
Merging the adaptive random walks planner with
the randomized potential field planner

Stefano Carpin
School of Engineering and Science

International University Bremen
Germany

Gianluigi Pillonetto
Department of Information Engineering

University of Padova
Italy

Abstract— In this paper we investigate whether it is advanta-
geous to merge some ideas formerly found in the randomized
potential field planner with our recently introduced adaptive
random walks planner. These aspects are biasing the generation
of samples, an attractor for the samples generator, and the
possibility to backtrack when the planner gets stuck while
exploring the configuration space. We illustrate the numerical
results of different experiments using these strategies one at the
time, or combined together. It turns out that benefits of different
amplitude can be obtained using them, but it is in general hard
to incorporate these components in a general way independent
from the problem instance to be solved.

I. INTRODUCTION

Robot motion planning is one of the most widely studied
aspects of robot algorithms and constantly benefits from a
steady amount of research efforts. The reasons for this in-
terest are both practical and theoretical. On the applied side,
algorithms capable of efficiently determining the path a robot
must follow to reach a certain goal position are required
in industrial environments, as well as for mobile platforms
used in research labs. On the theoretical side, the problem
itself is intrinsically hard and calls for the development of
algorithmic machinery beyond the classic tools. To spice
up the scene, it recently became evident that robot motion
planning algorithms can be used in many scenarios beyond
robotics [11]. Computer graphics and computational biology
[7] appear to be the most intriguing ones. Rather interestingly,
these applications not strictly connected to robotics present
problem instances which are usually much harder than robot
specific ones. As it will be clarified later, the hardness of the
problem at hand can be roughly estimated by the number
of degrees of freedom of the system under study. While an
industrial robotic manipulator has usually 6 degrees of free-
dom, problems from computational biology may have tenths
or hundreds. The call for algorithms able to deal with many
degrees of freedom is then still growing. Since the mid nineties
[8], the paradigm dominating the motion planning scene has
been the randomized or sampling based. According to this
methodology, deterministic and exact algorithms doomed to
incur in an exponential complexity are replaced by algorithms
that build an approximated space representation based on
random samples. These algorithms give up deterministic cor-
rectness for the weaker property of probabilistic completeness.
This means that if a solution exists, the probability of finding

it converges to 1 when the processing time tends to infinity.
According to this paradigm, a great number of new algorithms
have been devised, most notably [14], where an extremely
fast algorithm able to deal with nonholonomic constraints was
introduced.

In this framework we recently developed an algorithm for
holonomic motion planning based on random walks [4],[6].
The algorithm explores the space of possible configurations us-
ing a random walk whose distribution’s parameters are updated
on the fly according to the recently generated ones. One of the
appealing aspects of our approach is that for certain scenarios
it is extremely fast, and it is almost parameters free. On the
contrary, a tedious aspect of many motion planning algorithms
is the large number of parameters to be tuned by hand. This
activity is time consuming and requires significant expertise.
The algorithm we developed, updates its few parameters while
running, so that one has not to spend too much time to find
good values. This updating is based on the recently accepted
or discarded samples, which we call history. We also shown
in [3] that history size is not a critical factor, i.e. there are
pretty wide ranges yielding good results. In this paper we
investigate whether the algorithm can be improved by intro-
ducing some algorithmic components already found in other
algorithms formerly developed. In particular, in section II we
will illustrate the adaptive random walks algorithm and we will
relate it to the randomized potential field algorithm developed
in the past [1]. In section III we discuss the ideas that can
be borrowed from that planners and how they have been
implemented. Section IV compares the results obtained by the
different components implemented, and finally conclusions are
offered in section V.

II. FORMULATION AND MOTIVATION

From a formal point of view, the basic robot motion
planning problem can be formulated as follows. Given a space
of configurations C partitioned into the subsets Cfree and Cobs,
and two points xs ∈ Cfree and xg ∈ Cfree, determine a
function

f : [0, 1]→ Cfree

such that f(0) = xs and f(1) = xg . The basic formulation
of the problem is PSPACE hard and the best deterministic
algorithm ever developed has time complexity exponential in



Best FirstWander BackTracki = i+1

i = 1

Stuck and

i = 1

Stuck and i < M

i = M

Fig. 1. The schematic behavior of the randomized potential field algorithm
(this representation of the algorithm has been introduced in [13])

the dimension of the configuration space C (see [10] and [13]
for comprehensive discussions of the subject). As anticipated
in the introduction, the inherent complexity of the problem
pushed the research community to develop algorithms based
on randomization and sampling. One of the first algorithms
using randomized components was presented in [1]. The
algorithm performs a gradient descent search, and when it gets
stuck in local minima it performs random motions to escape
the potential well. Its overall behavior can be described with
a state machine where three different states can be entered
(see figure 1). Two states are used to distinguish the gradient
descend and the escape local minimum behaviors. In figure
1 these are indicated as best first and wander, respectively.
The third state is triggered when the algorithms gets stuck too
many times. In this case the algorithm performs a backtrack,
i.e. it restarts the gradient descent behavior from one of
the points generated during the random motions to escape
a local minimum. The devised algorithm performs very well
for problems with many degrees of freedom, but needs some
components to be tuned by hand. In particular, a good general
purpose potential function is not immediate to determine. The
adaptive random walk we recently developed can be seen
as a special case of the randomized potential field planner.
According to this analogy, the planner always stays in the
Wander state, i.e. it keeps exploring the space with a random
walk. Algorithm 1 illustrates the basic principle of the adaptive
random walk algorithm. The exploration starts from xs and
continues until the goal is reached (note that rather than
reaching a point, the algorithm stops when it reaches a region
Xgoal surrounding the goal point). One of the peculiarities of
the algorithm is that samples are generated accordingly to a
normal distribution (line 5) whose mean µk and covariance Σk

are updated at every iteration (line 13). The update is based
on the last accepted K samples. K is called history size and
actually is the only parameter, though we already mentioned
the algorithm’s performance appears to be quite independent
from it (provided it is not 0). This leverages the programmer
from the task of parameters fine tuning. Paths generated by
both ARW and by the randomized potential field planner are
usually very jagged, but they can be smoothed very quickly
(see formerly cited papers for details). The basic idea of the
ARW algorithm can be greatly improved by using bidirectional
search techniques and greedy strategies. Bidirectional search
is a well known tool in artificial intelligence. Instead of using
just a single random walk to explore the configuration space,
two random walks are grown, one from the starting point xs

and one from the goal point xg . Exploration terminates when

Algorithm 1 Basic ARW Motion Planner
1: k ← 0
2: xk ← xstart

3: Arbitrarily initialize the covariance matrix Σ0 and the
mean vector µ0

4: while NOT xi ∈ Xgoal do
5: Generate a new sample vk ∈ N(µk,Σk)
6: s← xk + vk

7: if the segment connecting xk and s lies entirely in
Cfree then

8: k ← k + 1
9: ki ← s

10: else
11: discard the sample s
12: end if
13: Update the covariance matrix Σk and the mean vector

µk

14: end while

it is possible to join the two random walks, or when one
of the two reaches its target point (xg and xs respectively).
With the greedy strategy, when the segment connecting xk

and s (see line 7) does not completely lie in Cfree, it is not
entirely discarded, but rather only the part in Cobs is eliminated.
The above described techniques lead to a very competitive
algorithm that can solve certain problems extremely quickly.
It has of course to be mentioned that a malicious adversary
could easily design a motion planning problem where the
ARW algorithm will perform very poorly, but this is a problem
common to most planners.
Based on the previously described algorithms, one could ask
whether it is possible to combine them. Our overall goal is
nevertheless to keep an algorithm which is parameters free as
much as possible. In particular we believe that if parameters
are introduced in the algorithm, they should be updated on the
fly while the algorithm is being executed, so that a poor choice
would not impact too much the performance. It is anyway nec-
essary to point out that this goal is not always easy to obtain.
We would also like to avoid designing complicated potential
functions, because they are have to be environment oriented
and their computation could impact the overall performance.
In the next section we will discuss different strategies for
implementing backtracking and behaviors like gradient descent
in the context of the ARW planner.

III. INTRODUCING BACKTRACKING, BIASED COMPONENTS
AND ATTRACTORS

A. Backtracking

One of the main drawbacks experienced by the adaptive
random walk algorithm is the presence of regions in the
configuration space that have a narrow entrance. One could
visually imagine exploring a long narrow corridor with a dead
end, or entering a room with a very narrow door and no other
exit. The random exploration process is likely to spend a lot
of time before leaving such area. From a mathematical point



of view this is not a problem, since convergence properties
of the algorithm guarantee that if a solution exists it will
be eventually found when the processing time diverges to
infinity. Obviously from a practical point of view these sit-
uations should be quickly identified and a recover action be
undertaken. The first problem is identifying the stuck situation.
One way would be to monitor the last accepted samples and
see whether they lie all in the same neighborhood. Obvious
practical questions are: how many samples should be taken
into consideration to determine if the planner is stuck or not?
And how big should the neighborhood be? These would lead to
the introduction of two further parameters that are environment
dependent. A possible choice for the first parameter, could be
K, i.e. the history size. K is already used to update sampling
distribution’s parameters and tells the algorithm how much
of its recent processing it should take into consideration. We
will indicate this number as S. The size of the neighborhood
is even more problem dependent. In fact one should take
into consideration that the different degrees of freedom may
assume values in different ranges, treat differently rotations
from translations and so on. To leave these issues out we
adopt the following strategy. When a new sample is generated,
the algorithm checks whether a straight line path can connect
the last sample in the path with the newly generated sample
(line 7 of algorithm 1). If this is not possible, the segment is
not completely discarded, but rather the part lying in Cfree

is kept (see figure 2 for a simple bidimensional example). At
every step we store a number telling us how much of the
segment was accepted. For example if only half lies in Cfree

the value will be 0.5. We call this value extension at step i
and we indicate it as ei. To determine if the random walk is
stuck, at each iteration the average of the last S values of ei

is computed, i.e.

e =
1
S

S∑
i=1

ei.

We define the condition being stuck as e < T , where T is
a certain threshold. In fact T is a parameter, but its meaning
is pretty qualitative and not dependent from the environment.
For example, taking T = 0.1 means that we consider the
random walk being stuck if in the last S attempts the average
motion has been less than 10% of the tried distance. The
parameter T in itself can be fixed or can be adjusted during the
computation. When the random walk is stuck, the backtracking
procedure is applied. The point to restart from is chosen
randomly using a uniform distribution from the set of already
accpted samples.

B. Biased components

As mentioned before, the randomized potential field planner
uses a potential function, but we would like to avoid it.
Good potential field functions are hard to design, environment
dependent, and can add quite some overhead for their com-
putation at each iteration. For these reasons, we have rather
decided to introduce a bias in the sampling distribution. The

New sample

Last accepted sample

Fig. 2. In case the new sample cannot be connected with a straight line to
the last accepted sample, because it intersects an obstacle (grey region in the
middle). In this case only the fraction lying in Cfree will be accepted (solid
line). This would give a value for extension of about 0.35.

bias is handled as a non zero mean vector µk used in the
sampling process (see algorithm 1). In fact, while the original
ARW algorithm was developed using a zero mean vector, the
overall convergence still holds with a non-zero mean vector
(this was already somehow exploited in [5]). In case a single
random walk is used to explore the configuration space, the
obvious choice is to bias its mean towards the goal region.
Anyway as we mentioned before, it is much more convenient
using two random walks, one originating from xs and the other
from xg . A path is found when either the two random walks
meet each other or when the one originating from xs can be
connected to xg (and viceversa). In this case one can bias the
sampling process not only towards the final destination but
also towards the other random walk. In fact, this approach
takes into account that a solution can be found in different
ways. In the experiments later illustrated we will compare both
these choices. A practical aspect very important concerns the
intensity of the biasing. How strong should this component
be? Or, in other words, what is the ideal way to set the mean
vector modulus? According to the framework developed in the
original ARW algorithm we have chosen to use the covariance
matrix Σk to modulate this intensity. In fact, Σk is updated at
each iteration according to the last K accepted samples. The
values on the main diagonal are the variances of the various
degrees of freedom. These give a rough indication whether the
random walk is exploring an open area or a cluttered narrow
passage. In the former case variance values are big and then it
makes sense to use a strong bias. In the latter case the values
are small, and it is more appropriate to reduce the polarization
effect. In addition, one could also think to apply the bias not
always but only with a certain probability. The value of e could
be used to take the decision. For example one could decide to
introduce the bias with probability e.

C. Attractors

In order to easily mimic the best first component of the ran-
domzed potential field planner, attractors can be introduced.
They could be used in alternative to the formerly discussed
bias, or togheter. Informally speaking, an attractor is a sort of
probability measure introduced over the configuration space



C. According to this approach, when a sample is generated
(line 6 of algorithm 1), it is accepted or refused with a certain
probability. If the sample is refused, a new one is generated
and the random selection is repeated. This probability depends
on the sample location inside C. In fact, as already envisioned
in [2], one could think of spending more time to generate
good samples, in order to reduce the number of calls to the
collision checker, which is the really expensive component
of sampling based motion planners. The concept of attractors
is very well developed in dynamical systems theory, and
benefits from a huge amount of formerly developed research.
It then makes sense investigating whether it can be used
in the ARW planner. On the other hand, we strive for not
introducing complicated functions and additional parameters.
In the preliminar experiments we will illustrate in the next
section, the probability of accepting a new sample s is the
following

e
− dist(s,xg)

dist(xs,xg)

where dist is the distance between the two given points in C.
In this way, samples closer to the goal point xg have a higher
probability of being accepted.

IV. EXPERIMENTAL RESULTS

The effectiveness of the different enhancement has been
tested using the MSL - Motion Strategy Library software
[12]. MSL is general framework for developing, testing and
comparing motion planning algorithms. It includes a number
of benchmark problems with different hardness (different
environments, single and multi-robot problems, holonomic and
non-holonomic constrains and so on). Figures 3 and 4 show
two of the motion planning problems included in the MSL
distribution. By using a common underlying set of geometric
subroutines, like the PQP collision detection algorithm [9], it
is possible to perform fair quantitative comparisons between
different algorithms. To compare the performance of the
different versions, we compute the overall time spent to find
the final solution, i.e. the smoothed one. We also logged the
number of calls to the collision detector, which is the most
time consuming subsystem and is independent from the host
system load. Results discussion will be based in fact on this
number.

We first run the formerly developed ARW algorithm, i.e.
with no backtracking and no biasing. All over the experiments
we always run a bidirectional search, since it is much faster.
Also, for fairness of comparison we also always used the same
formulas to update the covariance matrix Σk. Table I shows
the results for the basic algorithm. In all the tables, displayed
numbers are the average of 50 repeated executions. The first
column displays the name of the benchmark, the second the
number of degrees of freedom, the third the overall time spent
(in seconds), and the fourth the number of call to the collision
detector. In all the tables included in this section, we display
with a bold font the number of calls to the collision checker
performed by the best algorithm.

Fig. 3. The benchmark problem called 3drigid2. The task is to move the
object on the other side of the two obstacles. In order to pass through the two
small openings some maneuvering is needed.

Fig. 4. The benchmark problem 3drigid3. The task is to move the L-shaped
object through the hole to the other side of the obstacle.

Problem # dof Time # Calls
Car 1 3 0.167 3961
Car 2 3 0.833 10976

Wrench 6 2.728 22419
Cage 6 2.264 27467

3drigid2 6 14.468 197311
3drigid3 6 3.5632 44141

Cross 3 2.059 26986

TABLE I
PERFORMANCE OF THE BASIC ARW ALGORITHM

In the second set of tests we run the ARW algorithm
introducing a biased component but without backtracking. The
biasing is applied at every iteration and is not directed towards
the goal state, but rather aims to connect the two random
walks. Table II shows the results.

In the third test run we used a different biasing strategy,
i.e. we biased the random walks towards their target points
rather than towards each other. Results are shown in table III.
Please note that no result is shown for the benchmark 3drigid2



Problem # dof Time # Calls
Car 1 3 0.183 4279
Car 2 3 0.762 12408

Wrench 6 1.747 20613
Cage 6 1.489 24622

3drigid2 6 9.7578 169485
3drigid3 6 2.212 36513

Cross 3 1.3454 24790

TABLE II
PERFORMANCE OF THE ARW ALGORITHM ALGORITHM WITH A

CONSTANT BIAS BETWEEN THE TWO RANDOM WALKS AND NO

BACKTRAKING.

since the time spent is very high (two orders of magnitude of
difference).

Problem # dof Time # Calls
Car 1 3 0.3634 3490
Car 2 3 0.459 4458

Wrench 6 3.50 26366
Cage 6 2.457 27249

3drigid2 6 – –
3drigid3 6 3.447 28777

Cross 3 1.98 22276

TABLE III
PERFORMANCE OF THE ARW ALGORITHM ALGORITHM WITH A

CONSTANT BIAS TOWARDS THE TARGET POINTS.

We have then run the ARW algorithm introducing a back-
tracking recover behavior but with no biasing. In this case we
have set the threshold T to the value 0.1. The value of e was
computed taking into consideration the last 20 samples (i.e.
S = 20). Results are displayed in table IV.

Problem # dof Time # Calls
Car 1 3 0.1148 3532
Car 2 3 0.757 13906

Wrench 6 2.065 25752
Cage 6 1.755 29305

3drigid2 6 15.8282 313213
3drigid3 6 3.124 53837

Cross 3 1.917 35359

TABLE IV
PERFORMANCE OF THE ARW ALGORITHM ALGORITHM WITH

BACKTRACKING AND NO BIAS.

This set of tests was concluded including both extensions,
i.e. we have run the ARW algorithm with both the backtrack-
ing behavior and the bias towards between the two random
walks being built. Table V shows the results

The next set of tests aimed to evaluate the utility of
attractors. Again, we first run the ARW algorithm using only
the attractor strategy described in the former section. Table VI
shows the results we obtained.
As we did for the bias, in the subsequent test we have put
together both the attractor and the backtracking component.
Table VII presents the results we obtained.

Problem # dof Time # Calls
Car 1 3 0.151 2428
Car 2 3 1.618 17832

Wrench 6 1.79 18204
Cage 6 1.312 19662

3drigid2 6 80.387 892379
3drigid3 6 1.643 21546

Cross 3 2.863 35666

TABLE V
PERFORMANCE OF THE ARW ALGORITHM ALGORITHM WITH

BACKTRACKING AND BIAS BETWEEN THE TWO RANDOM WALKS.

Problem # dof Time # Calls
Car 1 3 0.239 4759
Car 2 3 0.671 8726

Wrench 6 2.624 22250
Cage 6 2.028 24123

3drigid2 6 16.059 215067
3drigid3 6 4.384 53800

Cross 3 2.146 27541

TABLE VI
PERFORMANCE OF THE ARW ALGORITHM ALGORITHM WITH THE

ADDITION OF AN ATTRACTOR.

Problem # dof Time # Calls
Car 1 3 0.216 4211
Car 2 3 0.832 10559

Wrench 6 3.211 25542
Cage 6 2.245 25839

3drigid2 6 16.697 218113
3drigid3 6 5.036 59581

Cross 3 2.191 27819

TABLE VII
PERFORMANCE OF THE ARW ALGORITHM ALGORITHM INCLUDING BOTH

AN ATTRACTOR AND A BACKTRACKING COMPONENT.

In the very last test, we joined together all the three proposed
techniques, i.e. backtracking, bias and the attractor. The results
are included in table VIII (again, no result is displayed for the
benchmarck 3drigid3 because of the very poor performance).

Problem # dof Time # Calls
Car 1 3 0.226 2242
Car 2 3 1.441 10080

Wrench 6 2.822 18080
Cage 6 1.740 17616

3drigid2 6 – –
3drigid3 6 2.874 25059

Cross 3 3.013 28773

TABLE VIII
PERFORMANCE OF THE ARW ALGORITHM ALGORITHM INCLUDING A

BACKTRACKING COMPONENT FROM RANDOM POSITION, A CONSTANT

BIAS BETWEEN THE TWO RANDOM WALKS AND AN ATTRACTOR.



V. LESSON LEARNED AND CONCLUSIONS

In this paper we have discussed how we borrowed some
ideas developed in the randomized potential field planner and
how we have integrated them into the adaptive random walk
planner. The integration between the two is somehow natural,
since the latter can be seen as a special case of the former. In
particular, we introduced the capability to backtrack when the
random walk gets stuck, and a bias in the sampling distribution
to mimic a sort of attractive behavior. All over the process we
tried to introduce as few parameters as possible. This because
in our opinion one of the attractive characteristics of the ARW
algorithm is the very low number of parameters that have to be
tuned by hand. It turned out that the proposed extensions give
benefits in some benchmark problems, but none of them show
a gain over all the investigated benchmarks. This can somehow
be explained in two ways. The ARW algorithm performs a
purely random exploration. As known [15], this behavior re-
duces the possibility that a malicious adversary could design a
problem instance that negatively affects the algorithm, though
it is still possible. The three added components, instead have
a two fold aspect. On the one hand there exist some problems
where they really pay off. Backtracking, is obviously useful if
the configuration space exhibit many dead ends. As we pointed
out in the introduction, this is one of the difficult scenarios for
the ARW algorithm. On the other hand, finding the solution
for certain problem instances indeed requires getting through
narrow passages where many proposed motions will result in
very short steps. In this case the backtracking component will
restart the algorithm many times, even if it is nevertheless
necessary to pass through that region. In this case, environment
specific knowledge would be needed in order to set a good
value for the threshold T . Biasing the sampling distribution
and using attractors have more or less the same nature. If
there are widely open areas, they clearly boosts the exploration
process. On the other hand, if the solution involves finding
a path taking a long detour from the obvious straight line
trajectory, they have a detrimental effect, as they pushes the
random walk very often into Cobs. When used in combination
with the backtracking component, the negative effect can even
be overemphasized, since this can trigger backtracking when
not needed. It should nevertheless be outlined that for each
of the studied benchmarks the use of the proposed extensions
gave benefits when comparing with the basic ARW algorithm.

In the future we plan to investigate whether it is possible
to determine on-the-fly which technique should be used and
which one should not. In fact it is acknowledged that there
exists no best planner, but rather each one has its own
strengths and weaknesses. It is our goal to embed different
techniques, even beyond the above described ones, and to
develop a selection mechanism that chooses on the fly which
one should be included and which one should not. We do
indeed believe that these adaptive subsystems will be very
useful in the process of developing parameters free motion
planners.

REFERENCES

[1] J. Barraquand and J.C. Latombe. Robot motion planning: A distributed
representation approach. The International Journal of Robotics Re-
search, 10(6):628–649, 1991.

[2] V. Boor, M.H. Overmars, and A.F. van der Stappen. The gaussian
sampling theory for probabilistic roadmap planners. In Proceedings of
the IEEE International Conference on Robotics and Automation, pages
1018–1023, Detroit, May 1999.

[3] S. Carpin and G. Pillonetto. Learning sample distribution for randomized
robot motion planning: role of history size. In Proceedings of the
3rd International Conference on Artificial Intelligence and Applications,
pages 58–63. ACTA press, 2003.

[4] S. Carpin and G. Pillonetto. Robot motion planning using adaptive
random walks. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 3809–3814, 2003.

[5] S. Carpin and G. Pillonetto. Centralized multi-robot motion planning:
a random walks based approach. In F. Groen, N. Amato, A. Bonarini,
E. Yoshida, and Ben Krose, editors, Intelligent Autonomous Systems 8,
pages 610–617. IOS press, 2004.

[6] S. Carpin and G. Pillonetto. Motion planning using adaptive random
walks. IEEE Transactions on Robotics, 21(1):129–136, 2005.

[7] Greg Chirikjian, Nancy Amato, and Lydia Kavraki (Eds.). Special issue:
Robotics techniques applied to computational biology. International
Journal of Robotics Research, 2004–to appear.

[8] L.E. Kavraki, P. Švestka, J.C. Latombe, and M.H. Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580,
1996.

[9] E. Larsen, S. Gottschalk, M.C. Lin, and D. Manocha. Fast proximity
queries with swept sphere volumes. Technical Report TR99-018,
Department of Computer Science, University of N. Carolina, Chapel
Hill, 1999.

[10] J.C. Latombe. Robot Motion Planning. Kluver Academic Publishers,
1990.

[11] J.C. Latombe. Motion planning: A journey of robots, molecules, digital
actors, and other artifacts. The International Journal of Robotics
Research - Special Issue on Robotics at the Millennium, 18(11):1119–
1128, 1999.

[12] S.M. LaValle. Msl - the motion strategy library software, version 2.0.
http://msl.cs.uiuc.edu.

[13] S.M. LaValle. Planning Algorithms. Available Online.
[14] S.M. LaValle and J.J. Kufner. Randomized kinodynamic planning.

International Journal of Robotics Research, 20(5):378–400, 2001.
[15] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge

University Press, 1995.


