
Detecting intruders in complex environments
with limited range mobile sensors.

Andreas Kolling and Stefano Carpin

University of California, Merced
School of Engineering – Merced,CA, USA

Summary. This paper examines the problem of detecting intruders in large multiply-
connected environments with multiple robots and limited range sensors. We divide
the problem into two sub-problems: 1) partitioning of the environment and 2) a
new problem called weighted graph clearing. We reduce the second to a weighted
tree clearing and present a solution for finding paths for the robot team that ensure
the detection of all intruders with a proven upper bound on the number of robots
needed. This is followed by a practical performance analysis.

1 Introduction

Multi-target surveillance by a team of mobile robots as one of the more ac-
tive and novel research areas in robotics has received particular attention in
recent years. Its core problems are at an interesting cross-section between
path-planning, map building, machine learning, cooperative, behavioral and
distributed robotics, sensor placement and image analysis. We are currently
investigating the problem of detecting intruders in large and complicated en-
vironments with multiple robots equipped with limited range sensors. The
problem is closely related to pursuit-evasion and cooperative multi-robot ob-
servation of multiple moving targets, short CMOMMT, which we are going to
discuss shortly in section 2. The main contribution of this paper is to present
a starting point for an approach for a team of robots with limited range sen-
sors. We divided the initial problem into two sub-problems: 1) to partition
the environment into a graph representation and 2) to clear the graph from
all possible intruders with as few robots as possible.

For the remainder of this paper we are going to focus on the later problem.
Interestingly, the division has the effect that we can present an algorithm
to compute a clearing strategy on the graph without considering the robots’
capabilities directly. Hence with some further work the algorithm is extendable
to teams of heterogeneous robots. The clearing strategy consists of paths for
the robots on the vertices and edges of the graph. When executed it ensures



2 Andreas Kolling and Stefano Carpin

that any arbitrarily fast moving target present in the environment will be
detected. To find a clearing strategy we need to solve a graph theoretical
problem which we dub weighted graph clearing, introduced in section 3.1. In
section 3 we provide a solution for the problem with a proven upper bound
followed by some experiments in section 4. Finally, our results and and a
outlook on the first sub-problem are to discussed in the section 5.

2 Related Work

The two research areas most closely related to our work are CMOMMT and
pursuit-evasion. CMOMMT is related due to its focus on multi-robot teams
in large environments with sophisticated cooperation. The term was coined
by Parker who produced the first formal definition of the problem and an
algorithm in [2]. It focuses on multi-target surveillance in large environments
with mobile robots with limited range sensors with the goal to optimized re-
source usage when resources are not sufficient to surveil all targets. Recent
improvements were presented in [1] by introducing a new distributed behav-
ioral approach, called Behavioral-CMOMMT. The improvements are due to
an advanced cooperation schemes between robots which boost the overall per-
formance.

Pursuit-evasion is usually tackled from the perspective of the pursuer, i.e.
the goal is to try to make impossible for the evader to escape. Most current
solutions for this pursuit-evasion problem, however, require unlimited range
sensors. In [3] an algorithm for detecting all targets in a subclass of all simply
connected environments is presented. The restrictions on the subclasses are
relatively few and the performance of the algorithm is proven. It guarantees to
find a path to clear the environment of all targets using only a single pursuer
with a gap sensor with full field of view and unlimited range. The drawbacks
are frequently revisited areas and hence long clearing paths. In [4] and [5] a
previous algorithm for a single pursuer is presented in more detail and in [4]
interesting bounds on the number of robots required for certain free spaces are
established. For simply-connected free spaces a logarithmic bound is obtained,
while for a multiply-connected environment a bound in the square root of the
number of holes is given. Furthermore, finding the number of robots needed to
clear an environment was shown to be NP-hard. Gerkey et al. in [6] extended
the previous algorithm to varying field of view.

Pursuit-evasion solutions draws most of their information from a particular
method of partitioning to finding a clearing strategy. This will be useful for
extensions of this paper when the first sub-problem is discussed and related to
the weighted-graph clearing problem. For now we shall present a solution that
is independent of any partitioning but yet a powerful method in the divide
and conquer spirit.



Detection of Intruders 3

3 The Algorithm

To prepare the grounds for the algorithm we will define our notion of envi-
ronment, regions, adjacency and contamination. An environment, denoted by
S, is a bounded multiply connected closed subset of R2. A region is a simply
connected subset of S. Let r1 and r2 be two regions and let r̄1 and r̄2 denote
their closures. If r̄1 ∩ r̄2 6= ∅, then we say that r1 is adjacent to r2 and vice
versa. Let Sg = {r1, . . . , rl} be a partition of S with l regions. Let Ari be the
set of all adjacent regions to ri. Define a binary function for each region ri
on its adjacent regions and across time: bri

: Ari
× R→ {0, 1}. Let rj ∈ Ari

.
If bri

(rj , t) = 1 we shall say that the adjacent region rj is blocked w.r.t. ri
at time t. Define another binary function: c : Sg × R → {0, 1}. If c(r, t) = 1,
then we shall call region r contaminated at time t, otherwise clear. Let Ac

ri

be the set of all contaminated adjacent regions to ri. Let c have the following
property:

∀ε > 0 : c(r, tc + ε) = 0 ⇐⇒ c(r, tc) = 0 ∧ b |Ac
ri

(t+ ε) = 1 (1)

Now, if c(r, tc) = 0 and ∃ε > 0 s.t. ∀t ∈ (tc, tc + ε], c(r, t) = 1, then we say
that that r is re-contaminated after time tc.

These definitions give us a very practical notation for making statements
about the state of regions. In particular, it follows that a region becomes re-
contaminated when it has a contaminated adjacent region that is not blocked.
We are now going to define two procedures, called behaviors, which set the
function c and b, i.e. enable us to clear and block.

Definition 1 (Sweep and Block). A behavior is a set of instructions as-
signed to one or more robots. The two behaviors are defined as follows:

1. Sweep: a routine that detects all invaders in a region assuming no invaders
enter or leave the region. After the execution of a sweep on a region r at
time t we set c(r, t) = 0, i.e. not contaminated1.

2. Block: a routine that ensures that no invaders enter from or exit to adja-
cent regions. For a region r a block is executed on an adjacent region ra in
Ar. A block on ra is defined as covering the boundary of r intersected with
ra with sensors, i.e. δr̄ ∩ r̄a ⊂ sensor coverage, where sensor coverage
is the area covered by all available sensors of all robots.

Furthermore, let us denote a sweep as safe if and only if during the execution
of the sweep we have b |Ac

ri
= 1. It follows that after a safe sweep a region

remains clear until a block to a contaminated region is released.
All the previous can be understood as the glue that connects the two sub-

problems, partitioning and finding the clearing strategy. Partitioning returns
the graph representation of the environment into which one can encode the
1 therefore we assume that when a robot detects and intruder, the intruder is

neutralized and cannot operate anymore



4 Andreas Kolling and Stefano Carpin

number of robots needed for the behaviors on the edges, the blocks, and the
vertices, the sweeps, by adding a weight to them. The values of the weigths are
specific to the robots capabilities and methods used for sweeping and blocking.
Depending on the partitioning, very simple methods can be used. We assume
a homogeneous robot team from here on, which makes the interpretation of
these weights easier and the notation for the following simpler to follow. We
now define the main problem that we are going to investigate, i.e. weighted
graph clearing. The task is to find a sequence of blocks and sweeps on the edges
and vertices of an entirely contaminated graph such that the graph becomes
cleared, i.e not contaminated, with the least number of robots. This sequence
of blocks and sweeps will be our clearing strategy to detect all intruders.

3.1 Weighted graph clearing

We are given a graph with weighted edges and vertices, denoting costs for
blocks and sweeps. The goal is to find a sequence of behaviors to clear the
graph using the least number of robots. As the first step we attempt to reduce
the complexity of the problem by reducing the graph to a tree by removing
occurring cycles. Cycles can be eliminated by executing a permanent block
on one edge for each cycle. The choice of such edge will influence the tree
structure and hence our final strategy. This is a topic that requires further
investigation, as discussed in section 5. Recall the partition Sg in form of a
planar graph. Let the weights on the edges and vertices be denoted by w(ei)
on edges and w(ri) on vertices and all be non-zero. The weight of a vertex
is the number of robots needed to complete a sweep in the associated region,
while the weight of an edge is the number of robots required to block it. To
transform Sg into a tree we compute the minimum-spanning-tree (MST) with
the inverse of the w-weight of the edges. Let B be the set of all removed edges
to get the MST. The costs for blocking all edges in B and transforming Sg

into a tree is b(B) =
∑

ei∈B w(ei) and as such the minimum possible. From
now on this cost is constant and will henceforth be ignored.

3.2 Weigthed tree clearing

Recall that a safe sweep requires all adjacent regions to be blocked. It is
clear that we have to block contaminated and cleared regions alike, since the
latter may get re-contaminated. Hence for a safe sweep for a region ri we
need s(ri) = sumej∈Edges(ri)w(ej) + w(ri) robots. After a safe sweep all
blocks on edges to cleared regions can be released. To remove the blocks to
contaminated regions we have to clear these first. This suggests a recursive
clearing of the regions. To capture this we define an additional weight on each
edge, p(ej), referred to as p-weight. For clarity: the p-weight for edges is the
number of robots needed to clear the region accessible via this edge and all
its sub-regions into the respective direction. Once we have the p-weight we



Detection of Intruders 5

still have to choose at each vertex which edges to visit first. Let us define the
order by p(ej)− w(ej) with the highest value first.

The following algorithm computes the p-weight and implicitly selects a
vertex as the root which is the starting point for the clearing. For each region
r, let Edges = {en1 , . . . , enm(r)} denote the set of edges.

1. For all edges ej that are edges to a leaf ri set p(ej) = w(ej) + w(ri).
2. For all vertices ri that have its p-weight assigned for all but one edge,

denoted by en1 , do the following:
a) Sort all m − 1 assigned edges w.r.t to p(ej) − w(ej) with the highest

value first. Let the order be en2 , . . . , enm .
b) Determine h := max2≤k≤m(p(eni) +

∑
1<l<k w(enl

))
c) For the unassigned edge en1 of ri set p(en1) = max(s(ri), h).

3. Repeat from step 2 until all edges have p assigned.

The root selected is one of the vertices connected with the last assigned
edge and will be in the center of the longest path from a leaf to another leaf.
Uniqueness is resolved trivially by a random selection of valid roots as done
by the algorithm. One could use a procedure that computes the p-weight in
both directions, so one does not have to choose a root and is independent of
directions until the final deployment of the robots. This would merely compli-
cate the notation, but since the theoretical qualities are identical we chose to
present a simpler version of the algorithm. To clarify the notation: edges are
noted w.r.t to a vertex r and en1 is always the edge from vertex r to the root
while the order of the remaining edges w.r.t. p(ej)−w(ej) is en2 , . . . , enm

. We
can now state the main theorem, namely the bound for the maximum number
of robots needed to clear a tree.

Theorem 1. Let hmax := max∀r(s(r)) > 2. Let d be the length of the longest
path in the tree Sg and d∗ = dd/2e. The maximum p-weight of an edge is
bound by

max
e∈Edges(Sg)

(p(e)) ≤ hmax + (d∗ − 1) · (hmax − 3) (2)

Proof: The proof proceeds by identifying the worst case for a non-leaf vertex
and then starting at the worst case for leaves, construct the worst case tree.
Now, consider any vertex r that is not a leaf. Write m for m(r) and E′ for
Edges(r)\{en1 , enm}. We are assigning p(en1) using {en2 , . . . , enm} with p(eni)
assigned for i > 1. W.l.o.g. assume that m ≥ 3, otherwise we have p(en1) =
max(p(en2), s(r)). Since s(r) ≤ hmax and s(r) =

∑
ej∈Edges(r) w(ej) + w(r)

we get: ∑
ei∈Edges(r)\{en1}

w(ei) ≤ hmax − 2.

Consider the worst case for the last edge enm
to be cleared from r. All other

edges have to be blocked with cost
∑

ei∈E′ w(ei) while we clear sub-regions
beyond enm

with cost p(enm
). Due to the ordering of edges we know that



6 Andreas Kolling and Stefano Carpin

p(enm
) − w(enm

) is smaller than for other edges. The worst case costs oc-
cur when the p weight of enm

is as big as possible while at the same time∑
ei∈E′ w(ei) is large. Trivially we have:∑

ei∈E′

w(ei) ≤ hmax − 3

For p(enm
) we know:

p(enm) ≤ p(eni)− w(eni) + w(enm)

due to the ordering. Hence it follows that the worst case occurs when:

p(enm
) = max(p(eni

)), w(eni
) = 1, m = hmax − 2

So we get p(eni
) = p(enj

),∀j, i > 1. A quick proof by contradiction shows that
the last edge in the worst case is the worst edge. Now the bound for p(en1) if
p(enm

) > 2 becomes:

p(en1) ≤ p(enm
) + hmax − 3.

(Note: if p(enm
) = 2 then we may get p(enm

) + hmax − 3 = hmax − 1 and
violate that possibly p(en1) = s(r) = hmax)

We can now use this to derive a bound for the entire tree. We start with
the leaves at worst case hmax for a safe sweep, so all p-weights at the first
stage are hmax. Now we assume the worst case for all other vertices. This
gives us:

max
e∈Edges(Sg)

{p(e)} ≤ hmax + (d∗ − 1) · (hmax − 3)

�
The number of robots needed can easily be computed by adding a ”virtual”

edge to the root vertex and computing its p-weight. Figure 1 illustrates a worst
case example with d = 6, hmax = 6 and the resulting size of the robot team of
16. The actual exploration proceeds by choosing the subtree with the highest
p(ei)−w(ei) first, then once it is explored blocking it and continuing with the
new one in order until the last subtree is cleared. The example from figure 1
is generic and establishes the bound as tight for any d and hmax. It, however,
only occurs in exactly such an example in the sense that we need all vertices
and leaves to have exactly the structure for the worst case as indicated in the
proof and figure. When seeking the optimal root vertex for the deployment one
can use the same principal method and calculate p-weights in both directions,
append a virtual edge to each vertex and then choose the vertex with the
smallest p-weight for this virtual edge.

4 Investigation of Performance

To show the practicability of the algorithm we ran the recursive sweep on
randomly generated weighted trees. Trees with 20, 40, 60, 80 and 100 vertices,



Detection of Intruders 7

51:6

1

1

1

1:9

1:9

1:9

1:9
1:12

1:12

1:12

1:12deploy 16 robots

1:12

5

1:6

5

1:6

5 1:6

Fig. 1. This is the worst case example
for d = 6, hmax = 6, p∗ = 6+2·3 = 12.
Blocking weight w is indicate left and
p-weight right of : on the edge. Each
vertex has its weight in its center.

20 40 60 80 100

0
10

0
20

0
30

0
40

0

Number of vertices

A
ve

ra
ge

 m
ax

im
um

 o
f p

● ● ● ● ●

●

●

●

●

●

Actual values
Upper bound

Fig. 2. A comparison of the average
upper bound across 1000 weighted trees
and actual maximum p-weight for vary-
ing number of vertices.

random edges, a random weight for a vertex between 1 and 12 and a random
weight for edges between 1 and 6 were generated. For each number of vertices
a forest of 1000 trees was created. The average values for the maximum p-
weight, d∗ and hmax are presented in table 4. Figure 2 compares the upper
bound computed from d∗ and hmax with the average maximum value of p.

n Vertices max(p(e)) d* hmax

20 24.865 5.325 25.176

40 28.300 7.784 27.949

60 30.299 9.638 29.607

80 31.781 11.077 31.039

100 32.885 12.306 31.909

Table 1. Results of the experiments. Values are averaged across 1000 random trees.
The max(p(e)) is the largest p-weight occuring in the tree, without any virtual edges
attached, while hmax is the largest s-weight of the vertices. Note that if the root has
the largest s-weight it may be that hmax > max(p(e)), which is often the case with
smaller trees since the root on average has the most edges.

5 Discussion and Conclusion

We presented a first approach for a complex problem and started at dissecting
it into the two sub-problems that can be paraphrased into the two major



8 Andreas Kolling and Stefano Carpin

challenges of understanding the environment and then coordinating the team
effort. We presented a solution to coordinate the team effort with a central
instance by solving the weighted graph clearing problem. The benefit is that
we can now partition an environment into many simple regions for which
one can easily find a sweeping routine for limited range sensors. Particularly
suitable are environments such as buildings for which we would suggest a
partitioning into regions that are rooms and hallways. The sweeping of a room
can then be done by aligning the robots, and then the sensors, on a line. On
our path towards a fully working system there are two sets of questions arising.
The first set are those regarding the theoretical part, i.e. solving the graph
clearing problem without using the heuristic of the constant cycle blocks. First
of all, choosing the cycle blocks defines the tree structure and hence influences
the resulting strategy. We might get a better strategy if we choose the block
w.r.t. to this criteria. Secondly, once we have cleared two regions connected
by an edge that has a cycle block it becomes redundant. We could free the
block and gain resources and we would want to free these additional resources
exactly when we need them, namely when we enter regions with high weights.
The second set of questions are those regarding the partitioning. One needs
to determine good methods for partitioning depending on the environment
and capabilities of the robots. Also we need to conceive criteria for partitions
that lead to good strategies on the graph. A first hint of the theorem is that
deep trees should be avoided. Understanding the theoretical properties of the
weighted graph clearing problem first, might already give us good insight on
how to start creating good partitions. Then we can work on devising good
partition strategies in coordination with sweeping and blocking methods for
particular sensors and close the loop to a working system.

References

1. A. Kolling, S. Carpin, “Multirobot Cooperation for Surveillance of Multiple
Moving Targets - A New Behavioral Approach,” Proceedings of the 2006 IEEE
International Conference on Robotics and Automation, pp. 1311–1316

2. L. E. Parker, “Distributed algorithms for multi-robot observation of multiple
moving targets,” Autonomous robots, 12(3):231–255, 2002.

3. S. Sachs, S. Rajko, S. M. LaValle. “Visibility-Based Pursuit-Evasion in an Un-
known Planar Environment,” The International Journal of Robotics Research,
23(1):3-26, 2004

4. L. J. Guibas, J. Latombe, S. M. LaValle, D. Lin, R. Motwani, “Visibility-Based
Pursuit-Evasion in a Polygonal Environment,” International Journal of Com-
putational Geometry and Applications, 9(5):471–494, 1999

5. S. M. LaValle, D. Lin, L. J. Guibas, J. Latombe, R. Motwani, , “Finding an
Unpredictable Target in a Workspace with Obstacles,” Proceedings of the 1997
IEEE International Conference on Robotics and Automation, pp. 737–724

6. B. P. Gerkey, S. Thrun, G. Gordon. “Visibility-based pursuit-evasion with lim-
ited field of view,” The International Journal on Robotics Research, 25(4):299-
316, 2006.


