
Bridging the gap between simulation and reality
in urban search and rescue

Stefano Carpin1, Mike Lewis2, Jijun Wang2,
Steve Balakirsky3, and Chris Scrapper3

1 School of Engineering and Science
International University Bremen – Germany

2 Department of Information Sciences and Telecommunications
University of Pittsburgh – USA
3 Intelligent Systems Division

National Institute of Standards and Technology – USA

Abstract. Research efforts in urban search and rescue grew tremen-
dously in recent years. In this paper we illustrate a simulation soft-
ware that aims to be the meeting point between the communities of
researchers involved in robotics and multi-agent systems. The proposed
system allows the realistic modeling of robots, sensors and actuators,
as well as complex unstructured dynamic environments. Multiple het-
erogeneous agents can be concurrently spawned inside the environment.
We explain how different sensors and actuators have been added to the
system and show how a seamless migration of code between real and sim-
ulated robots is possible. Quantitative results supporting the validation
of simulation accuracy are also presented.

1 Introduction

Urban search and rescue (USAR) can be depicted as the research field that ex-
perienced the most vigorous development in recent years within the robotics
community. It offers a unique combination of engineering and scientific chal-
lenges in a socially relevant application domain [5]. The broad spectrum of rele-
vant topics attracts the attention of a wide group of researchers, with expertise
as diverse as advanced locomotion systems, sensor fusion, cooperative multia-
gent planning, human-robot interfaces and more. In this framework, the contest
schema adopted by the RoboCup Rescue community, with the distinction be-
tween the real robots competition and the simulation competition, captures the
two extremes of this growing community. Looking back at the past RoboCup
events, tremendous progresses in short time characterized both communities. In
2002 the real rescue robots competition was described as a competition where
teleoperated robots were mainly used because of the complexity of the problem
[3]. In the simulation competition, emphasis was instead on the inter-agent com-
munication models adopted [9]. The huge gap between these two extremes is
evident. Only two years later [6], the real robot competition saw the advent of
teams with three dimensional mapping software, intelligent perception, and the



first team with a fully autonomous multi-robot system. Within the simulation
competition, teams exhibited cooperative behaviors, special agent programming
languages and learning components. With these premises, it is evident that soon
a mutual migration of relevant techniques will materialize. Nevertheless, certain
logistic obstacles still prevent a seamless and profitable percolation of ideas and
knowledge. Having set the scene, in this paper we present the latest developments
of a simulation environment, called USARsim, that naturally plays the role of
an in-between research tool where multi-agent and multi-robot systems can be
studied in a artificial environment offering experimental conditions comparable
to reality. After a demo stage during Robocup 2005 in Osaka, USARsim has
been selected as the software infrastructure underlying the Virtual Robots com-
petition, that was approved as the third competition within the RoboCup rescue
simulation framework. In addition, we also offer an overview of the MOAST API,
a component based software framework that can be used to quickly prototype
control software, both in reality and on top of USARsim. Finally, we provide
results supporting a quantitative evaluation of the simulator fidelity.

2 Software structure

The current version of USARsim is based on the UnrealEngine2 game engine re-
leased by Epic Games with Unreal Tournament 2004. The simulation is written
as a combination of levels, describing the 3-D layout of the arenas and mod-
ifications, and scripts redefining the simulations behavior. The engine to run
the simulation can be inexpensively obtained by buying the game. The Unreal
Engine provides a sophisticated graphical development environment and a va-
riety of specialized tools. The engine includes modules handling input, output
(3D rendering, 2D drawing, sound), networking and physics and dynamics. The
games level defines a 3-D environment in much the same way as VRML (virtual
reality markup language) and may use many of the same tools. The game code
handles most of the basic mechanics of simulation including simple physics. Mul-
tiplayer games use a client-server architecture in which the server maintains the
reference state of the simulation while clients perform the complex graphics com-
putations needed to display their individual views. USARsim uses this feature
to provide controllable camera views and the ability to control multiple robots.
Unreal Tournament has two types of entities, human players who run individual
copies of the game and connect to the server (typically running on the first play-
ers machine), and ”bots” (short for robots), simulated players running simple
reactive programs. Gamebots, a modification to the Unreal Tournament game
that allows bots to be controlled through a normal TCP/IP socket [1], provides
a protocol for interacting with Unreal Tournament. Because the full range of bot
commands and Unreal scripts can be accessed over this connection GameBots
provides a more powerful and flexible entry into the simulation than the player
interface. The GameBot interface is ideal for simulating USAR robots because it
can both access bot commands such as Trace to simulate sensors and exert com-
plicated forms of control such as adjusting motor torques to control a simulated



robot. One of the client options, the spectate mode, allows the clients viewpoint
(camera location and orientation from which the simulation is viewed) to be
attached to any other player including ”bots”. By combining a bot controlled by
GameBots with a spectator client we can simulate a robot with access to both
simulated sensor data through the bot and a simulated video feed through the
spectating client. By controlling the simulated robot indirectly through Game-
Bots rather than as a normal client we gain the additional advantage of being
able to simulate an autonomous robot (controlled by a program) a teleoperated
robot (controlled by user input) or any level of automation in between.

3 Robot Interfaces

An intelligent system must translate a mission command into actuator voltages.
While this may be done in a simple monolithic module, USARsim/MOAST
implements a hierarchical control structure that compartmentalizes the control
system responsibility and domain knowledge necessary to create each controller.
The knowledge and control requirements of a typical robotic platform may be de-
composed into the two broad areas of sensing and behavior generation. In turn,
behavior generation may be decomposed into mobility behaviors and mission
package behaviors. In this decomposition, mobility refers to the control aspects
of the vehicle that relate only to the vehicle’s motion (e.g. drive wheel velocities),
sensing refers to systems that acquire information from the world (e.g. cameras),
and mission packages are controllable items on the platform that are not related
to mobility (e.g. camera pan/tilt or robotic arm). It is the authors’ belief that
decomposing a system in this way allows for the creation of a generic internal
representation and control interface that is able to fully control most aspects
of robotic platforms. USARsim is designed to implement this decomposition
and provides developers with a modular interface into the low-level simulated
hardware of the robotic platform. It provides for component discovery, and inde-
pendent control of mobility, sensors, and mission packages. Coupling USARsim
to the Mobility Open Architecture Simulation and Tools (MOAST) framework
adds modularity in time by providing a set of hierarchical interfaces into these
components. Two different physical control interfaces exist into the system. The
first allows low-level control into USARsim and is based on sending ASCII text
over a TCP/IP socket. Higher-level commands and status utilize the Neutral
Message Language (NML) [8] that permits a physical interface of various types
of sockets as well as serial lines.

3.1 USARsim Socket API

During the development of the interface to USARsim many factors were taken
into account to ensure that the interface was both well-defined and standardized.
Scientific standards and conventions for units, coordinate systems, and interfaces
were used whenever possible. USARsim decouples the units of measurement used
inside Unreal by ensuring that all units meet the International System of Units



(SI) standard conventions. SI Units are a National Institute of Standards and
Technology (NIST) developed convention that is built on the modern metric
system, and is recognized internationally. The coordinate systems for various

Fig. 1. Depiction of the Mis-
sion Package and the Sensor and
their corresponding coordinate
systems.

Fig. 2. Internal Representation of an Robotic
Arm.

components must be consistent, standardized, and anchored in the global coor-
dinate system, as illustrated in Figure 1. USARsim leverages the previous efforts
of the Society of Automotive Engineers, who published a set of standards for
vehicle dynamics called SAE J670: Vehicle Dynamic Terminology. This set of
standards is recognized as the American National Standard for vehicle dynamics
and contains a comprehensive set of standards that describes vehicle dynam-
ics through illustrated pictures of coordinate systems, definitions, and formal
mathematical representations of the dynamics. Finally, the messaging protocol,
including the primitives, syntax, and the semantics must be defined for the in-
terface. Messaging protocols are used in USARsim to insure that infrequent and
vital messages are received. The primitives, syntax, and semantics define the
means in which a system may effectively communicate with USARsim, namely
to speak USARsim’s language. There are three basic components that exist
currently in USARsim: robots, sensors, and mission package. For each class of
objects there are defined class-conditional messages that enable a user to query
the component’s geography and configuration, send commands to, and receive
status back. This enables the embodied agent controlling the virtual robot to be
self-aware and maintain a closed-loop controller on actuators and sensors. The
formulation of these messages are based on an underlying representation of the
object, includes their coordinate system, composition of parts, and capabilities.
This highlights a critical aspect underlying the entire interface; the representa-
tion of the components and how to control those components. For example, take
a robotic arm, whose internal representation of an arm is visualized in Figure
2. In order for there to be a complete and closed representation of this robotic



arm, the following aspects are defined as individual class conditional messages
that are sent over the USARsim socket.

Configuration: How to represent the components and the assembly with re-
spect to each other.

Geography: How to represent the pose of the sensor mounts and joints mount
with respect to the part, and the pose of the part with respect its parent
part.

Commands: How to represent the movements of each of the joints, either in
terms of position and orientation or velocity vectors.

Status: How to represent the current state of the robotic arm.

3.2 Simulation Interface Middleware (SIMware)

Residing between USARSim and MOAST is the SIMware layer. This layer pro-
vides a modular environment and allows for a gradient of configurations from the
purely virtual world to the real world. SIMware is designed to enable MOAST
to conect to interfaces or APIs for real or virtual vehicles. It seemlessly connect
to platforms with different messaging protocols, semantics, or different levels of
abstraction. SIMware is made up of three basic components: a core, knowledge
repository, and skins. The core of SIMware is essentially a set of state tables and
interfaces that enables SIMware to administer the transference of data between
two different interfaces. This transference is enabled through the use of knowl-
edge repositories that provide insite into the target platform’s capibilities and
abstraction. The skins are an interface specific parsing utility that utilize the
knowlege repository in order to enable the core to translate incoming and out-
going message traffic to meet the appropriate level of abstraction for the target
interface.

3.3 MOAST API

The MOAST framework connects into USARsim via SIMware and provides ad-
ditional capabilities for the system. These capabilities are encapsulated in com-
ponents that are designed based on the hierarchical 4-D/RCS Reference Model
Architecture [2]. The 4-D/RCS hierarchy is designed so that as one moves up
the hierarchy, the scope of responsibility and knowledge increases, and the reso-
lution of this knowledge and responsibility decreases. Each echelon (or level) of
the 4-D/RCS architecture performs the same general type of functions: sensory
processing (SP), world modeling (WM), value judgment (VJ), and behavior gen-
eration (BG). Sensory processing is responsible for populating the world model
with relevant facts. These facts are based on both raw sensor data, and the results
of previous SP (in the form of partial results or predictions of future results).
The world model must store this information, information about the system self,
and general world knowledge and rules. Furthermore, it must provide a means
of interpreting and accessing this data. Behavior generation computes possible
courses of action to take based on the knowledge in the WM, the systems goals,



Fig. 3. Modular Decomposition of MOAST framework that provides modularity in
broad task scope and time.

and the results of plan simulations. Value judgment aids in the BG process by
providing a cost/benefit ratio for possible actions and world states.
The regularity of the architectural structure in 4-D/RCS enables scaling to any
arbitrary size or level of complexity. Each echelon within 4-D/RCS has a charac-
teristic range and resolution in space and time. Each echelon has characteristic
tasks and plans, knowledge requirements, values, and rules for decision-making.
Every component in each echelon has a limited span of control, a limited number
of tasks to perform, a limited number of resources to manage, a limited number
of skills to master, a limited planning horizon, and a limited amount of detail
with which to cope.
This decomposition is depicted in Figure 3. Under this decomposition, the US-
ARsim API may be seen as fulfilling the role of the servo echelon, where both the
mobility and mission control components fall under BG. The sensors are able to
output arrays of values, world model information about the vehicle self is deliv-
ered, and mission package and mobility control are possible. The remainder of
this section will concentrate on the functioning and interfaces of the remaining
echelons of the hierarchy.

Primitive Echelon The primitive echelon behavior generation is in charge of
translating constant curvature arcs or position constraints for vehicle systems
into velocity profiles for individual component actuators based on vehicle kine-
matics. For example, the AM Mobility BG will send a dynamically correct con-
stant curvature arc for the vehicle to traverse. This trajectory will contain both
position and velocity information for the vehicle as a whole. For a skid steered
vehicle, the Primitive Echelon BG plans individual wheel velocities based on the
vehicle’s kinematics that will cause to vehicle to follow the commanded trajec-
tory. During the trajectory execution, BG will read vehicle state information



from the Servo Echelon WM to assure that the trajectory is being maintained
and will take corrective action if it is not. Failure to maintain the trajectory
within the commanded tolerance will cause BG to send an error status to the
AM Mobility BG.
The Primitive Echelon SP is in charge of converting sensor reports from sen-
sor local coordinates to vehicle local coordinates. This information is read by
the world model process which performs spatial-temporal averaging to create an
occupancy map of the environment in vehicle local coordinates. This map is of
fixed size and is centered on the current vehicle location. As the vehicle moves,
distant objects fall off of the map. Future enhancements will allow for the popu-
lation of newly added map area with any information that may be stored in the
larger extents AM WM.

Autonomous Mobility Echelon The Autonomous Mobility Echelon behavior
generation is in charge of translating commanded way-points for vehicle systems
into dynamically feasible trajectories. For example, the Vehicle Echelon mission
controller may command a pan/tilt platform to scan between two absolute co-
ordinate angles (e.g. due north and due east) with a given period. BG must take
into account the vehicle motion and feasible pan/tilt acceleration/deceleration
curves in order to generate velocity profiles for the unit to meet the commanded
objectives. BG modules at this level may take advantage of all of the world
model services provided o the Primitive Echelon in addition to the occupancy
maps that have are maintained by the Primitive Echelon WM.
SP at this level extracts environmental attributes and in conjunction with WM
labels the previously generated occupancy map with these attributes. Examples
of attributes include terrain slope, and vegetation density.

Vehicle Echelon The Vehicle Echelon behavior generation is in charge of ac-
cepting a mission for an individual vehicle to accomplish and decomposing this
mission into commands for the vehicle subsystems. Coordinated way-points in
global coordinates are then created for the vehicle systems to follow. This level
must balance possibly conflicting objectives in order to determine these way-
points. For example, the Section Echelon mobility BG may command the vehi-
cle to arrive safely at a particular location by a certain time while searching for
victims of an earthquake. The Vehicle Echelon mobility BG must plan a path
that maximizes the chances of meeting the time schedule while minimizing the
chance of an accident; and the Vehicle Echelon mission BG must plan a camera
pan/tilt schedule that maximizes obstacle detection and victim detection. Both
of these planning missions may present conflicting objectives.
SP at this level works on grouping cells from the AM WM into attributed points,
lines, and polygons. These features are stored in a WM knowledge-base that sup-
ports SQL based spatial queries.

Section (Team) Echelon and Above The highest level that has currently
been implemented under the MOAST framework is the Section or Team Eche-



lon. This level of BG has the responsibility of taking high-level tasks and decom-
posing them into tasks for multiple vehicles. For example, the Section Echelon
mobility may plan cooperative routes for two vehicle to take in order to explore
a building. This level must take into account individual vehicle competencies
in order to create effective team arrangements. Higher echelon responsibilities
would include such items as planning for groups of vehicles. An example of this
would be commanding Section 1 to explore the first floor of a building and Sec-
tion 2 to explore the second floor. Based on the individual teams performance,
responsibilities may have to be adjusted or reassigned.

4 Validation

The usefulness of a simulation such as USARsim as a research tool is strongly
dependent on the degree to which it has been validated and the availability of
validation data for use in choosing models and assessing the generalizability of
results. The provision of common and standard tools allows researchers to com-
pare results, share software and advances, and collaborate in ways that would be
impossible otherwise. While many of these benefits accrue simply from standard-
ization, others require a closer correspondence between simulation and reality.
While a human-robot interaction (HRI) experiment may not demand full real-
ism in the behavior of a PID controller, replicating constraints such as a narrow
field of view and invisibility of obstacles obstructing wheels may be essential to
achieving results relevant to the operation of actual robots. Researchers wishing
to port code developed in simulation to a real robot by contrast may need the
highest fidelity model of the control system attainable to get useful results. In
validating USARsim we are attempting to measure correspondences as precisely
as possible so they also may serve for lower fidelity uses and where this is not
possible identify those areas in which only low fidelity results are available.
A comparison of feature extraction for the Orange Arena using a laser range
finder (Hokuyo PB9-11) on an experimental robot and its simulation in US-
ARsim was reported already in [4]. The mapped areas along with their Hough
transforms were practically identical and adjustable parameters tuned using the
simulation did not require change when moved to the real robot. We have since
conducted validation studies investigating HRI for the Personal Explorer Rover
(PER) [7] and the Pioneer, P2/P3-DX. Some of these results for the PER were
reported in [10]. This HRI validation testing was conducted at Carnegie Mel-
lons replica of the NIST Orange Arena using both point-to-point and teleoper-
ation control modes for the PER and teleoperation only for the pioneer P2-AT
(simulation)/P3-AT (robot). In this study driving performance was observed for
different surfaces and simple and complex courses using point-to-point or tele-
operation control modes. Participants controlled the real and simulated robots
from a personal computer located in the Usability laboratory at the School of
Information Sciences, University of Pittsburgh. For simulation trials the simu-
lation of the Orange Arena ran on an adjacent PC. For the real robotic control
trials the participants controlled robots over the Internet in a replica of the Or-



ange Arena in the basement of Newell Simon Hall at Carnegie Mellon University
(see figure 4). Measures such as the distance from the stopping point to the

Fig. 4. On the left side the orange arena at CMU. On the right side the simulated arena
within USARsim. The yellow cone to be reached can be observed in both images.

target cone were collected for both the physical arena and the simulation. A
standard interface developed for RoboCup USAR competition [7] was used un-
der all conditions. Participants in the direct control mode controlled the robots
using a joystick. Both robots were skid steered so forward backward movements
of the joystick led to movement while right/left movements produced changes
in yaw. In the waypoint control mode participants selected waypoints by click-
ing on locations on the video display. This input was interpreted by the control
software as specifying a direction and duration of travel. Manual adjustments in
the point-to-point condition were made using the cursor keys.

Procedure In Stage 1 testing of the PER and Pioneer (direct control mode) we
established times, distances, and errors associated with movements over a wood
floor, paper, and lava rocks. These data were used to adjust the speed of the sim-
ulated PER and Pioneer and alter the performance of the simulated PER when
moving over scattered papers. In Stage 2 testing, PER robots were repeatedly
run along a narrow corridor with varying types of debris (wood floor, scattered
papers, lava rocks) while the sequence, timing and magnitude of commands were
recorded. Participants were assigned to maneuver the robot with either direct
teleoperation or waypoint (specified distance) modes of control. There were five
participants in each of the PER groups (real-direct, real-waypoint, simulation-
direct, simulation-waypoint) and four in the Pioneer (real-direct, simulation-
direct) groups. In the initial three exposures to each environment, participants
had to drive approximately three-meters, along an unobstructed path to an
orange traffic cone. In later trials, obstacles were added to the environments,



forcing the driver to negotiate at least three turns to reach the destination. The
distances from stopping position to the goal and task times were recorded for
both simulated and real trials. A time-stamped log of control actions and dura-
tions were collected for both real and simulated robots.
Terrain effects. The paper surface had little effect on either robots operation.
The rocky surface by contrast had a considerable impact, including a loss of trac-
tion and deflection of the robot. This was reflected by increases in the odometry
and number of turn commands issued by the operators even for the straight
course. A parallel spike in these metrics is recorded in the simulator data. As
expected the complex course also led to more turning even on the wood floor.
Figure 5 shows these data for the simulated and actual PER and Pioneer.

Fig. 5. Distribution of the times to complete the mission

Proximity. One metric on which the PER simulation and the physical robot
consistently differed was the proximity to the cone acquired by the operator.
Participants were given the instruction to get as close to the cone as possible
without touching it. Operators using the physical robot reliably moved the robot
to within 35cm from the cone, while the USARsim operators were usually closer
to 80cm from the cone. It is unlikely that the simulation would have elicited
more caution from the operators, so this result suggests that there could be a
systematic distortion in depth perception, situation awareness, or strategy. In
both cases the cone filled the cameras view at the end of the task. Alternatively,



the actual PER was equipped with a safeguard to prevent running into objects
while the simulated PER was not. Although this feature was not included in
the instructions participants may have discovered it in controlling the robot and
adopted a strategy of simply driving until the robot stopped. Figure 6 shows the
distribution of these stopping distances. Another issue addressable from these

Fig. 6. Distribution of the stopping distances of the PER robot from the cone

data is the extent to which similarities in performance are a function of the plat-
forms being simulated or differences between the simulation and control of real
robots. Figure 5 suggests that both influences are present. As with our other
data there are clear differences associated with platform and control mode. Note
for instance the consistently shorter completion times shown in figure 5 for both
actual and simulated Pioneers. Idle times, however, were much closer between
the simulated PER and Pioneer than between the simulations and the simulated
platforms. These substantially longer pauses between actions in controlling the
real robot occurred despite matching frame rates although slight differences in
response lag may have played a factor. Despite the difference in length of pauses
completion times remain very close between the robot and the simulation. The
average number of commands were also very similar between the simulation and
the PER for control mode and environment except for straight travel over rocks
in command mode where PER participants issued more than twice as many com-
mands as those in the simulation or direct operation modes. A similar pattern



occurs for forward distance traveled with close performance between simulation
and PER for all conditions but straight travel over rocks, only now it is the
teleoperated simulation that is higher.

5 Conclusions

In this paper we have presented the latest developments concerning the US-
ARsim simulation environment, a natural candidate to meet the demands of
researchers involved both in simulation and with real robots. Initial validation
results show an appealing correspondence between experiences gained with US-
ARsim and the corresponding real robots. Further benefits from USARsim can be
obtained using MOAST, a framework that aids the development of autonomous
robots. USARsim software and MOAST can be obtained for free from source-
forge.net/projects/usarsim and souceforge.net/projects/moast, respectively. As
our library of models and validation data expands we hope to begin incorporat-
ing more rugged and realistic robots, tasks and environments. Accurate modeling
tracked robots which will be made possible by the release of UnrealEngine3 would
be a major step in this direction. The open source model adopted for the de-
velopment of these software foster the active involvement of multiple developers
and already gained quite some popularity.

References

1. Kaminka, G., Veloso, M., Schaffer, S., Sollitto, C., Adobbati, R., Marshall, A., Sc-
holer, A., and Tejada, S. (2002). ”GameBots: A flexible test bed for multiagent team
research”, Comm. of the Association for Computing Machinery, 45(1), 43-45.

2. Albus, J., “4-D/RCS Reference Model Architecture for Unmanned Ground Vehi-
cles,” Proc. IEEE Int. Conf. on Robotics and Automation, 2000, pp. 3260-3265.

3. Asada, M., Kaminka, G.A., ”An overview of RoboCup 2002 Fukuoka/Busan”,
in G.A. Kaminka, P.U. Lima, and R. Rojas (Eds.): RoboCup 2002, LNAI 2752,
Springer 2003, pp. 1-7

4. Carpin, S., Wang, J., Lewis, M., Birk, A., and Jacoff, A., ”High fidelity tools for
rescue robotics: Results and perspectives”, Robocup 2005 Symposium.

5. Kitano, H., Tadokoro, S., ”Robocup rescue: a grand challenge for multiagent and
intelligent systems”, AI Magazine, 2001, no.1, pp. 39-52

6. Lima, P., Custódio, L., ”RoboCup 2004 Overview” in D. Nardi et. al. (Eds.):
RoboCup 2004, LNAI 3276, Springer, 2005, pp. 1-17

7. Nourbakhsh, I., Sycara, K., Koes, M., Young, M., Lewis, M., and Burion, S. .
Human-Robot Teaming for Search and Rescue, IEEE Pervasive Computing, 2005,
pp. 72-78.

8. Shackleford, W.P., Proctor, F.M., and Michaloski, J.L., “The Neutral Message Lan-
guage: A model and Method for Message Passing in Heterogeneous Environments,”
Proceedings of the 2000 World Automation Conference, 2000.

9. Tomoiki, T., ”RoboCupRescue Simulation league”, in G.A. Kaminka, P.U. Lima,
and R. Rojas (Eds.): RoboCup 2002, LNAI 2752, Springer 2003, pp. 477-481

10. Wang, J., Lewis, M., Hughes, S., Koes, M., and Carpin, S., ”Validating USAR-
sim for use in HRI Research”, Proceedings of the Human Factors and Ergonomics
Society 49th Annual Meeting, 2005, pp. 457-461.


