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Abstract

As robots become part of our everyday lives, they may be required to cooperate without being aware of
each other’s capabilities (e.g., because different teams have developed them), and therefore will have to trust
each other to work together safely and efficiently. Starting from this premise, this work identifies trust as
an essential metric to assign tasks to robots using auction-based mechanisms. We model trust by taking
inspiration from popular models in the literature and adapting them to an open environment in which
heterogeneous robots may dynamically enter or exit, execute assigned tasks, or verify the correct execution
of tasks by other robots. Robots are considered to be heterogenous in the sense that they may have different
capabilities in executing and verifying the execution of actions. In the proposed model, “doing an action”
and “verifying the execution of an action” are distinct, not necessarily overlapping, capabilities. Some
robots may be able to do an action, whereas some robots may not be able to do it but only to observe and
judge the ability of other robots to do it. After introducing the relevant formalism, the article describes the
system’s architecture implemented in ROS and multiple experiments performed in simulation and with real
robots (one NAO and two Pepper robots by SoftBank Robotics), providing a proof-of-concept for broader
utilization of the system in cooperative robotic scenarios.
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1. Introduction

The number of robots used in everyday activities
is steadily increasing and expected to keep grow-
ing. This will undoubtedly occur in industrial set-
tings where the next generation of robots will be
crucial in meeting the dynamic needs of collabora-
tive and intelligent manufacturing that characterize
the so-called Industry 4.0 and Industrial Internet of
Things [1, 2]. However, international market anal-
yses anticipate widespread use of robots also by the
general public [3]. In both industrial and domestic
scenarios, different types of robots with different ca-
pabilities marketed by different companies will need
to work together, and possibly with humans, to
achieve shared goals. Given these premises, “team-
mates” will likely require to “trust” each other for
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efficient teamwork. In multi-agent systems, it is
possible to define trust as “the subjective proba-
bility by which an agent (the trustor) expects that
another agent (the trustee) succeeds in performing
a given action on which its welfare depends” [4].

In the last decade, the concept of trust and the
associated trust dynamics have received consider-
able attention from the Human-Robot Interaction
(HRI) community. Previous work has shown that
trust does not only depend on the capabilities of the
robotic agent but also on other factors ranging from
user’s expectations [5, 6] to the physical appearance
of the robot [7, 8, 9]. Other works have shown that
an expression of the robot’s vulnerability can posi-
tively impact trust and facilitate social engagement
[10, 11]. It has also been shown that trust is neg-
atively affected by robots not being transparent in
explaining the motivations for their decisions and
actions [12, 13, 14]. Unsurprisingly, mistrust in the
robot can negatively affect human-robot coopera-
tion [15, 16, 17, 18].
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The robotic literature has primarily investigated
trust in the HRI context. However, not all sit-
uations involving trust require the trustee or the
trustor to be human. Both in industrial and
service scenarios, there are situations where au-
tonomous robots must cooperate without having
perfect knowledge about each other’s capabilities.
For example, consider a robot and a smart pill dis-
penser that need to decide “who” will remind the
user to take a medicine. Reminding medications is a
critical task that may raise ethical concerns because
of its potential negative impact in case of failure. In
general, not all robots are equally suited to perform
such task, or they may be less or more reliable in
performing it. In this context, the trust that robots
have in their own abilities versus other robots’ capa-
bilities may affect the selection of the most suitable
candidate to perform the task. It may be argued
that, for robots to be aware of each other capa-
bilities, explicit communication might be sufficient.
However, a wrong perception of others’ capabilities
may emerge not because robots “lie bragging about
abilities they don’t have” but because developers
do not actually “know” how robots will behave in
any given situation. Compare a “very quiet, older
people’s house with a clean and tidy floor” versus
a “messy, young family’s house where parents and
children always shout” or a “large warehouse host-
ing a crowded fair”. To estimate the robot’s success
rate in performing actions in a given scenario, one
should ideally make experiments in that scenario
and statistically analyze the results. However, ex-
periments may not be feasible after a customer buys
the product. So, for instance, social robot produc-
ers may declare on the user manual that their robot
can understand what people say: but how reliable is
speech-to-text conversion in different environmen-
tal conditions? How much does it depend on the
speaker’s volume or environmental noise? What
about a cleaning robot that declares to “reliably”
clean the house? How much does floor coverage
depend on the presence of furniture, carpets, and
children’s toys? Since doing experiments and an-
alyzing results in any given scenario is impossible,
robots should at least continuously assess their own
and other agents’ capabilities during operations.

While human-robot trust has been studied exten-
sively in both directions, the study of trust dynam-
ics between cooperating robots has received less
attention. Accordingly, the main contribution of
this work is to explore and test models of trusts
when both the trustors and the trustees are robotic

agents with different perceptual, reasoning, and ac-
tuation capabilities, that are periodically assigned
tasks to be performed to achieve a shared objective.
The goal of this work is not only theoretical, but it
also includes the implementation of a framework for
trust-based task assignment that can operate in a
distributed open environment. The Trust Frame-
work is implemented in ROS [19] and provides het-
erogeneous agents with a portfolio of complemen-
tary services paralleling their onboard capabilities.
We emphasize that robots are heterogeneous in the
sense that they may have different capabilities both
in executing and verifying the execution of actions.
Some robots may be able to do an action, whereas
some robots may not be able to do it but only to
observe and judge the ability of other robots to do
it. The purpose of such services is to allow agents to
model trust in each other regarding the capability
to accomplish an assigned task and use this model
to evaluate possible candidates for task assignments
whenever needed. In other words, agents may use
the Trust Framework to outsource tasks they need
to complete to achieve a particular goal.

The article is structured as follows. Section 2
reviews relevant literature, by describing how the
concept of trust has been studied in multi-agent sys-
tems and what are the main theoretical and prac-
tical findings, both in the human-robot and the
robot-robot case. Section 3 presents the method-
ology adopted to estimate trust within a commu-
nity of cooperating agents, including different trust
metrics taking inspiration from the recent litera-
ture. Section 4 describes the framework developed,
including procedures to find a consensus for task
assignment using a trust-based auction-like mecha-
nism and its ROS implementation. Sections 5 and
6 describe simulated results and real-world interac-
tions between different humanoid robots (one NAO
and two Pepper robots) to assess the properties of
the framework. Conclusions follow in Section 7.

2. State of the Art

With robots gradually moving from laboratories
to complex human-populated environments (such
as factories, hospitals, offices, or homes), it is nec-
essary for them to exhibit more complex cogni-
tive abilities to cooperate with humans or other
robotic agents. Recent research in Robotics and
Artificial Intelligence (AI) is paving the way to new
forms of robot interaction, either with humans or
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other agents, characterized by greater adaptabil-
ity, shared decision-making, and mixed-initiative.
However, researchers have argued that even though
robotic agents have the potential for being valid
teammates in a variety of tasks, they may be un-
derutilized due to a lack of trust from their partners
[20]. Therefore, to enable fruitful cooperations be-
tween a robot and another agent (human or not),
the first step is to clarify the relations between the
concept of “autonomous agent” and “trust.”

According to [21], autonomous agents are sys-
tems that can change their behaviour in response to
unexpected conditions and events. When focussing
on robots, such notion of autonomy refers to the
ability of a machine to perform a task, or part of
it, with no (or substantially reduced) human inter-
vention. The degree of independence from humans
defines two main classes of autonomous agents, i.e.,
Human-In-The-Loop (HITL) and Human-On-The-
Loop (HOTL) systems. HITL machines can au-
tonomously carry out a task for a limited time inter-
val, but periodically require human input to move
forward. HOTL systems are machines that can ex-
ecute a task entirely without external aid but may
require a human supervisor to intervene in case of
failure. According to the above definition of au-
tonomy, both humans and robots can be classified
as autonomous agents, and the term Multi-Agent
Systems (MAS) [22] can be accordingly extended
to include heterogenous teams composed of humans
and robots. With both humans and robots belong-
ing to the class of autonomous agents, we expect
that several constructs related to the social rela-
tions between humans can be naturally mapped to
the robotic domain - including trust. In particular,
it is argued in [21] that HOTL systems require a
high level of trust to be accepted in our daily lives.

Although researchers extensively investigated
trust, an universally agreed definition has not been
provided yet. As mentioned before, the prevalent
definition of trust in the MAS research field is the
subjective probability by which an agent A expects
that another agent B performs a given action on
which its welfare depends [23, 4]. Defining trust is
not sufficient: it is also essential to design tools
to measure it, an objective still far from being
achieved. According to [4], trust can be modelled as
an expectation/prediction related to an uncertain
behaviour primarily based on the outcomes of previ-
ous interactions. The authors suggest that an agent
may evaluate its trust in other agents concerning a
specific behaviour given its “mental image” of other

agents. Through its reasoning processes combining
different sources of information, an agent may de-
rive beliefs and expectations about “good” or “bad”
behaviours of other agents, which may lead to a de-
cision or an intention. In this sense, the concept of
trust relates to Theory of Mind (ToM) [24, 25, 26].

In [27], a comprehensive survey on trust mod-
els is presented. The authors analyze the differ-
ences between multiple definitions of trust adopted
in different research contexts, the dynamics of trust
evaluation, and the factors influencing this process.
They observe that binary models have a lower res-
olution but are more straightforward and efficient
in estimating whether or not two agents trust each
other [28]. On the other hand, modeling trust as
a scalar number, as in continuous/discrete models
[29], offers more flexibility. Observing that trust is
subjective in nature and context-dependent, the au-
thors then present an exhaustive survey on various
attributes of trust proposed in different contexts
with different purposes. In doing this, they dis-
tinguish between Individual Trust and Relational
Trust. Individual trust includes attributes describ-
ing how the evaluation of trust depends on personal
characteristics and is further classified into Logical
Trust and Emotional Trust. Logical trust describes
reasoning on trust based on one’s logical processes
and objective observations. Emotional trust de-
scribes reasoning on trust based on one’s emotional
state. Relational trust includes attributes describ-
ing how trust can emerge from an individual’s rela-
tionships with other individuals. Each attribute is
also analyzed extensively by reviewing the several
possible formulations and metrics proposed in the
literature.

In this general scenario, it is convenient to focus
on two different sub-cases in which trust may play
a vital role in the context of autonomous multi-
agent systems: human-robot interaction (HRI) and
robot-robot interaction (RRI).

2.1. Human-Robot Interaction

In [30], benchmarks for evaluating human-robot
cooperation are proposed, and the authors posit
that mutual trust is crucial for proper coopera-
tion. Along the same lines, the work described in
[31] hypothesizes that many factors play a crucial
role in evaluating and “controlling” human-robot
trust. These include robot-related factors such as
robot performance and physical attributes, human-
related factors such as personal skills and personal-
ity traits, and environmental factors as the required
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tasks. To support their hypothesis, the authors per-
formed a meta-analysis on ten scientific articles fo-
cusing on HRI. The analysis confirmed that trust is
essential to human-robot teams and that different
factors have distinct weights. Furthermore, accord-
ing to the authors, robot traits are the most criti-
cal factors in trust development. In contrast, envi-
ronmental features provide a moderate effect, and
there is little evidence that human elements influ-
enced trust in HRI. Finally, results pointed out that
developing a trust relationship between humans and
robots is strongly affected by several other issues
such as trust calibration and opaqueness.

As discussed in [32], trust in HRI often fails as
humans are not able to properly rely on robotic
agents. Then, trust calibration may play a key role
when humans over-trust or under-trust the robotic
agent. Extensive research in human-machine in-
teraction [15, 16, 17, 18] has shown that the more
operators trust automated systems, the more they
tend to rely on them to accomplish tasks. When
operators trust their abilities more than those of
the system, they tend to instead choose “manual
control” modes. Failure to meet user expectations
can result in system misuse or disuse, respectively, if
the expectations are too high or too low [33]. Other
works [34] have confirmed that distrust can reduce
people’s willingness to accept the information pro-
vided by a robot or follow a robot’s advice, thus lim-
iting the potential benefit of robotic systems [35].

Another key issue to consider in developing trust
relationships in HRI is opaqueness. State-of-the-
art autonomous robots extensively use AI processes
that may take complex and adaptive decisions.
Still, the motivations behind such decisions are usu-
ally complicated to understand. Thus, the opaque-
ness of AI systems may lead humans to have con-
cerns and ultimately mistrust due to the robot’s
inability to explain the motivation for its actions.
This effect is more dramatic for inexperienced users
who may find the behaviour of a robot hard to pre-
dict, generating a sense of distrust and impeding ef-
ficient teamwork. To increase the user’s trust in the
system, it is essential to reduce the system opaque-
ness, making the robot more predictable and un-
derstandable. Indeed, one of the most active re-
search topics in HRI is informing the users about
the agent’s intentions, the so-called explainable AI
(XAI). In [14], a systematic literature review of
explainable agents and robots is presented. The
survey reveals that trust and transparency are the
most prominent drivers of XAI research since they

are essential to increasing the user’s confidence in
the system by providing clear insight into how its
reasoning mechanisms work.

Reinforcement learning (RL) [36] has been pro-
posed to implement the concept of trustable and
explainable robots. In particular, [37] proposes In-
verse Reinforcement Learning (IRL) as a way to
formalize our ability to reason about other peo-
ple’s mental states. Dynamic Bayesian networks for
trust estimation have been proposed in [38], where
the authors present a model that enables a robotic
agent to quantify the degree of trust that a human
supervisor has in the agent itself, thus making it
possible for the robot to dynamically adapt its be-
haviours to improve its trustworthiness. The work
proposed by [39] embraces the reverse perspective
and explores ways in which the agent can measure
the trustworthiness of the human operator. In the
spirit of developmental robotics, an approach in-
spired by mechanisms observed in children’s cog-
nitive development [40, 41], this work presents a
robotic agent that learns to evaluate the degree of
trustworthiness of its information sources to make
autonomous decisions. Finally, trust and its dy-
namics in the interaction between humans and ar-
tificial agents have been investigated in the frame-
work of game theory [42, 43, 44]. A recent survey
about trust models and metrics in HRI has been
proposed in [45].

2.2. Robot-Robot Trust

Trust in the field of Multi-Agent Systems has also
been extensively studied. In [46], the most rele-
vant trust and reputation models published in the
last two decades are surveyed, whereas [47] ana-
lyzes existing trust models from a game theoretic
perspective to highlight the special implications of
including human beings in a MAS.

However, when explicitly focussing on robots and
other embodied agents interacting with each other
(i.e., not necessarily including humans in the loop),
the development of trust relationships as a basis for
cooperation has not been explored in depth.

Investigating trust between robots might at first
not appear relevant because robotic agents work
according to their specifications, do not lie or exe-
cute malevolent actions on purpose (unless hacked –
something we do not consider here), and it is hard
to imagine robotic agents whose judgment about
others is affected by their own personality or emo-
tions. Therefore, most researchers address the col-
laboration between robots by focussing on task as-
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signment, cooperative control, and similar problems
requiring finding optimal strategies, with no space
for subjective elements like trust. However, reason-
ing about trustworthiness does not require the pos-
sibility for agents to be malevolent. Indeed, trust
also plays a key role when an agent has to evaluate
its own and other agents’ capabilities by comparing
a priori beliefs and claims with observed results:
that is, the assessment that an agent makes about
its own and other agents’ capabilities before and
after performing a task. As discussed in the Intro-
duction, a misalignment between a robot’s expected
and actual capabilities can occur due to the impos-
sibility of predicting outcomes in any environmen-
tal conditions, limitations in perception and action,
and other factors, including insufficient, wrong, or
outdated documentation, limited testing, degrada-
tion of performance due to wear, and more.

Consider, for instance, the problem of assigning
tasks to multiple agents. In [48], the multi-robot
task assignment (MRTA) problem was reviewed by
illustrating several criteria and algorithms to op-
timize results, each with different characteristics
to adequately address a range of problems associ-
ated with a given context. When addressing the
problem of distributed multi-robot task allocation,
one of the most popular approaches is the use of
auction-based methods [49]. The idea is straight-
forward, and numerous variants have been proposed
[50, 51, 52]. Agents, possibly differing in their sen-
sory or actuating hardware or functionalities, are
allowed to make a bid for a task. The auctioneer
will assign the task to the most fitting agent to per-
form it according to some metric.

Irrespective of the specific algorithm adopted for
task assignment, MRTA typically relies on a shared
communication protocol and the evaluation of one
or more metrics that measure the fitness of each
candidate robot to contribute to the needed task at
a given time. However, appropriate evaluation met-
rics are critical because of the possible discrepancy
between agents’ beliefs and claims and their ac-
tual capabilities. The problem becomes even more
important when considering “open environments”,
i.e., environments in which heterogeneous robots
with different capabilities (but also personal assis-
tants, distributed sensors, and other devices) may
enter and leave asynchronously and without notice.
This makes metrics evaluation challenging since it
requires evaluating the capability of agents that just
joined the team and that other agents may have
never seen before or agents commercialized in dif-

ferent countries by different producers with differ-
ent quality standards and specifications.

In this scenario, and by mimicking the approach
that a team composed of humans might pursue to
address similar problems, we conjecture that trust,
as formalized in the next section, is a promising
metric to coordinate heterogeneous agents.

3. Methodology

3.1. Trust-based task allocation

We start defining the elements to model the con-
text in which agents operate. We assume the avail-
ability of the following finite sets:

• a set of Ne events E = {Ei}. Ei may be a
combination of perceptual inputs, an explicit
command from a user, an alarm, or any other
external stimulus that is processed by a robot
and whose effect is triggering a specific plan
(i.e., one or more actions to be executed by
the robot);

• a set of Na actions A = {Ai}. Each action Ai

is identified by a shared, unique identifier;

• a set of Ng agents G = {Gi}. Gi is any hard-
ware device or software module that can com-
municate with other agents and can auction or
bid for actions. An agent Gi knows:

– a set of Ne
i actions Ae

i = {Aj} ⊆ A that
it can execute, where each action {Aj} is
associated, for each agent, to a portion
of code. Under the assumption that the
outcome of each action can be either la-
belled as success or failure, for each Gi

and Aj ∈ Ae
i it is possible to formalize the

sequence of Aj outcomes as a Bernoulli
process in which 1 means success in per-
forming the action while 0 means failure,
with a given success rate.

– a set of Nv
i actions Av

i = {Aj} ⊆ A that
it can verify by executing a different por-
tion of code. For each Gi and Aj ∈ Av

i it
is possible to model Gi’s capability of ver-
ifying Aj with a given True Positive (TP)
rate in identifying successes and a True
Negative (TN) rate in identifying failures.

– A set of Np
i plans Pi = {Pj}, each defined

as a sequence of known actions belonging
to Ae

i that must be completed, serially or
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at the same time, to successfully respond
to a corresponding event Ej .

Each agent in the Trust Framework can:

• start a plan to manage one or more events;

• auction an action in its plan or bid on an action
auctioned by another agent;

• execute or verify the execution of one or more
actions;

• gather data from other agents about the suc-
cess or failure of a given action;

• update its trust in other agents.

The overarching idea may be summarized as fol-
lows. First, using a portfolio of trust-related met-
rics, agents dynamically gather data about the
other agents’ capability to (i) perform actions; (ii)
verify the outcomes of actions performed by other
agents. Then, they will iteratively use and up-
date these metrics to evaluate the trustworthiness
of other agents, including themselves, during auc-
tions, thus ultimately taking trustworthiness into
account when taking a new decision for task as-
signment.

A simple example may help to clarify these con-
cepts. Suppose that a humanoid robot G1 needs
to handle an event E1 =PrepareLunchIngredients,
which may follow an explicit request by a user, be
generated by a clock, or even issued by another
agent. G1 knows how to handle the event and has a
plan {A1, A2} to respond to it. Since it participates
in the framework, it maps its low-level sensorimo-
tor routines to open the fridge and take ingredi-
ents to the two actions A1 =OpenFridgeDoor and
A2 =TakeIngredients. However, G1 can also con-
sider assigning the actions to other agents in the
framework that may be more trustworthy in per-
forming them – G1 executed both actions several
times, but it often fails.

One day, when G1 auctions A1, it turns out that
there is a new agent G2 (e.g., a smart, motorized
fridge door connected to the local network) that
bids for A1 =OpenFridgeDoor. G2 considers itself
to be very trustworthy in performing that specific
action. After gathering all the available informa-
tion, including data sent by G2 and other partic-
ipants, the auctioneer G1 takes the final decision
to assign A1 to G2 because G2 claims to be very
reliable (and no agent can prove the opposite). In

contrast, every agent (including G1) is aware that
G1 has been very unreliable in performing that task.

Next, G1 gets ready to observe and evaluate G2’s
outcomes along with other agents that volunteered
to do so, among which a smart RGB-D camera G3

on the ceiling. G2 correctly opens the door. How-
ever, since G1’s vision algorithms have limitations,
G1 mistakenly recognizes the action as a failure.
An exchange of data among agents follows. G2

communicates that it successfully opened the door,
and other devices in the room agree with what G2

says (among which the RGB-D camera G3, which
was very trustworthy in observing this action in the
past). G1, being the only agent who detected a
failure, understands that not only its capability of
performing A1 is not very reliable, but also its capa-
bility of verifying the execution of this action when
done by other agents. Accordingly, it will update
its beliefs for future occurrences of event E1.

After the fridge door is opened, the auction for
the second action A2=TakeIngredients starts. Be-
ing a humanoid robot and the only agent imple-
menting this action, G1 wins its own auction and
starts taking the ingredients. This time, G1 cor-
rectly judges the outcomes of the action. Its judg-
ment is confirmed by most of the verifying agents,
among which is G4, an RFID antenna located in the
fridge capable of detecting the presence of RFID-
tagged ingredients. G4 did not participate in the
auction to perform A2 because it does not imple-
ment it but volunteered as a verifying agent to eval-
uate G1’s capabilities for future interactions.

The procedure used for auctions is described in
Algorithm 1 without referring to formal metrics,
which are introduced in the next Section.

Notice that if all agents share their opinions
about other agents’ success rates in performing and
observing actions, decision-making can work in a
distributed way. Even if the auction is managed
by an auctioneer that assigns the action to the
winner, any other agent in the framework has all
the information to predict the auctioneer’s choice,
which may still be required but only for synchro-
nizing execution as clarified in Section 4. Moreover,
in the case of collectivistic decision-making (intro-
duced later), all agents will unavoidably come to
the same conclusions about the most suitable agent
to perform the action.

3.2. Modeling Trust

The assignment of actions to execute plans re-
lies on metrics to model the trustworthiness of
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Algorithm 1 Trust-based task assignment

Require: A set of agents G = {G1, G2, . . . , Gn};
an Event El detected by agent Gi; a Plan Pl =
{Ak} known to Gi and suitable to manage El.

1: Agent Gi selects plan Pl

2: for each action Ak in Pl do
3: Gi starts an auction for Ak

4: All agents able to perform Ak bid on Ak by
sending data to Gi about (i) their trustwor-
thiness in executing Ak; (ii) other agents’
trustworthiness in executing it; and (iii) their
trustworthiness in verifying other agents’ suc-
cess or failure.

5: Gi evaluates all bidders.
6: if the perceived competence is above a

threshold for at least a bidder then
7: Gi assigns Ak to the bidder Gj with the

highest perceived competence.
8: else
9: Gi asks for the intervention of a human

supervisor.
10: end if
11: Gj executes action Ak

12: All agents able to verify the proper execution
of Ak (including Gj itself) vote for either the
success or failure of the action, and send out-
comes to each other.

13: All agents update their own and other agents’
trustworthiness according to direct observa-
tions and data received from other agents.

14: end for

agents. Trustworthiness plays a key role in (i) scor-
ing bidding agents and taking consequent decisions
to assign actions and (ii) weighing agents’ opinions
about the outcomes of such actions. Since we aim
to build a general model that might be applied to
different domains, we surveyed several metrics pro-
posed in the literature to model such concepts. In
the following, we propose the role of two Context-
independent metrics [45]: Reliability and Verifica-
tion Trustworthiness, which are composed to com-
pute the agent’s Perceived Competence.

3.2.1. Reliability

Reliability, one of the attributes of Logical Trust
[27], is the estimate, made by agent Gi, of the suc-
cess rate of agent Gj in executing action Ak, i.e.,

Rel(k, i, j) =

Nexe(k,i,j)∑
n=1

Resn(k, i, j)

Nexe(k, i, j)
(1)

where:

• Nexe(k, i, j) is the number of times that Gi has
observed Gj performing Ak;

• Resn(k, i, j) is a binary value encoding the ob-
served result of the nth execution of the action:
1 stands for success while 0 stands failure.

Reliability has a value in the range [0, 1].

3.2.2. Verification Trustworthiness

When an agent executes an action, other agents
may volunteer to verify the outcome. Therefore, it
is necessary to evaluate not only the trustworthiness
of an agent to execute a given action but also how
trustable an agent is in verifying that a particular
action has been correctly executed1.

To this end, this article introduces a new metric
referred to as Verification Trustworthiness, which
measures the degree of the trustworthiness of a
verifying agent depending on the consensus it has
around its judgment skills. Formally, the Verifica-
tion Trustworthiness measures how much the verifi-
cation made by agent Gj about the success of action
Ak is considered trustworthy according to an agent
Gi and requires counting the number of opinions
that are concordant or discordant with the judg-
ment of Gj .

The first step is to assess the consensus around
the judgment made by agent Gj .

V TWn(k, i, j) =
Ncon(k, j)−Ndis(k, j)

Ncon(k, j) + Ndis(k, j)
(2)

where:

1One could hypothesize the presence of “second-order
verifiers” that observe “first-order verifiers” to judge how
trustable they are in judging other agents. However, this
looks unreasonable since it would ideally lead to a regression
to infinite, as soon as we start thinking about recursively im-
plementing “third-order verifiers” to check the reliability of
“second-order verifiers,” and so on. Quantifying the trust-
worthiness of verifiers is important, as verifiers themselves
may be prone to errors due to their limited perceptual ca-
pabilities (“Quis custodiet ipsos custodes? Who watches the
watchers?”), but the solution necessarily needs to be differ-
ent, as shown in the following.
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• Ncon(k, j) is the number of verifying agents
that concur with the judgment made by Gj

about the success of action Ak;

• Ndis(k, j) is the number of verifying agents
that disagree with the judgment made by Gj

about the success of action Ak.

V TWn(k, i, j) refers to the nth execution of ac-
tion Ak, and has a value in the range [−1, 1].
When all the agents agree, V TWn(k, i, j) = 1;
this value decreases as the number of discord-
ing agents increases and reaches the lower bound
V TWn(k, i, j) = −1 when all agents disagree
with Gj . It shall be noted that the value of
V TWn(k, i, j), depending only on the consensus
about Gj ’s opinion on the execution of Ak, is com-
puted in the same way by all agents Gi in the frame-
work. This explains why the parameter i does not
appear on the right side of Eq.(2). However, we
kept the index i in the formulation of V TWn(k, i, j)
to underline the fact that it can be computed in par-
allel and independently by all agents in the system.
For simplicity, in the following, we will also use the
notation V TWn(k, j).

The second step is to compute the average Veri-
fication Trustworthiness of an agent Gj in verifying
Ak, which is:

V TW (k, j) =

Nver(k,j)∑
n=1

V TWn(k, j)

Nver(k, j)
(3)

where:

• Nver(k, j) is the number of times that action
Ak has been verified by Gj .

V TW (k, j) has the same value when computed
by any agent Gi.

3.2.3. Perceived Competence

Whenever an auctioneer Gi has to decide about
assigning an action Ak to a bidding agent Gj ,
the former computes the Perceived Competence
of the latter. The Perceived Competence is
computed as a function of the Reliability of
Gj estimated by all agents {G1 . . . Gn} partic-
ipating to the auctions as well as their own
Verification Trustworthiness. These values are
stored in the vectors [Rel(k, 1, j) . . . Rel(k, n, j)]
and [V TW (k, 1) . . . V TW (k, n)] and the perceived

competence is then computed as:

Comp(k, i, j) = f([Rel(k, 1, j) . . . Rel(k, n, j)],
[V TW (k, 1) . . . V TW (k, n)]).

(4)

Eq.(4) shows the computation of the Perceived
Competence in its more general formulation. As ex-
plained in the next Section, the way in which indi-
vidual Reliability and Verification Trustworthiness
contribute or not contribute to f(·) will depend on:

• how we compute metrics in the transitory, i.e.
when the agent Gj has not yet executed the
action Ak a sufficiently large number of times:
Boot mode, Window mode or BCI mode;

• the behaviour of agents towards the commu-
nity: individualistic or collectivistic;

• the disposition of agents towards other agents:
optimistic, pessimistic, realistic.

Terms as collectivistic or individualistic are not
intended to model an actual “attitude” of agents.
They are just meant as labels to characterize dif-
ferent strategies. For instance, a collectivistic-
optimistic robot will likely take in the highest ac-
count the opinions received by other agents (differ-
ently from what we expect from a individualistic
robot), be favorable to give an additional opportu-
nity to agents even if they fail once, and tend to
evaluate agents based on their best performances
instead of their failures (differently from what we
expect from a pessimistic robot).

No matter how it is computed, the highest Per-
ceived Competence among all bidders is finally com-
pared to a “cooperation” threshold that is inspired
by the one proposed by [28] and takes into account
the Importance of the action Ak for the auctioneer
Gi (in the range [0, 1]). The auctioneer will trust
the winning bidder to execute the action only when
the Perceived Competence is higher than the thresh-
old. Otherwise, the auctioneer will request the as-
sistance of a human supervisor. If the action is very
important, the auctioneer requires more guarantees
about the trustworthiness of bidders, i.e., the action
is assigned to the winning bidder Gj if and only if:

Comp(k, i, j) ≥ KImportance(k, i) (5)

where K is a gain based on the opti-
mistic/pessimistic/realistic disposition of the
trustor, as explained next.
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As the reader may imagine, different or addi-
tional metrics may be considered [27]. Here, for
brevity’s sake, we have just described the ones im-
plemented and tested in the experiments, but we
refer the reader to section 7 for an additional dis-
cussion about this subject.

3.3. Dynamic behavior

Each agent in the framework stores data
Resn(k, i, j) about the results it observed for each
action and the values V TWn(k, j). When n is suf-
ficiently high and the estimation of the Reliability
and Verification Trustworthiness depends on a rea-
sonably large sample of observations, data are han-
dled as described in the previous section. However,
it is necessary to decide how to process data in the
initial phase when agents start to interact and may
not have enough information to judge each other’s
trustworthiness.

A straightforward solution is that, when no data
are available about action Ak, each auctioneer Gi

shall trust Gj ’s declared Reliability Rel(k, j, j) but,
as soon as data are available auctioneers will rely
on observations. This approach requires establish-
ing the number of observations needed to consider
them as relevant. For example, suppose an auction-
eer Gi starts relying on its own estimate of Gj ’s
Reliability after just one execution of Ak. If Gj

is observed by Gi to fail the first assigned action,
its Reliability will drop to zero. As a result, Gi

will mark Gj as completely untrustable in execut-
ing that action and preventing it from being con-
sidered again in the future. To address this issue,
we explored three approaches to process Reliability
data when agents do not have enough data to infer
each other’s capabilities.

3.3.1. Boot Mode

The most straightforward approach is referred to
Boot mode. This mode requires the definition of
a “boot phase” length, expressed as the number of
Ak’s auctions in which an agent Gj needs to partici-
pate before an auctioneer Gi starts using Rel(k, i, j)
as a measure of Gj ’s trustworthiness. When there
is not enough available data, auctioneers select win-
ners accordingly to the highest declared Reliability
Rel(k, j, j) sent by each bidder Gj .

This approach has two drawbacks. First, defin-
ing a proper boot phase length may be challeng-
ing. Increasing its duration allows for gathering a

broader and more statistically relevant data sam-
ple before using Reliability. Still, it may also re-
sult in lower performances in the boot phase since
auctioneers will assign actions to bidders according
to their declarations and not actual observations.
During the boot phase, an overly confident bidder
that declares itself to be the best candidate for ev-
erything could win all auctions, even if it is the
most incompetent. On the other hand, decreasing
the length of the boot phase may produce an “un-
forgiving behavior” whereby auctioneers will hardly
forget mistakes made in initial auctions. Since ac-
tion assignment is based on Reliability, auctioneers
may never give an unreliable agent a second chance,
thus making it very hard for it to recover from hav-
ing a bad reputation. This undesirable behavior is
even more critical as the framework operates in an
open environment where new agents can enter the
community at any time, thus requiring a new boot
phase for any additional agent and action.

3.3.2. Window Mode

In Window mode, similarly to the Boot mode, ob-
servations are used to compute an agent’s Reliabil-
ity only after sufficient data have been collected.
However, differently from the Boot mode, Reliabil-
ity and Verification Trustworthiness are computed
by taking into account only the last Nwin(k, i, j)
times that Gi has observed Gj executing Ak, where
Nwin(k, i, j) is the length of the “memory window”
(instead of considering the full sequence of observa-
tions). The Reliability and Verification Trustwor-
thiness formulas (1) and (3) can be changed accord-
ingly by computing the sum from n = Nexe(k, i, j)−
Nwin to n = Nexe(k, i, j) (instead of starting from
n = 1). If the available data is less than the length
of the memory window, the agents behave as they
do in the Boot mode.

Window mode is appropriate when the perfor-
mance of an agent may improve or deteriorate
as time passes, therefore allowing other agents to
quickly detect changes and update its Reliability
accordingly. However, similarly to the Boot mode,
defining a proper length for the memory window is
crucial. A small window length guarantees that a
possible overly confident behaviour of bidders will
last fewer interactions. Still, the Reliability and the
Verification Trustworthiness will be subject to os-
cillations and never stabilize. On the other hand, a
considerable window length will produce robust Re-
liability and Verification Trustworthiness estima-
tions, possibly converging to the actual error rate
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of the agent. However, this will need more time to
reach a steady state and be susceptible to undesir-
able behaviours in the transitory phase.

3.3.3. Binomial Confidence Interval (BCI) Mode

We propose the BCI mode to remedy the flaws
of the previous two modes. The model prevents
the emergence of unforgiving behaviors, and it nei-
ther needs a boot phase nor a memory window. As
we modeled the results of each action as a success
or a failure, we can formalize the results’ sequence
as a Bernoulli process. In BCI mode, each agent
computes and shares not only the average Relia-
bility Rel(k, i, j) of other agents, but also the bi-
nomial confidence interval (BCI) around such esti-
mate that converges to zero as the number of execu-
tion increases. Specifically, the upper High(k, i, j)
and lower bounds Low(k, i, j) of the interval de-
pend on three parameters: the number of Bernoulli
or Binomial trials, which in our framework trans-
lates to the number of times Nexe that the action
has been observed; the number of times a success
has been observed; a confidence percentage in the
range [0, 100] that represents the desired statistical
chance that the actual value of the Reliability falls
in the confidence interval2.

Auctioneers will then use the confidence inter-
val as a piece of additional information to evaluate
the trustworthiness of bidders. When Gi auctions
action Ak, the self-declared Reliability Rel(k, j, j)
of an agent Gj is now required only when no data
are available at all. Indeed, as soon as Gj has ex-
ecuted Ak at least once, Gj ’s Reliability can be
safely used given that we implement policies to
take into account not only its value but the confi-
dence Gi has about that value (given by the BCI).
We will show in the next Section how Gi’s opti-
mistic/pessimistic/realistic attitude may be used to
interpret the confidence interval in different ways.

3.4. Disposition towards other agents

The optimistic/pessimistic/realistic disposition
of an auctioneer may play a key role to evaluate a
bidder’s trustworthiness. When in Boot mode and
Window mode, for instance, the disposition of an
auctioneer Gi may be used to determine the Relia-
bility of a bidder Gj until a sufficient number data

2We use the EBCIC Python module from the National
Institute of Advanced Industrial Science and Technology,
which implements the Clopper–Pearson interval [53].

has been collected. In Subsection 3.3 we explained
that, during the transitory phase, the declared Re-
liability of Gj can be used, but a more sophisticated
behavior might be the following.

Suppose that Gi has not yet enough data for Gj

about Ak, but it has collected enough data about
other actions {Al}, l 6= k:

• an optimistic auctioneer may consider instead
the highest Reliability among the observed ac-
tions Al, l 6= k:

Comp(k, i, j) = arg max
l 6=k

Rel(l, i, j); (6)

• a realistic auctioneer may compute a weighted
average over all the observed actions Al, l 6= k:

Comp(k, i, j) =

∑
l 6=k Nexe(l, i, j)Rel(l, i, j)∑

l 6=k Nexe(l, i, j)
;

(7)

• a pessimistic auctioneer may consider the low-
est Reliability among the observed actions Al,
l 6= k:

Comp(k, i, j) = arg min
l 6=k

Rel(l, i, j). (8)

The strategy just described is not implemented
in the experiments in Section 5, where the de-
clared Reliability is used in Boot Mode and Window
Mode until enough data have been collected. But
the example shows that more complicated strate-
gies are possible, which somehow mimic the in-
tuitive behaviour we would expect from a opti-
mistic/pessimistic/realistic agent.

The disposition of agents plays a key role in our
experiments when data are collected and processed
in BCI mode. We remind that, in this case, a
BCI [Low(k, i, j), High(k, i, j)] is computed by Gi

around the estimated Reliability of Gj in perform-
ing Ak. The BCI measures how confident Gi is
about its estimate Rel(k, i, j), which converges to
its expected value as the number of observations
increases. Under these conditions:

• an optimistic auctioneer will consider the up-
per bound of the BCI to estimate the agent’s
Perceived Competence, therefore being more
prone to forgive and give a second chance to
an agent that failed the first attempts:

Comp(k, i, j) = High(k, i, j); (9)
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• a pessimistic auctioneer will use the lower
bound, thus being very conservative and cau-
tious when it encounters a new bidder about
which it has little data:

Comp(k, i, j) = Low(k, i, j); (10)

• a realistic auctioneer will use the intermediate
value Rel(k, i, j), thus being open to new bid-
ders but, at the same time, not very willing to
give a second chance to an agent that failed.

Irrespective of the dynamic behaviour of the sys-
tem, an optimistic/pessimistic/realistic disposition
may play an important role in computing the gain
K in Eq. (5). K determines how likely it is that the
Perceived Competence of a bidder Gj is above the
threshold and the agent will be assigned an action.
An optimistic auctioneer will likely use a lower gain,
a pessimistic auctioneer will use a higher gain, and
a realistic auctioneer will have a value in-between
the two. This rule translates in optimistic agents
being more prone to trust an agent and pessimistic
agents being more cautious, possibly asking a hu-
man supervisor when in doubt.

3.5. Behaviour toward the community

The difference between individualistic and collec-
tivistic agents is not in the way Reliability is com-
puted, but how the individual Reliability and Veri-
fication Trustworthiness values estimated by agents
are composed to compute the Perceived Compe-
tence in Eq. (4).

In case of an individualistic auctioneer Gi that
needs to compute the Perceived Competence of Gj

in executing Ak, we define:

Comp(k, i, j) = Rel(k, i, j), (11)

where, as usual, the value Rel(k, i, j) depends on
the approach adopted to estimate trust metrics in
the transitory (Boot mode, Windows mode, BCI
mode). Describing the behaviour of a collectivistic
agent is more complex since it requires introduc-
ing the concept of Weighted Reliability. The idea
is that, at the beginning of the auction for action
Ak, all agents share their own opinions about each
other’s Reliability in executing that action: a col-
lectivistic auctioneer will take into account other
agents’ opinions by calculating a weighted aver-
age mediated by their Verification Trustworthiness.
Thanks to this, collectivistic agents can compensate

for a poor ability to judge the reliability of other
agents by relying on the opinions of agents that are
more trustworthy in verifying actions.

Specifically, the Weighted Reliability is computed
as follows:

WRel(k, j) =

∑Nw

l V TW (k, l)Rel(k, l, j)∑Nw

l V TW (k, l)
(12)

by considering in the sum the Nw agents Gl that
have an opinion Rel(k, l, j) about Gj ’s Reliability
in performing action Ak. Notice that WRel(k, j)
has the same value when computed by any of the
collectivistic agents Gi, since all agents agree about
the Verification Trustworthiness V TW (k, l) of Gl

in verifying the execution of Ak, Eq. (3).
The Perceived Competence can be computed as:

Comp(k, i, j) = WRel(k, j). (13)

To summarize, in the case of individualistic agents,
each agent Gi individually estimates the reliability
Rel(k, i, j) of Gj in performing Ak, and then the
Perceived Competence of Gj in performing Ak is
computed as in Eq. (11). In the case of collectivistic
agents, each agent Gi first estimates the weighted
reliability WRel(k, j) by considering the opinion of
other agents as in Eq. (12); then it computes the
Perceived Competence as in Eq. (13).

4. Implementation

We implemented the Trust Framework in ROS
[19], thus providing the shared vocabulary and pro-
tocol required by agents to communicate with each
other in an open, distributed environment. The
framework follows a modular design to run both in
simulation and with real robotic platforms.

A sketch of the proposed architecture is shown
in Figure 1. The TrustAgent node is responsi-
ble for all the framework-related operations (such
as communications with other framework mem-
bers, auction management, and trust evaluation).
The Adapter manages the interface with platform-
dependent sensorimotor routines related to percep-
tion and action and needs to be customized for any
specific robotic platform, thus guaranteeing modu-
larity and compatibility.

4.1. Agent Node

In the framework, each agent is represented by a
node, which provides the following services:
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Figure 1: A possible implementation of the proposed architecture.

• management of auctions either as an auction-
eer or a bidder;

• handling of ROS messages through which the
agents receive and elaborate data from other
agents;

• synchronization with other agents through all
the phases of an auction;

• processing of all the data required for the com-
putation of Reliability and Verification Trust-
worthiness;

• evaluation of the Perceived Competence de-
pending on the behaviour-disposition configu-
ration of the agent;

• sending/receiving data, through a TCP/IP
socket, to the Adapter running on the robot
to perform the required sensorimotor routines
for executing or verifying an action.

4.2. Event node

In a real-world scenario, events may be triggered
by the robot’s onboard sensors, by an alarm, or by

an explicit request of the user. Ideally, each de-
tected event will trigger one or more plans known
to the agent, where each plan includes the actions
to be completed to achieve the goal. The agent
will then be responsible for auctioning the actions.
However, for the experiments described in the fol-
lowing, we assume that event triggering is fully ad-
dressed by a node referred to as the Event node.
The Event node periodically generates an event by
publishing a message targeted to the only agent
that has a plan to manage it and therefore will be
the auctioneer for that particular kind of event. In
real-world experiments, the Event Node is useful to
produce repeated events, which would otherwise re-
quire continuous interaction with robots to test the
functionalities of the framework.

4.3. Simulated results node

The Simulated results node is a service only
needed in simulation. When an agent needs to ex-
ecute an action or to verify the execution of an ac-
tion performed by another agent, it sends a request
to the Simulated results node. The latter will then
decide for the success or failure of the action or
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Figure 2: A new agent enters the framework.

the observation, depending on a priori probabilities
associated with different possible outcomes. This
process simulates the result of an action or an obser-
vation as it would happen in the real world, which
should not be confused with the Reliability and Ver-
ification Trustworthiness estimated by agents. In
real-world tests, we do not require this node because
the success or failure of an action or an observation
depends on the actual perceptual or actuation ca-
pability of a robot. After computing the outcome,
the service sends back to the requesting agent a
response. Notice that a successful observation cor-
rectly reports the success or failure of the action,
whereas a failed observation reports a failure when
the action was a success and vice versa.

4.4. Framework sequence diagrams

To clarify the temporal sequencing of the inter-
actions between agents in the framework, we pro-
vide three sequence diagrams illustrating how in-
formation is exchanged among agents. Figure 2
describes what happens when a new agent enters
the framework. First, it broadcasts an initializa-
tion message communicating the new agent’s plans
and actions and its self-declared success rate in
performing such activities. Upon receiving this
message, other agents update their data structures
(AddNewAgentRates()) and reply to the new agent
by publishing their own initialization messages.

Figure 3 describes the auction phase after an
event is triggered. First, the auctioneer publishes a
message (Auction(AD START)). Then, each agent
responds with a message (AuctionDecl(Rates))
containing the estimated Reliability and Verifica-
tion Trustworthiness of all possible candidates. The
auctioneer waits for all expected declarations to ar-
rive or until a timeout expires. Then, it chooses
the winner depending on its own opinion and, pos-

Figure 3: Agents’ interaction during the auction phase.

sibly, the opinions of other agents if its behavior-
disposition configuration requires that. Finally, the
auctioneer publishes a message (Auction(AD END))
to declare the end of the auction, the winner, and
the verifying agents among the participants.

Figure 4 shows the action execution and veri-
fication phase. After the auctioneer declares the
winner, the agents in the framework prepare to ei-
ther perform or verify the auctioned action. When
a verifying agent is ready, it publishes a message
(Action(READY for Act)) and starts waiting for
the winner to execute the action. The winner waits
for all the expected messages to arrive or until a
timeout expires and then starts executing the ac-
tion, after notifying the other agents through an
additional message (Action(READY for Act)). In
this way, the performer and the verifying agents
synchronize execution and verification of the ac-
tion. When the performer terminates the action,
it notifies the other agents (Action(Act END)), af-
ter which each verifying agent shares the perceived
outcome (ResultDecl(perceived outcome)) and
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Figure 4: Agents’ interactions during the execution and ver-
ification phase

waits for analogous messages from other verifying
agents. All agents wait for all the expected dec-
larations to arrive or until a timeout expires, and
then accordingly evaluate the trust metrics. Fi-
nally, they all label the auction as terminated and
are ready for another auction.

5. Simulated experiments

To validate the proposed framework, several ex-
periments have been performed in simulation, a
small part of which is described in the following.

For each experiment, we provide the actual suc-
cess rate of each agent Gi to perform actions, as
well as the actual rate of True Positive (TP) and
True Negative (TN) in observing the outcome of ac-
tions performed by other agents (or by themselves).
The Simulated result node uses these values to sim-
ulate the outcomes of the execution and verification
of actions. Then, for each agent Gi we build the fol-
lowing tables and plots to describe the results (not
all tables and plots are reported for each experiment
for lack of space).

• A summary table reporting, for each agent Gj

of which Gi is aware (including Gi itself), the
final value of the estimated Reliability of Gj ,
the observed number of successes NS and fail-
ures NF of Gj in performing each action, the fi-
nal value of Gj ’s Verification Trustworthiness,
the number of times N that each action has
been verified by Gj .

• A plot reporting, for each agent Gj of which
Gi is aware (including Gi itself), how the es-
timated Reliability and Verification Trustwor-
thiness evolve as the number of auctions in-
creases. In all plots, Reliability estimates are
plotted with a continuous line, whereas Ver-
ification Trustworthiness estimates are plot-
ted with a dashed line. A small vertical dash
means that an action has been assigned to the
corresponding agent at that time.

All the experiments reported below (except the
last set of experiments in Section 5.5 use the fol-
lowing Event-Plan association: event E1 can only
be handled by G1, that will then auction A1; event
E2 can only be handled by G2, that will then auc-
tion A2 and A3 in sequence. All agents can execute
and observe all actions A1, A2, A3, even if they may
have different success, TP, and TN rates in different
tests.

5.1. Reliability estimation

This set of tests does not have the objective to
simulate a real-world scenario but only to assess the
proper Reliability estimation. All agents are indi-
vidualistic and work in Boot mode for trust met-
rics update, which does not require to specify an
optimistic/pessimistic/realistic configuration. The
boot phase lasts 50 interactions for each agent and
action, and the TP and TN rates are set to 100%
for all agents, which means perfect observations.
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5.1.1. Experiment 1.1: one perfect agent, two
agents overestimating their capabilities

Three agents G1, G2 and G3 are deployed. G1

has a 100% success rate for all actions and is aware
of that; G2 and G3 have a 70% success rate but
initially estimate to be perfect, i.e., Rel(k, 2, 2) =
Rel(k, 3, 3) = 1, ∀k (agents’ estimate of other
agents’ and their own Reliabiliy will change during
execution.) Since agents always judge the outcomes
correctly, only G1’s trust metrics are reported.

As expected from this configuration, the Reliabil-
ity values in Table 1 and Figure 5 tend to 1 for each
action performed by the perfect agent G1 whereas
they tend to 0.7 for G2 and G3. In particular, it is
possible to observe in Figure 5 and in Table 1 that
actions are distributed among all agents during the
boot phase since G2 and G3 overestimate their Re-
liability, which is used during initial auctions: the
sum NS+NF corresponding to G2 and G3 for all ac-
tions equals 50. As soon as this phase ends and Re-
liability is estimated based on observations, actions
are always assigned to the most trustable agent G1.

A1 A2 A3

Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N)

G1 1.00 (233; 0) 1.00 (333) 1.00 (233; 0) 1.00 (333) 1.00 (233; 0) 1.00 (333)
G2 0.72 (36; 14) 1.00 (333) 0.74 (37; 13) 1.00 (333) 0.78 (39; 11) 1.00 (333)
G3 0.64 (32; 18) 1.00 (333) 0.78 (39; 11) 1.00 (333) 0.64 (32; 18) 1.00 (333)

Table 1: Trust metrics at the end of the Experiment 1.1
according to G1 (G2 and G3 would return the same values).

Figure 5: Trust dynamics of the Experiment 1.1 according
to G1 (G2 and G3 would return the same values).

A1 A2 A3

Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N)

G1 0.87 (203; 30) 1.00 (333) 0.52 (26; 24) 1.00 (333) 0.28 (14; 36) 1.00 (333)
G2 0.26 (13; 37) 1.00 (333) 0.91 (211; 22) 1.00 (333) 0.58 (29; 21) 1.00 (333)
G3 0.62 (31; 19) 1.00 (333) 0.28 (14; 36) 1.00 (333) 0.93 (216; 17) 1.00 (333)

Table 2: Trust metrics at the end of the Experiment 1.2
according to G1 (G2 and G3 would return the same values).

Figure 6: Trust dynamics of the Experiment 1.2 according
to G1 (G2 and G3 would return the same values).

5.1.2. Experiment 1.2: three imperfect and overes-
timating agents

Three agents are deployed, each having an action
in which it performs better than the others, but not
succeeding every time: G1 has success rates 90%,
60% and 30%, respectively, in A1, A2, A3; G2 has
success rates 30%, 90% and 60%; G3 has success
rate 60%, 30% and 90%. All agents initially esti-
mate to be perfect in execution, i.e., Rel(k, i, i) = 1,
∀k, i. Since agents always judge outcomes correctly,
only G1’s trust metrics are reported.

As expected from this configuration, the Relia-
bility in Table 2 and Figure 6 tends to the actual
success rate for all agents. Table 2 shows that ac-
tions have been distributed among all agents during
the boot phase, after which each action is always
assigned to the most trustable agent: this can be
easily inferred by summing up NS + NF for each
agent and action.

5.2. Verification trustworthiness

This set of tests has the main purpose of
assessing the proper estimation of the Verifi-
cation Trustworthiness of agents. Once again,
agents are individualistic and configured to work
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A1 A2 A3

Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N)

G1 1.00 (106; 0) 0.33 (333) 1.00 (106; 0) 0.33 (333) 1.00 (112; 0) 0.33 (333)
G2 1.00 (116; 0) 0.33 (333) 1.00 (102; 0) 0.33 (333) 1.00 (115; 0) 0.33 (333)
G3 1.00 (111; 0) -0.33 (333) 1.00 (125; 0) -0.33 (333) 1.00 (106; 0) -0.33 (333)

Table 3: Trust metrics at the end of the Experiment 2.1
according to G1 (G2 would return the same values).

A1 A2 A3

Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N)

G1 0.00 (0; 106) 0.33 (333) 0.00 (0; 106) 0.33 (333) 0.00 (0; 112) 0.33 (333)
G2 0.00 (0; 116) 0.33 (333) 0.00 (0; 102) 0.33 (333) 0.00 (0; 115) 0.33 (333)
G3 0.00 (0; 111) -0.33 (333) 0.00 (0; 125) -0.33 (333) 0.00 (0; 106) -0.33 (333)

Table 4: Trust metrics at the end of the Experiment 2.1
according to G3.

in Boot mode, and then do not require an op-
timistic/pessimistic/realistic configuration. The
boot phase lasts 50 interactions, and the success
rates are set to 100% for all agents, which means
perfect execution of all actions.

5.2.1. Experiment 2.1: two perfect agents and an
always wrong agent

Three agents G1-G3 are deployed: G1 and G2

have 100% TP and TN rates in recognizing the out-
comes of an action, whereas G3 has 0% TP and TN
rates, i.e., it always observes the opposite of the ac-
tual result. This time the observations of G1 and
G2 are different from G3, and therefore both G1

and G3’s trust metrics are reported.
As shown in Tables 3, 4 and Figures 7, 8, the Re-

liability of all agents estimated by G1 and G2 tends
to 1, whereas the Reliability estimated by G3 equals
0 since the latter always observes a failure when the
action was a success and vice versa. Moreover, it is
possible to observe that the Verification Trustwor-
thiness of the perfect agents is not 1, even if their
actual TP and TN rates are 100%. This happens
because the consensus in observations can never be
achieved: one-third of the agents are always voting
the opposite of the other two-thirds. Finally, it is
possible to notice that actions are almost equally
distributed among agents during the whole simula-
tion: the auctioneers G1 and G2 know that, even if
G3 is very bad in judging the outcomes of actions,
it still succeeds in executing them perfectly.

5.2.2. Experiment 2.2: nine perfect agents and an
always wrong agent

This experiment is similar to the previous one.
In this case, a higher number of agents G1-G9 with
100% TP and TN rates have been added to assess

Figure 7: Trust dynamics of the Experiment 2.1 according
to G1 (G2 would return the same values).

Figure 8: Trust dynamics of the Experiment 2.1 according
to G3.

that their Verification Trustworthiness increases as
the consensus in observation increases.

Metrics are not reported for sake of brevity, how-
ever, they are very similar to the ones reported in
the previous experiment. The only difference is in
the Verification Trustworthiness estimation: this
time, it converges to 0.8 for agents G1-G9 due to
the higher consensus (9 of the 10 agents always
agree), whereas it converges to −0.8 for G10. As
in the previous test, actions are almost equally dis-
tributed among agents, since auctioneers G1 and
G2 estimate all agents to be equally reliable.
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A1 A2 A3

Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N)

G1 0.52 (120; 112) 0.35 (333) 0.58 (29; 21) 0.32 (333) 0.52 (26; 24) 0.31 (333)
G2 0.47 (24; 27) 0.35 (333) 0.49 (26; 27) 0.30 (333) 0.53 (83; 73) 0.32 (333)
G3 0.44 (22; 28) 0.32 (333) 0.47 (109; 121) 0.35 (333) 0.47 (60; 67) 0.29 (333)

Table 5: Trust metrics at the end of the Experiment 2.3
according to G1

Figure 9: Trust dynamics of the Experiment 2.3 according
to G1.

5.2.3. Experiment 2.3: Three agents with a 50%
chance of observing correctly

Three agents G1-G3 are deployed, each having a
50% TP and TN rates in evaluating the outcomes of
actions. Since agents judge the outcomes of actions
differently, the trust metrics evaluated by individ-
ual agents are different: however, since the results
are quite similar in spite of local differences, only
G1 estimated metrics are reported.

As shown in Table 5 and Figure 9, the estimated
Reliability tends to the actual TP and TN rates of
agents: agents’ actions are always a success, but
they have a 50% chance that they are judged a fail-
ure. From Table 5 it can be observed that actions
have not been equally distributed among agents:
this is because the estimated Reliability now os-
cillates around 0.5 depending on how other agents
judge outcomes, and auctioneers may repeatedly as-
sign actions to an agent even if its Reliability is only
slightly superior. As all agents have the same TP
and TN rates, Verification Trustworthiness values
tend to be almost the same.

5.3. Transitory behaviour

In this set of tests the agent’s transitory be-
haviour (Boot mode/Window mode/BCI mode)

A1 A2 A3

Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N)

G1 1.00 (233; 0) 1.00 (333) 1.00 (233; 0) 1.00 (333) 1.00 (233; 0) 1.00 (333)
G2 0.68 (34; 16) 1.00 (333) 0.70 (35; 15) 1.00 (333) 0.72 (36; 14) 1.00 (333)
G3 0.72 (36; 14) 1.00 (333) 0.64 (32; 18) 1.00 (333) 0.60 (30; 20) 1.00 (333)

Table 6: Trust metrics at the end of the Experiment 3.1
according to G1 (G2 and G3 would return the same values).

changes in each experiment whereas the success,
TP and TN rates are always the same: G1 has
success rate 100% but underestimates its capabili-
ties as Rel(k, 1, 1) = 0.8, ∀k; G2 and G3 have suc-
cess rate 70% but overestimate their capabilities as
Rel(k, i, i) = 1, ∀k, i = 2, 3. The TP and TN rates
in observing actions are 100% for all agents: agents
exhibit an individualistic behaviour.

5.3.1. Experiment 3.1: Boot Mode

As like as in previous experiments, the boot phase
length is set to 50 interactions. Since agents always
judge outcomes correctly, only G1’s trust metrics
are reported.

Table 6 and Figure 10 show that, during the
boot phase, actions are almost equally distributed
between the “arrogant” G2 and G3 that overesti-
mate their Reliability, but they are never assigned
to G1 that declares its own Reliability to be lower.
However, after the boot phases of G2 and G3 have
ended, auctioneers realize that G2 and G3’s Relia-
bility is 0.7, i.e., lower than initially thought. They
immediately start assigning actions to G1, since the
latter is still in its boot phase and has a declared Re-
liability equal to 0.8. Auctioneers keep on assigning
actions to G1 even after the boot phase has ended,
as they soon realize that it has a 100% success rate.

The same would not happen if G1’s declared Re-
liability were lower than the actual success rate of
G2 and G3, say Rel(k, 1, 1) = 0.6, ∀k. In this case,
after the boot phases of G2 and G3 have ended, G1

will never be given a chance to win an auction. As
a consequence, auctioneers will never make any ob-
servation to update their estimate about the actual
G1’s success rate: in the future, G1’s Reliability will
always be considered the lowest one, and no agent
will ever trust G1 even if it is the most performing
agent. This behaviour is shown in Figure 11.

5.3.2. Experiment 3.2: Window Mode

Agents use the Window mode for estimating Reli-
ability with a window length of 50 observations. As
discussed in Section 3.3, using the Window mode is
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Figure 10: Trust dynamics of the Experiment 3.1 when
Rel(k, 1, 1) = 0.8, ∀k, according to G1 (G2 and G3 would
return the same values).

Figure 11: Trust dynamics of the Experiment 3.1 when
Rel(k, 1, 1) = 0.6, ∀k, according to G1 (G2 and G3 would
return the same values).

crucial when the success rate of an agent may in-
crease or decrease as time passes, therefore allowing
other agents to quickly detect changes and update
metrics accordingly. Since the success rate of all
agents is constant in this set of experiments, we ob-
serve that the behaviour of the Window mode is
almost the same as the Boot mode, and therefore
metrics are not reported for sake of brevity.

5.3.3. Experiment 3.3: BCI Mode

Agents use the BCI mode for estimating Relia-
bility with confidence equal to 90%, meaning that

A1 A2 A3

Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N)

G1 1.00 (306; 0) 1.00 (333) 1.00 (329; 0) 1.00 (333) 1.00 (308; 0) 1.00 (333)
G2 0.50 (2; 2) 1.00 (333) 0.33 (1; 2) 1.00 (333) 0.81 (17; 4) 1.00 (333)
G3 0.83 (19; 4) 1.00 (333) 0.00 (0; 1) 1.00 (333) 0.50 (2; 2) 1.00 (333)

Table 7: Trust metrics at the end of the Experiment 3.3
according to G1 (G2 and G3 would return the same values).

Figure 12: Trust dynamics of the Experiment 3.3 according
to G1 (G2 and G3 would return the same values).

the actual success rate has a 0.9 probability of be-
ing in the BCI around the estimated Reliability. In
BCI mode a optimistic/pessimistic/realistic dispo-
sition may play a key role in determining differ-
ent behaviours. We set agents’ disposition to opti-
mistic because, to overcome the limitations of Boot
mode and Windows mode, auctioneers shall give
all agents a reasonable chance to perform at least
one action when they enter the framework. Addi-
tionally, a pessimistic attitude may be impractical,
since auctioneers will repeatedly ask for a human
supervisor’s approval in the initial phase, as long
as the Perceived Competence of bidders is below
the threshold in Eq. (5). This would happen if Re-
liability were pessimistically estimated as the lower
bound of the BCI, which is necessarily large when
the number of observations is small. Please, re-
member also that BCI mode does not require bid-
ders’ declared Reliability. Since agents always judge
outcomes correctly, only G1’s trust metrics are re-
ported.

It is possible to notice from Table 7 and Figure
12 that actions have been mainly assigned to G1

since the beginning. This happens even if auction-
eers initially overestimate G2 and G3’s Reliability
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(please remember that the BCI of all agents is ini-
tially very large, and the upper bound equals 1). As
soon as G2 and G3 fail a few times, their Reliability
decrease and the upper bound of their BCI becomes
lower than G1’s upper bound: since auctioneers are
optimistic, G1 starts winning auctions. As more
actions are assigned to G1, its estimated Reliability
increases and the BCI around it becomes smaller.
As time passes, G1 will tend to win all auctions
since its success rate will be correctly estimated as
the highest one with increasing confidence.

5.4. Behavior-disposition test

In this set of experiments, the differences
between different configurations in terms of
behavior-disposition (collectivistic/individualistic,
optimistic/pessimistic/realistic) are compared. All
of the following experiments are made in BCI mode
using 90% as a confidence parameter.

5.4.1. Experiment 4.1: a collectivistic agent and an
individualistic agent that observe poorly and
three good observers

The purpose of this experiment is to check if, in
BCI mode, auctioneers are able to compensate for
poor observation capabilities by relying on other
agents. The experimental setup comprises 5 agents
G1-G5, including two auctioneers G1 and G2 that
verify with a 50% TP and TN rate and three agents
G3, G4, G5 with a 100% TP and TN rates. Con-
cerning success rate in execution, G1 and G2 have
a 50% success rate in all actions, whereas G3, G4

and G5 have a 60%, 75% and 90% success rate, re-
spectively. G1 is an individualistic-optimistic agent
whereas G2 is a collectivistic-optimistic agent: the
hypothesis is that the collectivistic G2 will be able
to identify the most trustable agent in the frame-
work G5 by relying on the opinions of other agents,
whereas the individualistic G1 will not.

To verify this hypothesis, it is sufficient to check
Table 8 summarizing G1’s trust metrics, which are
very similar to the metrics computed by G2 (not
shown) and Table 9 summarizing G3’s trust met-
rics, which are identical to G4 and G5’s. As ex-
pected, the individualistic agent G1 fails to compen-
sate for its poor verification capabilities: in Table 8
it is possible to observe that A1, auctioned by G1, is
assigned to different agents multiple times, because
G1 is not able to correctly identify G5 as the most
suitable one (G5 is assigned A1 only NS + NF = 3
times out of 333). On the other hand, the collec-
tivistic agent G2 is able to identify G5 as the best

A1 A2 A3

Rel,NS , NF V TW,N Rel,NS , NF V TW,N Rel,NS , NF V TW,N

G1 0.27 (3; 8) 0.16 (333) 0.67 (2; 1) 0.21 (333) 1.00 (2; 0) 0.19 (333)
G2 0.47 (37; 42) 0.20 (333) 0.44 (4; 5) 0.20 (333) 1.00 (2; 0) 0.20 (333)
G3 0.47 (45; 50) 0.58 (333) 0.50 (2; 2) 0.60 (333) 0.50 (11; 11) 0.59 (333)
G4 0.53 (77; 68) 0.58 (333) 0.40 (2; 3) 0.60 (333) 0.54 (7; 6) 0.59 (333)
G5 0.00 (0; 3) 0.58 (333) 0.49 (153; 159) 0.60 (333) 0.48 (141; 153) 0.59 (333)

Table 8: Trust metrics at the end of the Experiment 4.1
according to G1.

A1 A2 A3

Rel,NS , NF V TW,N Rel,NS , NF V TW,N Rel,NS , NF V TW,N

G1 0.45 (5; 6) 0.16 (333) 0.33 (1; 2) 0.21 (333) 0.00 (0; 2) 0.19 (333)
G2 0.57 (45; 34) 0.20 (333) 0.56 (5; 4) 0.20 (333) 0.00 (0; 2) 0.20 (333)
G3 0.68 (65; 30) 0.58 (333) 0.25 (1; 3) 0.60 (333) 0.77 (17; 5) 0.59 (333)
G4 0.72 (104; 41) 0.58 (333) 0.40 (2; 3) 0.60 (333) 0.69 (9; 4) 0.59 (333)
G5 1.00 (3; 0) 0.58 (333) 0.90 (281; 31) 0.60 (333) 0.92 (270; 24) 0.59 (333)

Table 9: Trust metrics at the end of the Experiment 4.1
according to G3 (G4 and G5 would return the same values).

agent by ignoring misleading verifications made by
itself, and using the Verification Trustworthiness of
G3 - G5 to weigh declarations made by bidders: as
a result, after the initial steps, A2 and A3 are al-
most always assigned to G5 (312 and 294 times out
of 333). Table 9 shows that G3 - G5 estimate G5’s
reliability very close to 0.9 for all actions, whereas
the same cannot be observed in Table 8. However,
the collectivistic agent G2 will use the Weighted Re-
liability during auctions, thus giving more credit to
the opinion of G3 - G5 than its own opinion.

5.4.2. Experiment 4.2: a collectivistic agent and an
individualistic agent that observe well and
three poor observers

The goal of this experiment is to assess the per-
formances of the BCI mode in environments in
which the majority of the agents have poor verifica-
tion capabilities. The experimental setup comprises
5 agents G1-G5, including two auctioneers G1 and
G2 that verify with a 100% TP and TN rate and
three other agents G3-G5 in two different configu-
rations, separately tested: (i) G3-G5 have a 50%
TP and TN rate; (ii) G3-G5 have a 0% TP and
TN rate (they always report the opposite than the
truth). Concerning success rate in execution, they
are 50% for G1 and G2; 60%, 75%, and 90% for G3,
G4, G5, i.e., the same as the previous experiment.
G1 is an individualistic-optimistic agent whereas G2

is a collectivistic-optimistic agent: the hypothesis is
that the individualistic agent G1 relies on its own
observation capability to identify the best agent in
the framework G5, whereas the performance of the
collectivistic agent G2 deteriorates as G3-G5’s TP
and TN rate decreases. This is because a collectivis-
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A1 A2 A3

Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N)

G1 0.00 (0; 2) 0.41 (333) 0.53 (9; 8) 0.40 (333) 0.38 (3; 5) 0.39 (333)
G2 0.50 (3; 3) 0.41 (333) 0.47 (7; 8) 0.40 (333) 0.00 (0; 2) 0.39 (333)
G3 0.50 (3; 3) 0.22 (333) 0.40 (4; 6) 0.22 (333) 0.33 (2; 4) 0.18 (333)
G4 0.75 (30; 10) 0.20 (333) 0.77 (40; 12) 0.21 (333) 0.20 (1; 4) 0.19 (333)
G5 0.86 (240; 39) 0.18 (333) 0.90 (215; 24) 0.20 (333) 0.91 (285; 27) 0.16 (333)

Table 10: Trust metrics at the end of the Experiment 4.2 (i)
according to G1 (G2 would return the same values).

A1 A2 A3

Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N)
G1 0.00 (0; 2) 0.41 (333) 0.59 (10; 7) 0.40 (333) 0.38 (3; 5) 0.39 (333)
G2 0.67 (4; 2) 0.41 (333) 0.53 (8; 7) 0.40 (333) 0.50 (1; 1) 0.39 (333)
G3 0.17 (1; 5) 0.22 (333) 0.40 (4; 6) 0.22 (333) 0.50 (3; 3) 0.18 (333)
G4 0.50 (20; 20) 0.20 (333) 0.58 (30; 22) 0.21 (333) 0.80 (4; 1) 0.19 (333)
G5 0.51 (142; 137) 0.18 (333) 0.52 (125; 114) 0.20 (333) 0.52 (163; 149) 0.16 (333)

Table 11: Trust metrics at the end of the Experiment 4.2 (i)
according to G3.

tic auctioneer G2 may tend to trust bad observers.
As in the previous case, we do not report plots of
trust metrics, since the hypothesis can be validated
by simply considering summarizing Tables.

For case (i), since G1 and G2 always observe the
same outcomes, their trust metrics are reported in
Table 10; G3-G5’s trust metrics are very similar,
and therefore we report only the summarizing Table
11 corresponding to G3. For case (ii), G1 and G2’s
trust metrics are identical and reported in Table
12; G3-G5’s trust metrics are identical as well (they
always fail) and are reported in Table 13.

In case (i), where G3-G5 verify “by tossing a
coin”, the individualistic auctioneer G1 correctly
prefers to assign A1 to the best agent G5, as it
relies on its always correct observation. Moreover,
since G1 and G2’s always agree in judging the re-
sults of actions, their Verification Trustworthiness
is higher than G3-G5’s: as a consequence, also the
collectivistic auctioneer G2 weigh more G1’s and
its own verification to correctly assign A2 and A3

to G5. This is evident when inspecting Tables 10
and 11, where A1, A2 and A3 are assigned to G5 a
number of times NS + NF equal to 279, 239, and
312 times out of 333, respectively.

In case (ii), since G3-G5 always agree (rather un-
realistically) in reporting the opposite of the actual
results, the collectivistic agent G2 weigh more G3-
G5’s opinion, and it is no more capable to identify
G5 as the best agent: in Tables 12 and 13 it can
be observed that A2 and A3 auctioned by G2 are
repeatedly assigned to G3 (NS + NF = 325 times
out of 333) and G2 (NS + NF = 317 times out of
333), instead of being assigned to G5. This problem
does not affect the individualistic G1, which keeps

A1 A2 A3

Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N)

G1 0.00 (0; 1) -0.20 (333) 0.00 (0; 0) -0.20 (333) 0.00 (0; 0) -0.20 (333)
G2 0.00 (0; 1) -0.20 (333) 0.00 (0; 0) -0.20 (333) 0.49 (155; 162) -0.20 (333)
G3 0.00 (0; 1) 0.20 (333) 0.56 (182; 143) 0.20 (333) 0.80 (8; 2) 0.20 (333)
G4 0.85 (44; 8) 0.20 (333) 1.00 (4; 0) 0.20 (333) 1.00 (3; 0) 0.20 (333)
G5 0.92 (255; 23) 0.20 (333) 1.00 (4; 0) 0.20 (333) 1.00 (3; 0) 0.20 (333)

Table 12: Trust metrics at the end of the Experiment 4.2 (ii)
according to G1 (G2 would return the same values).

A1 A2 A3

Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N) Rel(NS ;NF ) V TW (N)

G1 1.00 (1; 0) -0.20 (333) 0.00 (0; 0) -0.20 (333) 0.00 (0; 0) -0.20 (333)
G2 1.00 (1; 0) -0.20 (333) 0.00 (0; 0) -0.20 (333) 0.51 (162; 155) -0.20 (333)
G3 1.00 (1; 0) 0.20 (333) 0.44 (143; 182) 0.20 (333) 0.20 (2; 8) 0.20 (333)
G4 0.15 (8; 44) 0.20 (333) 0.00 (0; 4) 0.20 (333) 0.00 (0; 3) 0.20 (333)
G5 0.08 (23; 255) 0.20 (333) 0.00 (0; 4) 0.20 (333) 0.00 (0; 3) 0.20 (333)

Table 13: Trust metrics at the end of the Experiment 4.2 (ii)
according to G3 (G4 and G5 would return the same values).

on assigning A1 to the most trustworthy agent G5

(NS + NF = 278 times out of 333).

5.5. Weighted Reliability and Verification Trust-
worthiness

Finally, we conducted a test involving many
agents to assess if they can correctly estimate their
ability to perform and verify actions in a complex
scenario (i.e., having different success, TP, and TN
rates) by adopting a collectivistic approach. To this
aim, we set up a simulation with 50 agents, with
only one Event (E1), one action (A1), and one auc-
tioneer (G1). Then, we performed tests by assign-
ing each agent a different success rate in performing
the action (100% success rate for G1, 99% for G2,
. . . , 51% for G50) and different TP and TN rates in
observing it by randomly choosing for each agent
Gi a discrete value between 100% and 51% with
step 1% (Gi’s TP and TN rates are identical).

Given the test’s focus on the agent’s observation
capabilities, performed using the BCI mode, we in-
structed G1 to assign the action A1 randomly with
uniform probability to all agents, i.e., without us-
ing the estimated reliability. Evenly distributing A1

among the 50 agents has the purpose of getting an
almost equal amount of observations to assess their
capabilities, i.e., preventing that, once an agent has
been identified as the most reliable, G1 will assign
it all actions.

The results of the experiment confirm the validity
of the proposed framework. After more than 14, 000
actions, the Weighted Reliability, collectively com-
puted by all agents as described in equation (12),
correctly allows the auctioneer to evaluate the ac-
tual success rate of the agents. In particular, it can
be observed that the computed Weighted Reliability
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Figure 13: Normalized Weighted Reliability and actual suc-
cess rates of each agents.

is directly proportional to the actual success rate of
each agent measured by the agents with perfect ob-
servation capabilities, i.e., with 100% TP and TN
rates (after subtracting a 0.5 offset to both). In our
test, G1 “never fails” and has a Weighted Reliabil-
ity of 0.83, which is the highest among all agents,
while the most fallacious agent G50 has a Weighted
Reliability of 0.51. Figure 13 shows that the nor-
malized value of the Weighted Reliability between
0.5 and 1.0 almost coincides with the actual success
rates of the agents (please also note that the actual
success rates do not perfectly match the assigned
success rates because each agent performs, on av-
erage, only 280 actions). Considering the Verifica-
tion Trustworthiness associated with the action A1

and estimated for each agent as described in (3), it
can be observed that, after subtracting an offset, it
almost perfectly matches the observation rates as-
signed to each agent, Figure 14. Overall the agents,
even with different success, TP, and TN rates, can
identify other agents’ capabilities to perform and
observe the actions, finally allowing the auction-
eer to choose the most suitable agent. Please re-
mark that all these considerations refer to the case
in which all agents have observation rates higher
than 0.5, i.e., they are correct more often than they
are wrong.

For the sake of completeness, we repeated the
test by (i) setting all agents’ success rates to 100%
and their TP and TN rates randomly as in the
previous test, and (ii) setting all agents’ success
rates as in the previous test and 100% TP and TN
rates. In both cases, the results are coherent with
the previous considerations: when all agents have
a 100% success rate (but randomly assigned obser-
vation rates), the Weighted Reliability is similar for

Figure 14: Verification Trustworthiness and actual TP=TN
rate of each agent.

all agents (and equal to 0.83), whereas the Verifica-
tion Trustworthiness is the one in Figure 14; when
all agents have different success rates but 100% TP
and TN rates, the Verification Trustworthiness is 1
for all agents (they always all agree about results),
whereas the agents’ Weighted Reliability matches
their actual success rates (since all agents always
observe actions correctly, there is no need to nor-
malize the Weighted Reliability in this case).

6. Real world experiment

The framework has been tested in a real-world
scenario with one SoftBank NAO and two Pep-
per robots. NAO has speakers, 25 motors, mi-
crophones, two RGB cameras, and 10 tactile sen-
sors. Pepper has speakers, 20 motors, microphones,
two RGB cameras, one RGB-D camera, a gyro-
scope, touch sensors, lasers, and sonars. To inte-
grate NAO and Pepper in the framework, we de-
veloped Adapters onboard each robot to create a
bridge between the NAOqi operating system and a
corresponding TrustAgent node in ROS, Figure 1.

The purpose of these experiments is to evalu-
ate the system’s behavior in updating and using
trust metrics in a real-world case. However, the
aim is not to evaluate technology for action execu-
tion and recognition, for which we decided to imple-
ment a straightforward solution. Executing A1 and
A2 corresponds to a robot saying a sentence using
its embedded speakers (i.e., “Take the medicine”
and “Drink some water,” both reminders for the
user). Verifying the correct execution of an action
corresponds to a robot acquiring the audio through
its microphones, translating audio to text using the
NAOqi services, and finally checking that the sen-
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tence was correctly pronounced. No other sensor or
perceptual capability is needed in this experiment.

The robot that won the auction and pronounced
the sentence always considers its action a success.
However, there are many possible causes for other
robots to judge outcomes differently. For instance,
the speech volume, the distance between the speak-
ers of a robot and the microphones of another robot,
or the fact that NAO’s and Pepper’s microphones
are placed over the robots’ heads, which is an op-
timal location for human speech recognition, but
suboptimal when the sound comes from a different
direction. The assumption that robots always judge
themselves as successful is due to practical reasons
and not a limitation of the approach. In simulated
experiments, all agents updated their own Reliabil-
ity by evaluating themselves in performing actions
(possibly after a boot phase): things have been sim-
plified with real robots because it does not look
relevant to make agents listen to themselves while
talking.

During the auction and after the execution, we
let all robots talk out loud with each other by shar-
ing their own opinions about other robot’s Relia-
bility and Verification Trustworthiness3. This has
no impact on the algorithm for task assignment
but may help address one of the main problems
in human-robot interaction mentioned in Section
2, i.e., opaqueness. By letting the robots talk out
loud during the whole process, we give them the
opportunity to explain to a nearby human user the
reasons behind their choices.

NAO (agent G3 in the following) is placed on a
table in front of the two Pepper robots (G1 and G2).
NAO’s speakers point towards Pepper microphones
from above (Figure 15). Then, we performed ex-
periments in four different configurations:

1. The speech volume of the three robots is set to
100%, 60%, and 20% of the maximum value in
different runs.

2. The volume of G3 is fixed to 100% whereas G1

and G2’s volume is set to 100%, 60%, and 20%
of the maximum value in different runs.

3. The volume of each robot is randomly chosen
in the interval 100% - 20% before each auction.

4. The volume of all robots is set to 100% but G2

is moved 5 meters away from G1 and G3.

3A video showing an interaction between NAO and two
Peppers can be found here: https://youtu.be/L rPGg Y888

Figure 15: NAO placed on the table to direct its speakers
towards the two Peppers’ microphones

In all configurations, robots work in BCI mode,
with an optimistic disposition. For each configura-
tion, robots are first configured to exhibit an indi-
vidualistic (i) and then a collectivistic (ii) behavior.
All the experiments reported below use the follow-
ing Event-Plan association: event E1 can only be
handled by G1, that will then auction A1 (“Take the
medicine”); event E2 can only be handled by G2,
that will then auction A2 (“Drink some water”).
All agents can execute and observe both actions A1

and A2. Actions A1 and A2 are auctioned and ex-
ecuted 30 times during each experimental run.

The hypothesis we want to test with these ex-
periments is that by modifying the robots’ vol-
ume and positions and their behavior-disposition
towards other robots, the assignment of actions to
robots as time passes will be different. Problems
in understanding can be attributed to the fact that
a robot performs poorly in saying the sentence or
that other robots understand badly: in both cases,
not understanding what the robot said will have a
consequent impact on its Perceived Competence.

Table 14: Experiment 1

Individualistic 100% 60% 20%
G1 17; 1 26; 15 28; 1
G2 8; 12 3; 14 1; 28
G3 5; 17 1; 1 1; 1
Collectivistic 100% 60% 20%
G1 17; 1 15; 3 10;10
G2 4; 1 15; 26 11; 10
G3 9; 28 0; 1 9; 10
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Figure 16: Trust dynamics of the Experiment 1, individual-
istic, 100% volume, according to G1.

Figure 17: Trust dynamics of the Experiment 1, individual-
istic, 100% volume, according to G2.

6.1. Experiment 1: all robots’ volume set to 100%,
60%, 20%

Table 14 reports the number of actions (A1; A2)
assigned to G1, G2, and G3 with the volume set
to 100%, 60%, 20%, both when robots exhibit (i)
an individualistic and (ii) a collectivistic behaviour.
Figures 16-19 show trust dynamics for case (i), by
reporting only the metrics computed by the auc-
tioneers G1 and G2 when the volume is 100% and
20%; Figures 20 - 23 report metrics for case (ii). A
vertical dash helps understanding when an action
has been assigned to the corresponding agent.

Table 14 shows that, when robots are individual-
istic, auctioneers assign actions to themselves with

Figure 18: Trust dynamics of the Experiment 1, individual-
istic, 20% volume, according to G1.

Figure 19: Trust dynamics of the Experiment 1, individual-
istic, 20% volume, according to G2.

a probability of no less than one-third. Even when
the volume is decreased, and therefore auctioneers
are not correctly understood by other robots (which
consequently judge them as unreliable), they keep
considering themselves perfectly reliable. As a con-
sequence, they assign actions to themselves and,
possibly, to other robots that they judge equally
reliable. Figures 16 and 17 show that, when the
volume is 100%, G1 initially shares the responsibil-
ity of executing A1 with G3 and then with G2; G2

shares the responsibility of executing A2 with G3.
Figures 18 and 19 show that, when the volume is
20% and robots never understand what other robots
are saying, auctioneers trust only themselves in per-
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Figure 20: Trust dynamics of the Experiment 1, collectivis-
tic, 100% volume, according to G1.

Figure 21: Trust dynamics of the Experiment 1, collectivis-
tic, 100% volume, according to G2.

forming the actions for which they are responsible.

When robots are collectivistic, the behaviour is
more dynamic and unpredictable. Even when the
volume is 100%, it may happen that there are er-
rors in speech-to-text conversion, and an auctioneer
is judged unreliable by other robots in performing
an action for which it is responsible. See Figure 20,
where G1 judges G2 less reliable than G3 in exe-
cuting A2 because it did not understand G2’s first
attempt correctly. Since G3 considers itself com-
pletely reliable in performing actions, its Weighted
Reliability, and then its Perceived Competence, is
higher than G2’s: Table 14 shows that, in this case,
G2 is assigned A2 only 1 time out of 30 when the

Figure 22: Trust dynamics of the Experiment 1, collectivis-
tic, 20% volume, according to G1.

Figure 23: Trust dynamics of the Experiment 1, collectivis-
tic, 20% volume, according to G2.

volume is 100%. Something similar happens with
A1 later in the experiment, when G3’s Weighted Re-
liability becomes higher than G1’s: in total, A1 is
assigned to G1 17 times out of 30. The behaviour
of collectivistic robots becomes more predictable as
the volume tends to decrease to 60% and 20%. Ta-
ble 14 and Figures 22, 23 show that, as all robots
are judged to be very unreliable, actions are equally
distributed among “equally unreliable robots”. Dif-
ferently from individualistic auctioneers that tend
to overtrust themselves, collectivistic robots “care”
about other agents’ opinions, and periodically give
them a chance to show what they are capable of.

Remark that a similar behaviour is expected to
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Table 15: Experiment 2

Individualistic 100% 60% 20%
G1 17; 1 13; 1 22; 1
G2 8; 12 12; 12 1; 19
G3 5; 17 5; 17 7; 10
Collectivistic 100% 60% 20%
G1 17; 1 1; 1 1; 1
G2 4; 1 1; 1 1; 1
G3 9; 28 28; 28 28; 28

emerge in a noisy environment where all agents have
problems understanding what other agents say.

Finally, it can be noticed that the Verification
Trustworthiness of the three robots is lower when
the volume decreases. Specifically, in case (i), Fig-
ures 18 and 19 show that the V TW of an individ-
ualistic auctioneer (i.e., G1, G2) in verifying the
action of which it is responsible (respectively, A1,
A2) is about −0.33 since it always disagrees with
other robots about the outcomes of the action – for
that action, the V TW of other robots is about 0.33.
In case (ii), Figures 22 and 23 show that the V TW
of all collectivistic robots is very similar because ac-
tions are equally distributed: from time to time, a
robot may disagree or agree with other robots about
the outcome of an action depending on whether it
executed that action or other robots did it.

6.2. Experiment 2: G1 and G2’s volume set to
100%, 60%, 20%; G3’s volume set to 100%

Table 15 reports the number of actions (A1; A2)
assigned to G1, G2, and G3 with G1 and G2’s vol-
ume set to 100%, 60%, 20%, both when robots ex-
hibit (i) an individualistic and (ii) a collectivistic
behaviour. Figures 24 - 25 show trust dynamics for
case (i), by reporting only the metrics computed
by the auctioneers G1 and G2 when their volume is
20%; Figures 26-27 report metrics for case (ii). The
case with all robots’ volume set to 100% has been
already reported in Experiment 1: notice that the
first columns in Tables 14 and 15 are identical.

Table 15 summarizes the robots’ behaviour in
cases (i) and (ii). As usual, when robots are indi-
vidualistic, auctioneers G1 and G2 assign actions to
themselves with probability no less than one-third,
even when their volume is set to 20% and G3’s vol-
ume is 100%. Figures 24-25 show that G1 judges
G2 completely unreliable in executing A2 and G2

judges G1 completely unreliable in executing A1,
whereas both of them judge G3 quite reliable in ex-
ecuting both actions. Still, G1 executes A1 22 times

Figure 24: Trust dynamics of the Experiment 2, individual-
istic, 20% volume, according to G1.

Figure 25: Trust dynamics of the Experiment 2, individual-
istic, 20% volume, according to G2.

and G2 executes A2 19 times out of 30 since each
auctioneer judges itself perfectly reliable.

Things change when robots are collectivistic. Fig-
ures 26-27 show that, when G1 and G2’s volume is
decreased to 20%, G3 is the only robot considered
very reliable by all agents. Its Weighted Reliability
outbeats other agents’ after the first attempts: G3

is assigned both actions 28 times out of 30.

Concerning Verification Trustworthiness, in case
(i), all individualistic robots tend to agree on the
success of actions when they are performed by G3,
but G1 disagrees with other robots when it per-
forms A1 and G2 disagrees with other robots when
it performs A2. Figures 24 and 25 show the re-
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Figure 26: Trust dynamics of the Experiment 2, collectivis-
tic, 20% volume, according to G1.

Figure 27: Trust dynamics of the Experiment 2, collectivis-
tic, 20% volume, according to G2.

sulting V TW dynamics, with higher values for G3,
which tends to always agree with at least another
agent, and lower values for auctioneers G1 and G2,
which disagree with other agents when they as-
signed themselves an action. In case (ii), all actions
are repeatedly assigned to G3, and all collectivistic
robots tend to agree on G3’s success: consequently,
V TW is higher for all agents.

6.3. Experiment 3: all robot’s volume randomly
chosen in the interval 100%-20%

Figures 28 - 29 show trust dynamics for case (i),
by reporting only the metrics computed by the auc-
tioneers G1 and G2. G1, G2 and G3 are assigned

Figure 28: Trust dynamics of the Experiment 3, individual-
istic, random volume, according to G1.

Figure 29: Trust dynamics of the Experiment 3, individual-
istic, random volume, according to G2.

actions A1 and A2, respectively, (26; 3), (2; 26) and
(2; 1) times. Figures 30-31 report trust dynamics
for case (ii); G1, G2 and G3 are assigned actions,
respectively, (14; 8), (10; 10) and (6; 12) times.

In case (i), since the volume is randomly set,
sooner or later all agents will be judged unreliable
by other agents, and therefore individualistic auc-
tioneers end up assigning actions to themselves. In
case (ii), for analogous reasons, actions tend to be
more uniformly distributed: the outcome of an ac-
tion, and then the agents’ Weighted Reliability, de-
pends on the volume, randomly chosen in the inter-
val 100%-20% with uniform probability.

Concerning the Verification Trustworthiness, (i)
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Figure 30: Trust dynamics of the Experiment 3, collectivis-
tic, random volume, according to G1.

Figure 31: Trust dynamics of the Experiment 3, collectivis-
tic, random volume, according to G2.

an individualistic auctioneer may tend to exhibit a
lower V TW for the action of which it is responsi-
ble since it executes it more often and, if the vol-
ume is low, it will often disagree with other agents
about outcomes. The same is not necessarily true
for (ii) collectivistic auctioneers: the probability
to agree/disagree with other agents depends, once
again, on the random volume, but actions are now
more uniformly distributed among all agents.

6.4. Experiment 4: all robots’ volume set to 100%,
G2 far from the other two.

Figures 32 - 33 show trust dynamics for case (i),
by reporting only the metrics computed by G1 and

Figure 32: Trust dynamics of the Experiment 4, individual-
istic, 100% volume, according to G1.

Figure 33: Trust dynamics of the Experiment 4, individual-
istic, 100% volume, according to G3.

G3 (G2 estimates the other robots’ Reliability to
be zero due to their distance). G1, G2 and G3 are
assigned actions A1 and A2, respectively, (13; 1), (1;
28) and (16; 1) times. Figures 34-35 report metrics
for case (ii); G1, G2 and G3 are assigned actions,
respectively, (2; 1), (1; 1) and (27; 28) times.

In this experiment, G1 and G3 have the chance to
understand each other, whereas G2 can neither un-
derstand other robots nor be understood by them.
As a result, in case (i), the individualistic G2 al-
ways assigns A2 to itself as it judges to be the only
reliable agent to execute it, whereas G1 judges G3

and itself are equally reliable and assigns A1 to both
robots. In case (ii), the Weighted Reliability of G2
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Figure 34: Trust dynamics of the Experiment 4, collectivis-
tic, 100% volume, according to G1.

Figure 35: Trust dynamics of the Experiment 4, collectivis-
tic, 100% volume, according to G3.

is lower than other robots since G1 and G3 always
judge G2’s outcome a failure, and therefore the as-
signment of A2 depends on how reliable G1 and G3

judge each other in performing that action. In the
case shown in Figures 34-35, the Reliability of G3

estimated by G1 turns out to be higher than the
Reliability of G1 estimated by G3, and therefore A2

is repeatedly assigned to G3. Quite interestingly,
the same happens for A1: even if G1 judges itself
perfectly reliable in executing it, G3 judges G1’s
first attempt as a failure: A1 is repeatedly assigned
to G3 whose Weighted Reliability is higher in this
case.

The Verification Trustworthiness of G2 is lower

than G1 and G3’s since G2 always disagrees with
the other two agents about the outcomes due to
their distance. This can be observed both in the
individualistic and the collectivistic configuration.

7. Conclusions and Future Work

The article describes a Trust Framework for task
allocation tested in simulated and real-world se-
tups. As robots will become part of our everyday
life, they may be required to cooperate without be-
ing aware of each other’s capabilities, e.g., because
different producers have developed them. Under
these conditions, trust among robots is needed to
enable safe and efficient cooperation.

According to this rationale, this work identified
trust as an essential metric for assigning robot tasks
when using auction-based mechanisms. We pro-
posed to model trust through the concepts of Reli-
ability and Verification Trustworthiness, by provid-
ing different options to analytically formulate them.
The ROS implementation of the system has been
described in detail: our solution allows developers
to integrate both simulated and real robotic plat-
forms into the framework, playing the role of the
auctioneer and/or bidders for task assignments.

Multiple experiments have been performed in
simulation, even if the article reports only the most
relevant ones. Different sets of experiments aimed
to assess different aspects of the framework:

• the capability of agents to correctly compute
the Reliability and Verification Trustworthi-
ness metrics, and the convergence of such met-
rics to the actual success rate of agents in per-
forming and verifying the execution of actions;

• the impact of different approaches to compute
the metrics above during a transitory, when
agents enter the framework without other
agents having previous experience with them;

• the impact of a different attitude towards other
agents, in particular when an agent has lim-
itations in verifying the outcomes of actions
and therefore can be helped (or, in some cases,
wrongly influenced) by other agents.

Real-world experiments confirmed what we ob-
served in simulation and validated additional hy-
potheses about how actions are assigned when pur-
posely altering the robots’ capabilities to execute
and observe actions. Experiments show that the
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emergent system’s behavior under similar condi-
tions is quite repeatable and predictable.

A few words are worth spending about the ro-
bustness of the system. It may be argued that
the system is not very robust to noise: experi-
ments with real robots show that, when reduc-
ing volume, the robots’ performance deteriorates.
However, please notice that the system does not
measure the objective capability of robots in doing
things but how robots perceive each other. Cor-
rupted information may affect the agents’ judgment
about other agents’ trustworthiness, but this be-
haviour is coherent with what we expect from any
social agent. Thanks to the concept of Weighted
Reliability, experiments show that – in some cases –
collectivistic agents can make up for deficits in their
perceptual capabilities by relying on the judgment
of other agents.

As future work, several aspects are worth inves-
tigating. For instance, the framework might easily
include additional metrics among those proposed
in [27]. One of these metrics is the Availability,
which measures the ratio of time that agent Gi has
observed agent Gj participating in an auction for
action Ak. That is:

Ava(k, i, j) =
Npar(k, i, j)

Nauc(k, i)
(14)

where Npar(k, i, j) is the number of times that Gj

has participated in an auction for Ak of which Gi

is aware of, Nauc(k, i) is the number of auctions
for Ak of which Gi is aware of. Availability and
Reliability respectively estimate how frequently Gj

bids to perform Ak and its success rate according
to agent Gi. It may be reasonable to assume that
agent Gi can neither trust an agent that is reliable
but always busy nor an agent that is always avail-
able but unreliable. Following this rationale, these
two metrics can be combined in a new metric called
Dependability, which measures how much agent Gi

depends on Gj for action Ak:

Dep(k, i, j) = Ava(k, i, j) Rel(k, i, j). (15)

Availability and then Dependability might be
used as a more comprehensive measure of trust:
however, the consequences of using these metrics
in our framework still have to be explored.

Also, Verification Trustworthiness is based on
the underlying assumption of prioritizing the ma-
jority’s decision, which may be myopic and mislead-
ing in some cases. A possibility to address this issue

is to weigh the opinion of agents differently in Eq.
(2): when counting the number of agents Ncon(k, j)
and Ndis(k, j) that agree or disagree with j, some
agents might count for two or more depending on
the fact that they have a higher reputation in ver-
ifying other agents. This reputation can either be
assigned a priori or because they deserved it dur-
ing previous auctions (e.g., they proved to be good
observers according to the feedback of a human su-
pervisor).

Other aspects worth investigating are: finding a
compromise between the negative consequences of
a failure and the lack of action; considering actions
that may have different degrees of accomplishment
instead of Boolean success/failure outcomes; mod-
eling human agents as part of the framework, both
in the presence and the absence of explicit commu-
nication between robots and humans, also consid-
ering cultural differences in the interaction [54, 55];
re-implementing the system as a Cloud architec-
ture, addressing problems related to the system’s
vulnerability by adopting standards for security-
critical settings and leveraging techniques and tools
for building reliable and secure systems [56, 57];
modelling preference or dislike for specific actions.

Concerning the last issue, we might choose to
incorporate the notion of Preference into Relia-
bility (an agent Gi may purposely underestimate
Rel(Ak, i, i) if it does not want to do Ak), or model
it as a separate construct, and then considering
both Reliability and Preference in action assign-
ment. In the first case, an interesting behaviour
might emerge: a robot that does not feel like exe-
cuting an action might intentionally underestimate
its abilities: “Oh, you know... I am not very good
at it...”.

Finally, to constitute the first step towards
broader system utilization in cooperative robotic
scenarios, the system shall be tested with robots
exhibiting more complex capabilities of performing
and observing actions.
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