be
two of its vertices and r be a reward function and
c be a constant cost function on G, i.e, c(e) = k
for each e ∈ E. For a given constant TMAX , find a
route of maximum reward starting at v1 and ending
at vn of cost no greater than TMAX .

Theorem 3: The IGCCOP and IGOP problems are NP-
hard.
Proof: The proof is immediate, observing that the hardness
of IGCCOP follows from Theorem 2, while IGOP is NP-hard
too because IGCCOP is a special case of IGOP. �.

IV. ALGORITHMS

Having established the hardness of the orienteering prob-
lem on IG graphs, it is clear that a brute force approach
is not applicable because typical instances we consider may
have more than one hundred thousand nodes (see section
V). In fact, commonly used benchmarks to test orienteering
algorithms are based on instances with about 500 nodes.
As an alternative, one could try using or adapting known
approximation algorithms, like the one presented in [6].
However, such algorithms are complex to implement, and
achieve at best a (2+ε) approximation factor with complexity
nO(1/ε2). Their value, therefore, appear to be limited in our
case. Instead, we designed two heuristic approaches tailored
to the specific problem at hand, and later on compare them
with a general purpose heuristic that has been proposed in
literature and is widely used.

In the following, let vs be the start and ending vertex, i.e.,
each path computed by the algorithms we present will start
and end at vs. We assume that Tmax < mn, otherwise a full
row-by-row sweep of the graph is possible and the solution
is therefore trivial (recall that all edges cost 1). In general
we could assume Tmax = kn for a known k < m, i.e., the
budget allows to cover at most k rows. Note that, however,
the robot will generally cover less than k rows because part
of the budget is in general spent to move between non-
adjacent rows.

A. Greedy Row Heuristic Algorithm

The first heuristic we consider implements a greedy
approach producing a path that selects a subset of rows
to traverse. Algorithm 1 sketches the pseudocode for the
strategy we propose. The algorithm keeps track of the already
spent budget T (initially set to 0 in line 2) and of the current
position of the robot v (initially set to vs in line 3). For
each of the m rows, a cumulative reward Ri is preliminarily
computed, where Ri =

∑n
j=1 r(i, j) is the reward collected

by completely traversing the i-th row (line 4), and all rows
are initially marked as feasible (line 5). The algorithm then

enters a loop adding feasible rows to the path (loop at line 6).
At each iteration the algorithm tests each row for feasibility,
and if this is not the case it is marked as unfeasible (lines 7 to
9). A row is feasible if it is possible to move the robot from
the current vertex v to the row, traverse the entire row, and
still have enough budget to return to vs. This computation
uses the already spent budget T and the current vertex v. The
rewards of the remaining rows are then adjusted by dividing
them by the cost it takes to reach the row from v and traverse
it entirely (line 11, where c(v, i) is the cost of going from
the current vertex v to row i and then traverse it). The row
with the highest adjusted reward is then selected (line 12),
the path is adjusted (line 13 and 14), and the spent budget
and current position are updated (line 15). The row added
to the path is also marked as unfeasible (line 16), so it will
not be considered again in the following iterations. Once
no rows pass the initial test discarding unfeasible rows, the
main loop terminates, and the the robot returns to the starting
point vs (line 17). Note that by construction this is always
possible because the robot will not select a row to traverse
unless there is sufficient budget to return to the starting point.
Therefore the algorithm always produces a valid tour starting
and ending at vs and of cost less than TMAX .

Algorithm 1 Greedy Row Heuristic

1: Vtour = ∅
2: T = 0
3: v = vs
4: for i← 1 to m: Ri ←

∑n
j=1 r(i, j)

5: for i← 1 to m: feasiblei ← true
6: while there exists feasible rows do
7: for i← 1 to m do
8: if not feasible(i, T, v) then
9: feasiblei ← false

10: for all feasible rows do
11: R′

i ← Ri/cost(v, i)
12: nextrow ← argmaxR′

i

13: add path from v to nextrow to Vtour

14: add all vertices in nextrow to Vtour

15: update v and T
16: feasiblenextrow ← false
17: add path from v to vs to Vtour

18: return Vtour

After at most TMAX/n = k iterations of the main loop,
the algorithm terminates because at each iteration the used
budget increases by at least n units. Each iteration has
complexity O(m) since all rows are examined at every
iteration. Hence, recalling that k < m, the complexity of this
algorithm O(mn + km) = O(mn + m2). For the common
case of square growing blocks, m = n and therefore the
previous expression is O(m2), i.e., the algorithm is linear in
the number of vertices in the graph.

B. Greedy Partial-Row Heuristic Algorithm

Our next heuristic is designed by observing that moisture
is a continuous phenomenon in the soil, and wet or dry
regions can span multiple rows. In terms of rewards for
the irrigation graph, this means that we often have clusters



of vertices in adjacent rows that have similar rewards. For
example, this is evident when observing Figure 5, where
we see clusters of vertices associated with higher rewards
(warmer colors). When such high-reward clusters are located
near to either side of the graph, it may be convenient to
visit just one part of the row and then come back without
collecting any more rewards - so as to switch to the adjacent
row - rather than continue the entire way through the row
before moving to the adjacent row. The name Partial-Row
Heuristic describes this behavior and Algorithm 2 sketches
its pseudocode.

To implement this strategy, we preliminarily compute two
reward values for each vertex in the graph (loop starting
at line 4). L(i, j) is the cumulative reward collected if the
robot starts from the left side of the row and stops at the j-th
vertex in the row, whereas R(i, j) is the cumulative reward
if the robot starts from the right and stops at the j-th vertex.
The greedy partial-row algorithm then works similarly to the
previous algorithm, but each of the R,L rewards is adjusted
in two different ways. The first scales rewards by the cost
of entering the a row, reaching vertex (i, j) and then coming
back, as in the loop at line 12. The R and L rewards are
scaled by different travel costs accounting for the fact that
they can be reached coming from the right side of the grid,
or the left side of the grid. The second, shown in the loop
at line 18, scales the reward of each full row by the cost of
entering from either the left side or the right side. Next, if the
robot is positioned at the right end side of the graph (vj = n)
we select the best scaled reward from those entering the rows
from the right (line 22), whereas if the robot is located at
the left end we select the best scaled rewards from the left
(line 24). The tour is then updated together with the relevant
variables.

As in the full row case, the algorithm stops iterating when
there is not enough budget to ensure that a robot can move to
a new vertex and still go back to vs. The complexity of this
algorithm is similar to the previous one, with the difference
that now at each iteration all vertices must be re-evaluated,
so each iteration has complexity O(mn) and the algorithm
is O(mn + kmn) = O(m2n).

C. S-Algorithm

The S-Algorithm is one of the most used and effective
general purpose heuristic algorithms to solve the orienteering
problem [21], and we therefore use it as a benchmark against
our heuristic approaches. The S-Algorithm is a stochastic
algorithm (hence the name) implementing a Monte Carlo
approach whereby many routes respecting the given budget
are generated, and the one associated with the highest reward
is eventually returned. The algorithm builds a tour starting
from the start vertex and iteratively adds a new vertex to the
tour until the residual budget allows only to return to the
start vertex vs. Assuming the last vertex added to the path is
vi, to decide the next vertex a desirability function A(j) is
computed for every vertex vj not yet visited. The desirability

Algorithm 2 Greedy Partial-Row Heuristic

1: Vtour = ∅
2: T = 0
3: v = vs
4: for all v(i, j) ∈ V do
5: R(i, j)←

∑n
l=j r(i, l)

6: L(i, j)←
∑j

l=1 r(i, l)
7: feasiblei,j ← true
8: while there exists feasible vertexes do
9: for all v(i, j) ∈ V do

10: if not feasible(i, j, T, v) then
11: feasiblei,j ← false
12: for all feasible verticies do
13: R′

i,j ← Ri,j/cost(v, v(i, j), v(i, n))
14: L′

i,j ← Li,j/cost(v, v(i, j), v(i, 1))
15: for i← 1 to m do
16: if not feasible(i, T, v) then
17: feasiblei ← false
18: for all feasible rows do
19: R′

i,1 ← Ri,1/cost(v, v(i, 1))
20: L′

i,n ← Ri,n/cost(v, v(i, n))
21: if vj = n then
22: next← argmaxR′

i,1, R
′
i,j

23: else
24: next← argmaxL′

i,n, L
′
i,j

25: add path from v to next to Vtour

26: if nextj 6= 1 or n then
27: add path from next to v(i, vj) to Vtour

28: update v and T
29: feasiblepathtonext ← false
30: add path from v to vs to Vtour

31: return Vtour

is defined as

A(j) =

{
c(vj) + E

d(vi, vj)

}r

where d(vi, vj) is the length of the shortest path between vi
and vj , r is a parameter, and

E = a[TMAX − T − d(vi, vj)− d(vj , vs)] · n(vj).

In this last expression, a is a parameter, T is the budget
consumed so far, and n(vj) is a neareness measure defined
as n(vj) =

∑
v∈V

r(v)
d(v,vj)

. Essentially, A(j) is large for
nodes with large rewards that are close to the current vertex
and would leave more residual budget. After the desirability
of each vertex has been computed, the next node added to
the tour is randomly selected using a roulette-wheel method
utilizing the desirability to compute the selection probability.
The performance of the algorithm in terms of collected
reward depends on various parameters, the most critical of
which is the number of different paths to be generated. There
is an obvious linear dependency between this number and
the overall time spent by the algorithm, and our experience
shows that for IG graphs the S-algorithm needs to generate
tens or hundreds of paths to produce a viable result.

The cost of generating a single path is O(mnl) where l
is the number of iterations before the budget TMAX is fully
spent. Of course, this is a random variable, and an expected
value is difficult to determine with a formal analysis. We
observed that this is typically in the order of m, and therefore



the complexity to produce a single path is approximately
O(m2n) with an overall complexity of O(Cm2n) where C
is the number of sample paths generated by the Monte Carlo
method. Note that the time complexity of generating a single
sample path is the same as the overall complexity of the
partial-row heuristic we presented in the previous subsection.

Unless otherwise stated, we set the parameters a = 1.0,
r = 4.0 and C = 3000 as specified in the original text [21]
for our experiments.

V. EXPERIMENTS

We tested the algorithms we developed using a concrete
routing problem associated with a commercial vineyard. To
this end, soil water measurements were manually collected
on the ground with a manual probe (Hydrosense HS2P by
Campbell Scientific) equipped with a GPS receiver providing
the location where the sample was taken. Figure 4 shows the
vineyard and the locations of the measurements. At each site,
multiple measurements were taken in close proximity to each
other and were then averaged in postprocessing.

Fig. 4: Location of samples collected in a vineyard located
in Snelling, CA. Multiple pins are displayed at each location
because multiple samples were connected on the field and
then averaged in postprocessing. Note the tree rows extend-
ing from left to right. To switch tree rows, the robot must
first reach one of the two roads at either side of the block.
The red star shows the location where the robot starts from
and needs to return to, i.e. the location of vertex vs.

Due to the vast extent of the vineyard, samples are taken
at a limited number of locations, and a moisture map is
reconstructed for each point in the field using a fitting
algorithm. In our experiments we used a linear function to
interpolate within sampling locations and a nearest neighbor
to extrapolate outside the area where samples were collected.
Other approaches, such as krigging, are of course possible
but inconsequential to evaluate the strengths and limitations
of the algorithms we consider. The graph associated with
this vineyard has the same structure shown in figure 3 with
500 columns and 240 rows, for a total of 120,000 vertices.
The reward associated with each vertex is r(v) = |T−m(v)|
where T is a user supplied constant, i.e., the desired uniform

soil moisture level, and m(v) is the moisture at vertex v
as inferred by the interpolation algorithm. In essence, the
reward associated with a vertex is the mismatch between
the actual and desired soil water content and vertices with
a high reward indicate sites that are either overwatered or
underwatered. Figure 5 shows the spatial distribution of
the rewards. Warmer colors indicate vertices with higher
values for r(v). In all our tests the robot starts at the left
end side of the vineyard, midway through the field, i.e., in
correspondence of row 120 (location marked with a red star
in Figure 4). Within the allotted budget, the robot needs to
return to the starting point so that it can be retrieved or the
battery can be swapped.

Fig. 5: Distribution of the rewards r(v) for the graph
associated with the vineyard shown in Figure 4.

In the first test we compare the various heuristics with
the optimal solution, determined using a well known con-
strained integer programming formulation (see e.g., [14]).
Note that the number of binary optimization variables scales
quadratically with the number of vertices in the graph and
this severely limits the size of the problems we can study.
To solve the integer program, we use the freely available
SCIP solver [16]. Specifically, within reasonable time3 we
can solve only problem instances with up to 8 rows and 12
columns i.e., settings considering only 96 emitters, whereas a
vineyard block in our case has 120,000 emitters, and a typical
vineyard ranch consists of tens of blocks. Figure 6 contrasts
the total reward collected by the various algorithms as a
function of the allocated budget. In this case the S-algorithm
was run with C = 3000. Note that for budget values greater
than or equal to 110, the reward plateaus because all emitters
can be reached and adjusted. The chart shows that for this
limited size, the partial row heuristic and the stochastic
heuristic are relatively close to the optimal solution. The
chart also hints that using approximation algorithms is not
an appealing proposition because heuristic approaches seem
to largely overcome the guaranteed (2 + ε) bound without

3Even for slightly larger problems, the integer programming solution
would not be completed even after more than 24 hours of computation
on an i7 quadcore processor running at 4.2 GHz.



incurring the corresponding time complexity (see discussion
in Section II and Section IV).

Fig. 6: Comparison with the optimum for a small problem
instance.

Figure 7 displays the paths produced by the different
algorithms for the small case with a budget of 60. The plot
confirms the ability of the partial row algorithm to cover
just certain sections of the rows. A similar behavior is also
displayed by the optimal solution and the S-algorithm, while
the greedy row algorithm only manages to cover the top and
bottom rows.

Fig. 7: Comparison between the different paths produced by
the algorithms (starting vertex in this case is (1, 1)).

For larger problem sizes, the optimal solution cannot be
computed within a reasonable time frame and we therefore
compare only the various heuristics. Figure 8 shows the
accumulated reward as a function of the travel budget for the
three heuristic algorithms for a 60×60 patch. To speed up
the computation of the S-algorithm in this case we reduced
the number of samples to C = 500.

Note that in this case with a larger graph and a smaller
number of samples, the greedy partial row algorithm pre-
forms better than the S-algorithm in terms of total reward.

Fig. 8: Reward for the different algorithms as a function of
the budget.

However, to put this result into perspective one also should
consider that the S-algorithm is approximately C times
slower than our heuristic. Figure 9 and 10 show the results for
the full 240×500 graph for the two algorithms we proposed
as a function of the budget. Results are averaged over
three reward maps for the same vineyard generated by soil
moisture measures collected at different times throughout the
growing season. Since different maps give different overall
reward, we plot the normalized reward, i.e., the ratio between
the collected reward and the total possible reward. The plot
shows that for larger budgets the discrepancy between the
two algorithms tends to increase and therefore the partial
row greedy algorithm should be preferred.

Fig. 9: Normalized average collected reward as a function of
the budget for the full 240×500 irrigation graph.

Figure 10, in particular, shows the average unspent budget
by the two algorithms, i.e., the budget still available once
the robot returns to the starting point. The chart shows that
that the partial row algorithm not only picks a subset of
nodes yielding a higher reward, but also is more effective
in using the available budget. Both algorithms we proposed
are greedy, and it is possible to build special cases where
the algorithms perform very poorly. For example, one can



Fig. 10: Average unused budget as a function of the budget
for the full 240×500 irrigation graph..

build a rewards map that will cause the algorithm to produce
paths alternating between different extremes of the map, e.g.,
first visit one vertex in the top row, then one in the bottom
row, then back in the top row, etc. In this case most of the
budget would be wasted moving between vertices without
collecting rewards. However, due to the fact that rewards
are determined by the underlying soil moisture map and that
this is a continuous physical phenomenon, such pathological
situations are unlikely to happen in practice, i.e., once the
robot visits a location because it has high reward, nearby
locations will have similar rewards and will then be visited
before moving to other areas.

VI. CONCLUSIONS

In this paper we studied a routing problem that emerges
when autonomous robots are deployed for precision irriga-
tion where motions are constrained once a robot enters a row.
We showed that the problem is NP-hard and then presented
two domain-specific heuristics. One of them outperforms the
widely used S-algorithm heuristic for orienteering, while also
being much faster. In the future we anticipate expanding this
research in various directions. First, we will consider the case
of multiple robots servicing the same vineyard and address
the additional constraint that two robots cannot completely
travel the same vine-row in opposite directions. Second, we
will study how to introduce additional costs (e.g., latency) in
the same domain, as well as uncertainties in navigation and
emitter adjustment.
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