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ABSTRACT5

The advent of machine learning technologies in conjunction with the advancements in UAV-based6

remote sensing pioneered a new era of research in agriculture. The escalating concern for water man-7

agement in drought-prone areas such as California underscores the urgent need for sustainable solutions.8

Stem water potential (SWP) measurement using pressure chambers is one of the most common methods9

used to directly determine tree water status and the optimal timing for irrigation in orchards. However,10

this approach is inefficient due to its labor-intensive nature. To address this problem, we used weather,11

thermal and multispectral data as inputs to the machine learning (ML) algorithms to predict the SWP12

of pistachio and almond trees. For each crop, we first deployed six supervised ML classification mod-13

els: Random Forest (RF), Support Vector Machine (SVM), Gaussian Naive Bayes (GNB), Decision Tree14

(DT), K-Nearest Neighbors (KNN), and Artificial Neural Network (ANN). All classifiers provided more15

than 79% of accuracy while RF showed high performance in both pistachio and almond orchards at 88%16

and 89%, respectively. The feature importance results by the RF model revealed that the weather features17

were the most influential factors in the decision-making process. In both crops, canopy temperature 𝑇𝑐 was18

the next important feature closely followed by OSAVI in pistachios and NDVI in almonds. RF regression19

model predicted SWPs with 𝑅2 of 0.70 in pistachio and 𝑅2 of 0.55 in the almond orchard. Our results20

demonstrate that ML models are practical tools for irrigation scheduling decisions. This study offered21

a data-driven approach that effectively balances minimal data requirements with accuracy to facilitate22

optimal water management for end-users.23
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1 INTRODUCTION26

The state of California is a major crop producer in the world (Hong et al., 2020). California’s agricultural27

exports achieved a value of $22.5 billion in 2021, showing a 20% percent growth over the span of 10 years. The28

foundation of this success rests on the state’s almond and pistachio industries that contribute to about 30% of29

these exports in value according to CFDA reports. However, crop production in California is subject to substan-30

tial uncertainty due to high vulnerability to drought and water shortage (Medellı́n-Azuara et al., 2022). In 2014,31

California adopted the Sustainable Groundwater Management Act (SGMA) regulations to mitigate groundwater32

overdraft, especially in agriculture (Espinoza et al., 2023). These regulations aim to optimize water allocation and33

reduce wastage. Guidelines cover aspects such as irrigation scheduling and water application methods. With these34

regulations in effect, the need for efficient irrigation methods become more important (Escriva-Bou et al., 2020).35

The escalation in crop water requirements is urging growers to explore new irrigation strategies that can accom-36

modate severe drought conditions. It is crucial to seek solutions that are not labor-intensive and time-consuming37

to allow for efficient water management under challenging circumstances (Kagan et al., 2022).38

39

Stem water potential (SWP) is a direct measure of tree water level. SWP measurement has been exclusively40

used in the field of horticulture and viticulture for irrigation scheduling and high-quality crop production (Ohana-41

Levi et al., 2022; Carrasco-Benavides et al., 2022). In commercial orchards where SWP is monitored, irrigation42

adjustments are made according to the average SWP measurement from a group of selected trees. However,43

manual SWP measurement is labor-intensive and not practical for evaluating the water status of all trees within a44

large-scale orchard (Giménez-Gallego et al., 2021). To address the limitations associated with ground measure-45

ments, remote sensing using unmanned aerial vehicles (UAVs) has emerged as a promising solution for predicting46

SWP to provide rapid and efficient assessments. Remote sensing can leverage spectral data to facilitate the identi-47

fication of crop water status (Gautam and Pagay, 2020; Romero et al., 2018). Supplementary information such as48

soil water content (SWC), local weather data, and evapotranspiration (ET) can synergistically be used along with49

spectral measurements to enhance the accuracy of SWP predictions.50

51

Various studies have investigated thermal and multispectral UAV imagery to assess tree water status.UAV-52

based Normalized difference vegetation index (NDVI) and crop water stress index (CWSI) were compared with53

water status indicators including SWP to detect water stress in almond cultivars (Gutiérrez-Gordillo et al., 2021).54

CWSI was measured using high- and low-resolution UAV thermal imaging to estimate midday SWP and stom-55

atal conductance in cherry cultivars (Carrasco-Benavides et al., 2020). Thermal and multispectral UAV imaging56

using a high-end all-in-one camera was conducted to establish a relationship between VIs and crop quality in57

Pistachios (Martı́nez-Peña et al., 2023). While both NDVI and CWSI were capable of detecting water stress,58

CWSI exhibited higher sensitivity. CWSI value of 0 represents a crop with no stress and a value of 1 indicates59

non-transpiring crops that are under severe water stress. Studies have offered various approaches to compute the60

CWSI (Idso et al., 1981; Egea et al., 2017; Kirnak et al., 2019; Liu et al., 2022). The main difference between61

various methods is often found in the computation of the lower and upper limits. For instance, a widely used62

approach offered by (Idso et al., 1981), also referred to as the empirical approach, is to determine the lower limit63

as a linear function of vapor pressure deficit (VPD). The upper boundary can be calculated either by taking the64

maximum observed difference between the canopy and air temperatures or through a linear relationship the vapor65

pressure gradient (VPG), as described by (Katimbo et al., 2022). Some studies have discussed the use of constant66

values (e.g 5°C) for the calculation upper baselines (Ben-Gal et al., 2009). One limitation of CWSI calculation67

is that it requires specific adjustments according to the lower and upper limits for the difference between canopy68
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temperature and air temperature (González-Dugo et al., 2014). Its reliance on experimental data to establish lower69

or upper baselines can be significantly affected by changes in weather conditions. This variability raises concerns70

about its applicability for real-time irrigation scheduling and the adaptability of the established baseline across71

different climate zones (Katimbo et al., 2022).72

73

The utilization of machine learning (ML) in remote sensing has been on the rise over the past decade (Virn-74

odkar et al., 2020). These ML-powered technologies are actively deployed to automate the process of data explo-75

ration and address information deficits across spatial and temporal dimensions (Benos et al., 2021; Sun and Scan-76

lon, 2019; Marques Ramos et al., 2020). ML algorithms excel in capturing complex and nonlinear interactions77

between multiple input variables to predict desired outputs. They can effectively utilize fundamental components78

as inputs to reduce the dependency on carefully engineered features or variables with high potential correlations79

to the target output. This capability allows ML models to identify intricate patterns in the data and offers a more80

flexible data-driven approach compared to traditional methods that often require significant feature engineering.81

Several studies have used ML algorithms to predict plant water status and more exclusively SWP. In one study,82

boosted regression trees (BRT) algorithm was used to predict SWP in grapevine. Correlation of 𝑟 = 0.9 between83

SWP and input variables among which leaf temperature displayed higher importance, was achieved (Ohana-Levi84

et al., 2022). Hyperspectral imageries from grape leaves were analyzed using Random Forest (RF) and Extreme85

Gradient Boosting (XGBoost) to classify water-stressed leaves based on their SWP values with %84 accuracy86

(Loggenberg et al., 2018). Multiple ML models were deployed to predict olive SWP using various multi-spectral87

vegetation indices and spectral bands with RF outperforming other models with 𝑅2 = 0.78 (Garofalo et al., 2023).88

Normalized difference red edge index (NDRE), SWC, and ET were used to predict raw SWP values in an almond89

orchard using RF and Artificial Neural Networks (ANN). Together, all models resulted in an average 𝑅2 = 0.7390

and 𝑅𝑀𝑆𝐸 = 2.5𝑏𝑎𝑟𝑠 for SWP prediction in almond (Savchik et al., 2024). SWP, along with SWC and atmo-91

spheric features, have also been used as input variables to predict the leaf temperature as an indicator of almond92

water status. In this study, ANN was able to predict the target with 𝑅2 = 0.78 (Meyers et al., 2019). Currently,93

there are limited studies in almonds and especially pistachios where ML is used to predict direct indicators of tree94

water status such as SWP.95

96

There remains an opportunity to carve out a pathway toward a simplified, cost-effective, and non-destructive97

approach to remotely determine SWP and facilitate its adoption by the end-users. The motivation for such an98

approach emerges from the necessity to integrate emerging technologies into current field practices, particularly99

for large-scale orchard water management, where precise monitoring of tree water status forms an integral compo-100

nent of efficient irrigation. Tree water status has been estimated by an array of direct and indirect methodologies,101

ranging from sap flow sensors (Mobe et al., 2020; Alizadeh et al., 2021), soil moisture sensors(Vera et al., 2019;102

Millán et al., 2020), and dendrometers (Celedón et al., 2012) to hyperspectral and multispectral sensors (Ballester103

et al., 2018; Zhao et al., 2017; Zhou et al., 2021). Although these techniques have demonstrated effectiveness in104

assessing crop water status, those of which require ground installation or measurement, typically involve intru-105

sive procedures and can impose significant financial and labor burdens, especially in large commercial orchards.106

Moreover, conventional techniques might not sufficiently capture the spatial and temporal heterogeneity of SWP107

within the tree and across the orchard.108

109

Most orchard infrastructures are not designed to support tree-specific irrigation; however, some systems allow110

irrigation to be controlled per block. By gaining insights into specific stress levels of trees, growers could make111
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more informed decisions. This would enable them to prioritize irrigation in blocks with higher numbers and112

greater severity of water stress. Given the rapid advancements in remote sensing technology and machine learning,113

there is an opportunity to leverage these developments to enhance SWP prediction. The adoption of a predictive114

model predominantly reliant on remotely sensed and weather data, unites the power of aerial imaging technology115

with the sophistication of data-driven algorithms, representing a logical progression in this domain. In this study,116

our objective was to develop a data-driven model that balances minimal data requirements with accuracy while117

enabling practical utility for end-users in managing orchard irrigation scheduling. We used six ML classifiers118

and deployed weather, thermal, and multispectral variables to predict SWP categories of each tree in almond119

and pistachio orchards, as seen in Figure 1. Additionally, RF regression and classification models were used to120

determine the SWP prediction performance using different features. Here, we present a practical and cost-effective121

approach for tree-specific water status detection in orchards.122

FIGURE 1: Flowchart of the research investigating whether machine learning can predict stem water potential in
pistachio and almond orchards.

2 MATERIALS AND METHODS123

2.1 Experimental Sites124

The study sites include a 2.5-ha (6.1 acres) pistachio orchard (PO) and a 3-ha (7.4 acres) almond orchard (AO)125

situated in Merced County, within California’s San Joaquin valley as shown in Figure 2. This region is known for126

its Mediterranean climate, characterized by hot and dry summers and mild and wet winters. The pistachio variety127

was Kerman, and the trees were 9 years old. The almond was a nonpareil variety and trees were 12 years old.128
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The average maximum and minimum temperatures in Merced, CA, between June and August 2022 were 36◦C129

(97°F) and 12◦C (54°F), respectively. The PO was irrigated through a double-line drip irrigation system, while130

the almond orchard was irrigated through a macro jet irrigation system. A total of 14 data collection field trips131

were conducted between June and August 2022. These data collections trips were evenly split between PO and132

AO, with seven experiments in each orchard. For PO these days were: June 7, June 21, July 5, July 13, July 26,133

August 2, August 12 representing day of year (DOY) 158, 172, 186, 194, 207, 214, 224, respectively. For AO134

these days were: June 8, June 23, July 8, July 15, July 30, August 3, August 31 representing day of year (DOY)135

159, 174, 189, 196, 211, 215, 243, respectively. A total of 18 trees in the PO and 17 trees in the AO were selected136

as sample trees from which stem water potential (SWP), leaf temperature, and aerial multispectral images were137

collected. In each field, the sample trees were randomly chosen in blocks of three or four across the fields to138

account for the possible variability in the orchards.139

140

FIGURE 2: Test sites located in Merced, California. A total of 18 pistachio trees and 17 almond trees were
considered for the experiments. The location of trees under assessment are shown using red markers and bounding
boxes.

2.2 Ground Measurements141

Throughout each day of experiment, stem water potential (SWP) measurements were collected within 1-2142

hours of solar noon, approximately around 1 PM. To account for variability in SWP measurements within target143

trees, three leaves from the lower shaded canopy of each sample tree were chosen for SWP measurements. The144

resultant data was averaged to produce a mean SWP value per tree for subsequent analysis. These measurements145

were performed using the PMS-615 pressure chamber (PMS Instrument Company, Albany, OR, USA). Prior to146

being detached from the tree and analyzed in the pressure chamber, the leaves were sealed in aluminum bags for a147
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minimum duration of 15 minutes. Encasing the leaves in bags before conducting the SWP measurements is crucial148

for obtaining precise results. This procedure guides the leaf toward an equilibrium state and mitigates discrep-149

ancies that could arise from continuous photosynthesis and transpiration within the leaves (Lampinen et al., 2015).150

151

Concurrently with the collection of SWP measurements (±1 hour of solar noon), leaf temperature was recorded152

from three distinct leaves located at three different sides of each tree on the lower canopy. The recorded mea-153

surements were subsequently averaged to represent the canopy temperature 𝑇𝑐 for each sample tree. The leaf154

temperature data was measured using a TM0866 non-contact infrared thermometer (PerfectPrime, Barbican, UK)155

with 0.1◦𝐶 resolution and ±1% accuracy. Each temperature measurement was conducted at a 5-10cm distance156

from the leaf center and perpendicular to its surface.157

2.3 Aerial Imaging158

Flights were conducted within an hour of the solar noon, which occurred approximately at 1 pm local time, to159

minimize issues related to canopy shading. Aerial imaging is performed using DJI P4 multispectral agricultural160

drone (SZ DJI Technology Co., Ltd., Shenzhen, China) equipped with RTK-GNSS system for precise georefer-161

encing. The built-in imaging system is composed of an RGB camera and a five-band multispectral camera array,162

all of which are mounted on a 3-axis stabilized gimbal. The multispectral array encompasses five distinct bands:163

blue (B: 450 nm ± 16 nm), green (G: 560 nm ± 16 nm), red (R: 650 nm ± 16 nm), red edge (RE: 730 nm ± 16164

nm), and near-infrared (NIR: 840 nm ± 26 nm). Each band was captured by a dedicated 2 MP camera with a165

global shutter.166

167

During each flight mission, images were captured from an altitude of approximately 100 meters above the168

ground providing 4𝑐𝑚/𝑝𝑖𝑥𝑒𝑙 resolution. Additionally, the integrated upward looking sunlight sensor records169

solar irradiance during the flight, which allows for instantaneous referencing of spectral reflectance. The col-170

lected spectral data were processed through the computer software DJI Terra version 3.7.0 to create orthomo-171

saic maps for each orchard. The DJI Terra software was utilized for radiometric correction to produce one172

color composite along with five indexed maps for specific vegetation parameters: Normalized Difference Veg-173

etation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Optimized Soil-Adjusted Veg-174

etation Index (OSAVI), Leaf Chlorophyll Index (LCI), and Normalized Difference Red Edge (NDRE). The175

spectral indices were calculated as follows: NDVI was computed as (𝑅𝑛𝑖𝑟 − 𝑅𝑟𝑒𝑑)/(𝑅𝑛𝑖𝑟 + 𝑅𝑟𝑒𝑑), GNDVI as176

(𝑅𝑛𝑖𝑟−𝑅𝑔𝑟𝑒𝑒𝑛)/(𝑅𝑛𝑖𝑟 +𝑅𝑔𝑟𝑒𝑒𝑛), OSAVI as (𝑅𝑛𝑖𝑟−𝑅𝑟𝑒𝑑)/(𝑅𝑛𝑖𝑟 +𝑅𝑟𝑒𝑑 +0.16), LCI as (𝑅𝑛𝑖𝑟−𝑅𝑟𝑒𝑑𝑒𝑑𝑔𝑒)/(𝑅𝑛𝑖𝑟 +𝑅𝑟𝑒𝑑),177

and NDRE as (𝑅𝑛𝑖𝑟 − 𝑅𝑟𝑒𝑑𝑒𝑑𝑔𝑒)/(𝑅𝑛𝑖𝑟 + 𝑅𝑟𝑒𝑑𝑒𝑑𝑔𝑒). We utilized the Computer Vision Annotation Tool (CVAT) to178

manually extract the location of selected canopies from the orthomosaic maps. NDVI maps were utilized for179

annotation due to their enhanced clarity in identifying canopy boundaries. With the aid of these annotated NDVI180

maps, precise locations of the target tree canopies were determined. Subsequently, these geolocations were lever-181

aged to automate the extraction of index values from all the other maps. Image processing and all subsequent182

analysis were carried out using Python. Upon extraction of the index values from each tree canopy, the median of183

all values was used to represent the corresponding vegetation index for each sample tree.184

2.4 Weather Sensors185

Local weather stations were installed in both orchards to collect the ambient temperature, barometric pressure,186

and relative humidity. These weather data were collected every ten minutes during the 2022 growing season. The187
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availability of a wireless network in the PO allowed for real-time monitoring and cloud storage of the data. In con-188

trast, the lack of a reliable internet network in the AO prevented us from transferring data to an internet-connected189

cloud server. Therefore local data storage was adopted in this area. Weather stations include a BME688 sen-190

sor (Bosch Sensortec, Kusterdingen, Germany) and an ESP8266 chip (Espressif Systems, Shanghai, China) with191

IEEE 802.11 b/g/n Wi-Fi and built-in TCP/IP networking software. The BME688 sensor measures temperature,192

humidity, pressure, and gas resistance, providing a comprehensive environmental data. The ESP8266 chip enables193

wireless connectivity and allows the weather stations to transmit data to a central server for real-time monitoring194

and analysis. In the PO, two ordinary D size 1.5 V batteries connected in series could provide the required energy195

to each weather station. The weather station in AO relied on solar cells as a sustainable energy source.196

2.5 Feature Selection197

Initially, we considered a total of 15 features for the prediction of SWP in both PO and AO. Out of these,198

nine were derived from weather features, representing minimum, maximum, and mean values of air temperature199

𝑇 (◦𝐶), air pressure 𝑃(ℎ𝑃𝑎), and relative humidity 𝑅𝐻 (%) calculated for each day of the experiment. The re-200

maining features included five vegetation indices, NDVI, GNDVI, OSAVI, LCI, NDRE, and a thermal feature 𝑇𝑐201

representing the canopy temperature, which are all calculated individually for each sample tree.202

203

TABLE 1: Final selection of input variables used in machine learning models to predict stem water potential.

Selected Input Features Output

Pistachio 𝑇𝑚𝑒𝑎𝑛 𝑃𝑚𝑖𝑛 𝑅𝐻𝑚𝑖𝑛 𝑇𝑐 𝑂𝑆𝐴𝑉𝐼 𝑁𝐷𝑅𝐸 SWP (𝜓)

Almond 𝑇𝑚𝑎𝑥 𝑃𝑚𝑖𝑛 𝑅𝐻𝑚𝑖𝑛 𝑇𝑐 𝑁𝐷𝑉𝐼 𝑁𝐷𝑅𝐸 SWP (𝜓)

Unit [◦𝐶] [ℎ𝑃𝑎] [%] [◦𝐶] − − [𝑏𝑎𝑟]

Input type weather weather weather thermal Multispectral (MS) Multispectral (MS)

The correlation heatmaps based on the Pearson method were generated and are illustrated in Figure 3. Before204

deploying machine learning models for SWP prediction, inputs were filtered and checked for potential multi-205

collinearity. For each weather feature (𝑇,𝑃, 𝑅𝐻) represented by minimum, mean, and maximum values on each206

day of experiment, we selected the one with highest correlation with the SWP. This choice was made to avoid207

redundancy in inclusion of weather features. As a result one representative weather feature was chosen from each208

group, resulting in (𝑇𝑚𝑒𝑎𝑛, 𝑃𝑚𝑖𝑛, 𝑅𝐻𝑚𝑖𝑛) for PO, and (𝑇𝑚𝑎𝑥 , 𝑃𝑚𝑖𝑛, 𝑅𝐻𝑚𝑖𝑛) for AO, as seen in table 1. Then, a cutoff209

value of 0.75 was applied to remove features that are highly correlated with other features. This means that one210

out of the two features with absolute correlation coefficients greater than |𝑟 | > 0.75, was subsequently excluded211

from the analysis. Among those two features, the one with lower correlation with SWP is eliminated. From212

Figure 3 it can be observed that in both crops, 𝑇𝑐 was not highly collinear with any other feature. Additionally in213

PO, NDVI and GNDVI with OSAVI, and LCI with NDRE were highly correlated thus eliminated from the input214
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features. In AO, GNDVI and OSAVI with NDVI, and LCI with NDRE were highly correlated thus eliminated215

from the input features. Filtering the features based on correlation coefficients led to the establishment of a final216

collection of predictors. Consequently, six input features, as demonstrated in table 1, were selected to be used217

for SWP prediction in PO and AO using machine learning. These features were 𝑇𝑚𝑒𝑎𝑛, 𝑃𝑚𝑖𝑛, 𝑅𝐻𝑚𝑖𝑛, 𝑇𝑐, 𝑂𝑆𝐴𝑉𝐼,218

𝑁𝐷𝑅𝐸 for PO, and 𝑇𝑚𝑎𝑥 , 𝑃𝑚𝑖𝑛, 𝑅𝐻𝑚𝑖𝑛, 𝑇𝑐, 𝑁𝐷𝑉𝐼, 𝑁𝐷𝑅𝐸 for AO.219
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(a) PO correlation heatmaps

(b) AO correlation heatmaps

FIGURE 3: Pearson correlation heatmaps for (a) Pistachio (PO) and (b) Almond orchard (AO). (left) represents
the Pearson correlation heatmap with all 15 inputs (right) filtered Pearson correlation heatmap with 6 inputs
that were used in ML models for SWP prediction. 𝑇,𝑃, 𝑅𝐻 refer to weather temperature, pressure, and relative
humidity reflecting minimum, mean, and maximum values measured on each day of experiment. 𝑇𝑐 is the canopy
temperature, NDVI, GNDVI, OSAVI, LCI, NDRE are vegetation indices (VIs), which are measured for each tree
individually throughout the season.
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2.6 Machine Learning Models220

We used six machine learning (ML) models, including Random Forest (RF), Support Vector Machine (SVM),221

Gaussian Naive Bayes (GNB), Decision Tree (DT), K-Nearest Neighbors (KNN), and Artificial Neural Network222

(ANN). These models were implemented using the Scikit-learn (Pedregosa et al., 2011), an open-source machine223

learning library developed for Python.224

DT and RF possess distinct characteristics in handling classification and regression problems. DT functions by225

systematically dividing data into progressively smaller subsets. In the constructed tree-like diagram, every node226

symbolizes a comparison based on a specific feature, whereas the terminal leaves signify the final decision or227

prediction. RF stands as a prime example of ensemble learning, where the power of multiple decision trees is har-228

nessed to form an aggregated predictive model. Ensemble learning methods aim to boost predictive performance229

by creating a composite model from a collection of simpler base models, each reflecting a unique hypothesis. This230

approach allows for integrating diverse hypotheses, often yield superior predictive results. RF offers robustness231

against noise and is less prone to overfitting thanks to the averaged predictions across multiple trees (Liakos et al.,232

2018; Quinlan, 1993). GNB belongs to the family of Bayesian models, which are probabilistic graphical mod-233

els employed within the framework of Bayesian inference. This supervised learning model is applicable to both234

classification and regression problems. Despite its naive assumption of feature independence, the computational235

efficiency of GNB makes it an ideal choice for tasks necessitating quick and real-time predictions (Rish et al.,236

2001; Liakos et al., 2018). SVMs are key tools in ML, renowned for their adaptability in handling regression237

and classification tasks as well as clustering. They function by constructing a maximum margin hyperplane in238

a high-dimensional space, distinguishing between various classes while maximizing the margin between nearest239

points or support vectors (Chang and Lin, 2011). KNN is a supervised learning algorithm that works without any240

inherent assumptions about the underlying dataset. It is widely used for classification where it assigns classes to241

new data points based on their proximity to existing labeled examples. The k in KNN represents the number of242

nearest neighbors the algorithm considers when making its prediction. Choosing an optimal k value is the key to243

its effectiveness and performance(Taunk et al., 2019; Ray, 2019). ANN is a computational model inspired by the244

biological neural networks, which offers a distinctive approach to handle intricate and highly non-linear problems.245

A specific type of ANN is the Multi-Layer Perceptron (MLP), which functions as a feed-forward network. The246

neurons in each layer are interconnected to the neurons of the subsequent layer through weighted connections.247

During the learning phase, these weights are adjusted using techniques such as backpropagation (Messikh et al.,248

2017; Delashmit et al., 2005). In this study, we used MLP for ANN analysis to map the complex relationships249

between the input data and the output predictions.250

2.7 Model Evaluation251

To evaluate the predictive capabilities of the machine learning algorithms, we partitioned the datasets from252

each orchard such that 75% was allocated for the training and validation of the models, while the remaining 25%253

was set aside for testing their performance. The test dataset was completely isolated from the training/validation254

dataset to avoid overfitting and data leakage. The dataset was then subjected to a standard scaling process, where255

each feature in the training set was scaled to have a mean of zero and a standard deviation of one. This step256

prevents features with larger values from dominating others during the training process, ensuring that each fea-257

ture contributes proportionately to the final prediction. Next, each classifier was optimized to provide the highest258

performing predictive model, a strategy known as hyperparameter optimization. For the optimization process,259

we utilized a randomized search among the hyperparameters along with a 10-fold stratified cross-validation (CV)260

within the training dataset. This method partitions the original sample into ten equal-sized subsamples. In our261

10



study, the use of stratified CV was essential due to the imbalanced nature of the classes. This technique allows262

each fold to represent the overall class distribution accurately, thus preventing the model from being biased toward263

the majority class. This enhances the robustness and generalization of the model as it accounts for the scarcity of264

minority class instances. Of the ten subsamples, one is retained as validation set and the remaining are used as265

training data. The cross-validation process is then repeated ten times, with each of the ten subsamples used once266

as validation data. The optimal set of hyperparameters was eventually determined based on the best average per-267

formance across all folds. Through the optimization process, it is ensured that the trained models are not exposed268

to the final test dataset to prevent data leakage and overfitting.269

270

The optimized classifiers were subsequently utilized to evaluate the performance of test datasets. We used271

accuracy, F1-score, and Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC) as metrics to272

assess the performance of each classifier. Accuracy is defined as the proportion of correct predictions relative273

to the total number of predictions. Consider class 0 as negative and class 1 as positive. The F1-score is first274

calculated on a per-class basis and defined as the harmonic mean of the precision and recall. Within each class,275

precision is the number of true positives (𝑇𝑃) or correctly identified positive instances by the model in the positive276

class, divided by all positively identified instances (𝑇𝑃 + 𝐹𝑃) (whether correct or incorrect), with 𝐹𝑃 denoting277

false positives. Recall is the number of true positives 𝑇𝑃 divided by all samples that should have been identified as278

positive 𝑇𝑃+𝐹𝑁 , where 𝐹𝑁 represents false negatives. As a result, the average of F1-scores calculated for each279

class are reported. The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate280

(FPR) at various thresholds. The AUC is then computed by integrating the area under ROC curve. AUC provides281

a single scalar value representing the expected performance of the classifier. An AUC score close to 1 implies282

that the model has excellent ability to distinguish between classes, while an AUC score close to 0.5 indicates that283

the model is not classifying groups better than random classification. The regression model was similarly trained284

using a 10-fold CV and its performance was evaluated using the coefficient of determination 𝑅2, root mean square285

error 𝑅𝑀𝑆𝐸 , and mean absolute error 𝑀𝐴𝐸 .286

2.8 Data splitting287

Tentative categories based on SWP values have been defined by the University of California Agricultural Ex-288

tension (UCANR) for different type of crops. For instance, pistachio trees are considered non-stressed at -9 to -12289

bars, moderately stressed at -12 to -14 bars, and severely stressed at values less than -15 bars. Almond trees are290

categorized as experiencing minimal stress at -6 to -10 bars, mild stress at -10 to -14 bars, moderate stress at -14291

to -18 bars, high stress at -18 to -22 bars, and severe stress at values below -30 bars (Savchik et al., 2024).292

293

For ML classification and given the total number of collected SWP readings and their distribution across these294

categories, we adopted a binary classification approach. This decision was primarily driven by the overall water295

levels observed in the experimental orchards and the specific conditions of the sampled trees. Upon examination296

of the SWP readings from the almond orchard (AO), we noted a significant level of water stress, with approxi-297

mately 74% of the total SWP readings falling below -18 bars. Conversely, the pistachio trees in the corresponding298

orchard were observed to be well watered, with about 70% of the SWP readings exceeding -9 bars. To effectively299

categorize the orchards based on water levels, we defined thresholds for binary classification. In PO, a cutoff300

SWP value of -9 bars and in AO a cutoff of -18 bars were applied to separate trees with different stress levels. As301

illustrated in Figure 4, the total number of observations for the pistachio was 𝑛 = 126, whereas for the almond, it302

was 119. Some incomplete data points within the almond dataset were identified and subsequently excluded from303
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the analysis to get a total number of 𝑛 = 111 observations in AO. As a result, 25% of the data in each orchard was304

used for testing and the remaining 75% was considered for training and validation of the ML models.305

306

(a) PO (b) AO

FIGURE 4: Binary classes of collected stem water potential (SWP) data where 25% of the total dataset is set aside
as test set to evaluate the performance of ML models. 𝑛 denotes the total number of dataset in (a) the pistachio
orchard with 𝑛 = 126 and (b) the almond orchard with 𝑛 = 111.

3 RESULTS AND DISCUSSIONS307

3.1 Collected Data308

Weather and MS data along with 𝑇𝑐 and SWP (𝜓), were recorded for PO and AO, during the 2022 growing309

season. SWP values for each DOY are illustrated in Figure 5. Among the seven days of experiment in PO, the310

lowest mean |𝜓 | value was |𝜓 | = 5.4 𝑏𝑎𝑟𝑠 with standard deviation of 𝜎 = ±1.31 𝑏𝑎𝑟𝑠, observed on DOY 172,311

which corresponds to the second day of experiment. Conversely, the highest mean |𝜓 | value was |𝜓 | = 10.8 𝑏𝑎𝑟𝑠312

with 𝜎 = ±2.17 𝑏𝑎𝑟𝑠, observed on DOY 224, which corresponds to the last day of experiment. The standard313

deviations were ranged between 0.91 < |𝜎 | < 2.17 in PO. Among the seven days of experiment in AO, the lowest314

mean |𝜓 | value was |𝜓 | = 14.3 𝑏𝑎𝑟𝑠 with standard deviation of 𝜎 = ±1.67 𝑏𝑎𝑟𝑠, observed on DOY 211, which315

corresponds to the fifth day of experiment. Conversely, the highest mean |𝜓 | value was |𝜓 | = 26.1 𝑏𝑎𝑟𝑠 with316

𝜎 = ±2.96 𝑏𝑎𝑟𝑠, observed on DOY 215, which corresponds to the sixth experiment. The standard deviations were317

ranged between 1.67 < |𝜎 | < 4.37 in AO. Considering all collected SWP data during the season, PO had a mean318

of |𝜓 | = 8.0±2.41 𝑏𝑎𝑟𝑠 and AO had a mean of |𝜓 | = 21.0±4.70 𝑏𝑎𝑟𝑠.319

320

Weather data were continuously monitored through local weather stations installed in both orchards for which321

the results are demonstrated in Figure 6. As shown in table 1, the final selection of weather features were322

𝑇𝑚𝑒𝑎𝑛, 𝑃𝑚𝑖𝑛, 𝑅𝐻𝑚𝑖𝑛 for PO, and 𝑇𝑚𝑎𝑥 , 𝑃𝑚𝑖𝑛, 𝑅𝐻𝑚𝑖𝑛 for AO. During the seven days of experiment in PO, the lowest323
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(a) PO (b) AO

FIGURE 5: Collected stem water potentials (𝜓) during the 2022 season versus the corresponding day of year
(DOY) for the (a) pistachio orchard (b) almond orchard.

and highest average temperature 𝑇𝑚𝑒𝑎𝑛 were 25.5◦𝐶 and 31.4◦𝐶 representing the first (DOY 158) and sixth (DOY324

214) experiments. The first and the third days of experiment corresponding with DOY 158 and 178 recorded325

the lowest and highest 𝑅𝐻𝑚𝑖𝑛 at 13.8% and 31.4%, respectively. The lowest and highest 𝑃𝑚𝑖𝑛 were respectively326

observed on DOY 172 and 224 at 1002.4 ℎ𝑃𝑎 and 1006.0 ℎ𝑃𝑎, which represent the second and the seventh days327

of experiment. During the seven days of experiment in AO, the lowest and highest average temperature 𝑇𝑚𝑎𝑥 were328

34.9◦𝐶 and 41.4◦𝐶 representing the fifth (DOY 211) and second (DOY 174) experiments. The second and the329

fifth days of experiment corresponding with DOY 174 and 211 recorded the lowest and highest 𝑅𝐻𝑚𝑖𝑛 at 23.2%330

and 48.3%, respectively. The lowest and highest 𝑃𝑚𝑖𝑛 were respectively observed on DOY 174 and 189 at 1005.8331

ℎ𝑃𝑎 and 1011.6 ℎ𝑃𝑎, which represent the second and the third days of experiment. Considering the Pearson332

correlation coefficients among the weather features as seen in Figure 3, 𝑃𝑚𝑖𝑛 (𝑟 = 0.72) in pistachio and 𝑇𝑚𝑎𝑥333

(𝑟 = 0.55) in almond had the highest linear correlation with SWP. The correlations 𝑟 = 0.48 and 𝑟 = 0.22 were334

respectively observed for 𝑇𝑚𝑒𝑎𝑛 and 𝑅𝐻𝑚𝑖𝑛 in PO, and 𝑟 = −0.52 and 𝑟 = −0.36 for 𝑃𝑚𝑖𝑛 and 𝑅𝐻𝑚𝑖𝑛 in AO.335

336

The selected thermal and MS input features, as demonstrated in table 1, were 𝑇𝑐, 𝑂𝑆𝐴𝑉𝐼, 𝑁𝐷𝑅𝐸 for PO,337

and 𝑇𝑐, 𝑁𝐷𝑉𝐼, 𝑁𝐷𝑅𝐸 for AO. These features were plotted against absolute SWP (|𝜓 |) and the results along with338

their best fitted regression lines are demonstrated in Figure 7. In PO and AO, the correlations between 𝑇𝑐 and339

SWP were 𝑟 = 0.35 and 𝑟 = 0.43, respectively. Among the VIs, OSAVI in pistachio with 𝑟 = −0.51 and NDRE340

with 𝑟 = 0.18 in almond exhibited higher linear relationships with SWP. NDRE in PO with 𝑟 = 0.28 and NDVI341

in AO with 𝑟 = 0.05 had the weakest linear relationship with SWP among the selected thermal and MS features.342

In PO the trees had higher water levels while in AO the trees were mostly under water stress. This signifies that343

MS indices were more sensitive to SWP in the well-watered PO. Conversely, MS indices demonstrated lower344

sensitivity to SWP in the water stressed AO while 𝑇𝐶 was more sensitive to the changes in SWP. In PO, OSAVI345

had the highest coefficient of determination with SWP at 𝑅2 = 0.26 while in AO, 𝑅2 = 0.19 was highest between346

𝑇𝑐 and SWP.347
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(a) PO (b) AO

FIGURE 6: Collected weather data during each day of experiment in (a) pistachio (PO) and (b) almond orchard
(AO). Each weather data is illustrated for 24h cycles starting at midnight 00:00 (12am).
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(a) PO (b) AO

FIGURE 7: Selected thermal and multispectral (MS) features throughout the season versus absolute SWP (|𝜓 |)
values in (a) pistachio orchard and (b) almond orchard. 𝑇𝑐 represents the canopy temperature and OSAVI, NDVI,
and NDRE represent the MS vegetation indices.
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3.2 Classification using Machine Learning348

The resulting optimized classifiers were subsequently deployed to predict the test dataset. Figure 8 illustrates349

the classification performance of the implemented machine learning models predicting SWP values in both the350

PO and AO. For each model, the classification accuracy of the test dataset along with their performance across351

each fold of cross-validation during the training phase are elucidated. The accuracy of each classifier was obtained352

based on the ratio of correct predictions to the total number of predictions made by the model. All models pro-353

vided accuracies higher than 79%. For the PO, the Random Forest (RF) and Decision Tree (DT) models delivered354

superior performance, each achieving an accuracy rate of 88%. In the AO, RF shared the highest accuracy rate355

of 89% with Support Vector Machine (SVM), K-nearest neighbors (KNN), and Artificial Neural Network (ANN)356

models.357

358

(a) PO (b) AO

FIGURE 8: Performance of ML classifiers namely Random Forest (RF), Support Vector Machine (SVM), Gaus-
sian Naive Bayes (GNB), Decision Tree (DT), K-Nearest Neighbors (KNN), and Artificial Neural Network (ANN)
predicting SWP in pistachio (PO) and almond orchard (AO). The gray patch represents the accuracy of each fold
during the cross-validation phase and the black patch shows the prediction accuracy of the best trained model on
the test set.

Table 2 further elucidate the performance of each classifier, detailing additional metrics, including Cross-359

Validation (CV) averages, F1-scores, and Area Under Curve (AUC) values. It is noteworthy that the classifiers360

also demonstrated consistent performance across the folds during the CV phase. In PO, the mean of CV values361

were ranged between 87-94% whereas in AO this values were ranged between 86-89%. With an exception to the362

F1-score of DT in AO, which was 75%, F1-scores in both PO and AO were ranged between 81-87%. The F1-score363

acts as a measure of a model’s performance in correctly identifying instances in each class. The F1-score takes364

into account both precision and recall, providing a more comprehensive picture of model performance across all365

classes. This is particularly critical when dealing with datasets with imbalanced class distributions, as it provides366
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a more nuanced understanding of a model’s performance than accuracy alone. Moreover, the AUC which is calcu-367

lated from the ROC curve, provides further insights into the model’s ability to distinguish between the classes at368

various thresholds. An AUC score of 0.5 represents a model with no discrimination capacity, effectively perform-369

ing no better than random chance. On the other hand, an AUC of 1.0 (100%) signifies perfect classification. High370

values of AUC imply that the model is making correct classifications while avoiding misclassifications. In the PO,371

the F1-scores of the applied ML classifiers varied from 81% (ANN and SVM) to 87% (RF and DT). Meanwhile,372

the AUC values ranged from 82% (KNN) to 88% (GNB) underlying a satisfactory ability while distinguishing373

between the classes. In the AO, the F1-scores ranged from 75% to 86%. The lowest AUC value was 77% by DT374

and the highest values was achieved by SVM and ANN at 93%. Overall, these metrics represent relative reliability375

of the ML models employed for SWP prediction in this study.376

377

TABLE 2: Quantitative analysis on the performance of ML classifiers predicting SWP in the pistachio (PO) and
almond orchard (AO).

PO

Models Input Accuracy CV F1-score AUC

RF All 0.88 0.91 0.87 0.86

SVM All 0.81 0.92 0.81 0.87

GNB All 0.84 0.87 0.84 0.88

DT All 0.88 0.89 0.87 0.86

KNN All 0.84 0.94 0.84 0.82

ANN All 0.81 0.91 0.81 0.83

AO

Accuracy CV F1-score AUC

0.89 0.89 0.86 0.88

0.89 0.89 0.86 0.93

0.86 0.86 0.82 0.87

0.79 0.89 0.75 0.77

0.89 0.89 0.86 0.86

0.89 0.88 0.86 0.93

Confusion matrices were demonstrated in the Figure 9. The total number of test datasets in PO was 𝑛𝑡𝑒𝑠𝑡 = 32378

and in AO was 𝑛𝑡𝑒𝑠𝑡 = 28 representing 25% of total dataset in each orchard. The RF and DT were the best clas-379

sifiers in PO providing 28 correct and 4 wrong predictions. There were 17 𝑇𝑁 and 11 𝑇𝑃 as well as 1 𝐹𝑃 and 3380

𝐹𝑁 in both RF and DT. This also reflects better prediction accuracy towards the majority class or class 0, in PO.381

Conversely, SVM and ANN had the lowest accuracies with 26 correct and 6 wrong predictions reflecting 16 𝑇𝑁 ,382

10 𝑇𝑃, 2 𝐹𝑃 and 4 𝐹𝑁 in SVM, and 15 𝑇𝑁 , 11 𝑇𝑃, 3 𝐹𝑃 and 3 𝐹𝑁 in ANN. In AO, RF, DT, SVM, and ANN383

were the best classifiers providing 25 correct and 3 wrong predictions. In all of these classifiers, there were 6 𝑇𝑁384

and 19 𝑇𝑃 as well as 3 𝐹𝑃 and 0 𝐹𝑁 . This also reflects better prediction accuracy towards the majority class or385

class 1 in AO. Conversely, DT had the lowest accuracy with 22 correct and 6 wrong predictions reflecting 6 𝑇𝑁 ,386

16 𝑇𝑃, 3 𝐹𝑃 and 3 𝐹𝑁 .387

388
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(a) PO

(b) AO

FIGURE 9: Confusion matrices representing the results of ML classifiers predicting SWP in (a) pistachio orchard
(b) almond orchard.
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RF provided high accuracy and more consistency classifying SWPs in both orchards. RF has been exten-389

sively explored and employed in numerous studies due to its high tolerance for outliers and noise, along with its390

resistance to overfitting (Fan et al., 2021; Benos et al., 2021; Pagano et al., 2023). An additional advantage of391

RF is its capacity to calculate feature importance percentages. Feature importance in RF provides a measure of392

the contribution each feature makes to the predictive power of the model. This is calculated using a combination393

of the mean decrease accuracy (MDA) and mean decrease Gini (MDG) metrics, allowing for a comprehensive394

understanding of the relevance of each feature. This characteristic can be particularly useful in understanding and395

interpreting the model’s decisions (Virnodkar et al., 2020). In the context of our study, the feature importance396

results offered by the RF model can illuminate the relative contribution of each feature to the SWP prediction.397

Such understanding is instrumental in formulating data acquisition strategies for subsequent research studies re-398

lated to tree water status assessment. Figure 10 demonstrates the importance of features used to determine SWP399

in almond and pistachio trees. Weather features contributed the highest to the SWP prediction. In the PO, the400

feature with the greatest influence was 𝑃𝑚𝑖𝑛, accounting for 30% of feature importance. In the AO, 𝑇𝑚𝑎𝑥 was the401

most critical feature, with a contribution of 36%. The 𝑇𝑚𝑎𝑥 and 𝑅𝐻𝑚𝑖𝑛 collectively dominated nearly 68% of the402

decisions made by the RF model in the AO. In both PO and AO, 𝑇𝑐 demonstrated a higher importance relative to403

individual MS VIs. It accounted for approximately 22% of the importance in PO and 10% in the AO. In terms404

of MS VIs, OSAVI (20%) in PO and NDVI (7.5%) in AO showed higher importance than NDRE in both crops.405

However, the disparity was more noticeable between OSAVI and NDRE in PO, which was about 10% compared406

to the minimal difference between NDVI and NDRE in AO at about 2-3%. The overall contribution of weather,407

thermal, and MS features to SWP classification in PO were, 48%, 22%, 30%. The overall contribution of weather,408

thermal, and MS features to SWP classification in AO were, 77%, 10%, 13%.409

410

(a) PO (b) AO

FIGURE 10: Feature importance provided by the Random Forest (RF) classifier for (a) pistachio orchard and (b)
almond orchard.

Given the observations in this study, the AO was under considerable water stress, with nearly 74% of the SWP411

values registering below -18 bars. This is indicative of high stress and notable water deficiency in the almond412

trees (see Figure 4). In contrast, the PO demonstrated an entirely different watering profile with a predominantly413
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hydrated state. About 70% of the SWP measurements were above -9 bars, highlighting an excessive hydration414

status for the pistachio trees. The difference in hydration profiles of the two orchards brings into focus the role415

of atmospheric features in SWP determination as seen in Figure 10. Given the distinct differences in water stress416

levels between the two orchards, it appears that the importance of these atmospheric variables in SWP prediction417

fluctuates in accordance with the level of tree water status. Particularly, under conditions of high water stress, as418

observed in the almond orchard, atmospheric parameters like air temperature and air pressure may gain promi-419

nence towards the determination of SWP.420

421

Environmental factors such as micro-climate, soil variation, and root system differences significantly impact422

tree water status within an orchard. Micro-climate fluctuations influence water uptake, while soil properties affect423

moisture availability to roots. Understanding root system diversity is crucial. For precise irrigation, knowledge424

about spatial water variability and micro-climate are essential (Peters et al., 2010; Ntshidi et al., 2023). Given the425

complex interaction of various environmental factors within an orchard, atmospheric measures alone might not426

offer a comprehensive picture of tree water needs. While these parameters play a pivotal role in estimating the427

overall tree water status in an orchard, they are not able to determine the water status of an orchard on a per-tree428

basis. For a more precise prediction of SWP on a tree-by-tree basis, more individualized features may be required.429

Among these exclusive features, CWSI(𝑇𝑐,𝑇𝑎, 𝑉𝑃𝐷) holds a distinct importance. In other studies, CWSI has also430

been found to have a good correlation with SWP both in pistachios (Jafarbiglu and Pourreza, 2022; Gonzalez-431

Dugo et al., 2015; Testi et al., 2008) and almonds (Gonzalez-Dugo et al., 2012; Garcı́a-Tejero et al., 2012). This432

can be attributed to the heightened sensitivity of canopy temperature 𝑇𝑐 to fluctuations in plant water stress. 𝑇𝑐433

is capable of identifying subtle changes in plant water status that other multispectral VIs often overlook. Its high434

sensitivity renders it a potentially powerful tool for monitoring plant water status and predicting SWP values at435

a tree-specific level. The ability to reconcile distinct but interconnected sources of information would be key to436

developing robust machine learning models for accurate and reliable prediction of SWP values.437

438

3.3 Classification and Regression using RF439

The RF classification and regression models were used to predict SWP with different input features, shown440

in table 3. For PO with all inputs, the RF model demonstrated strong classification performance, achieving an441

accuracy of 88%, an average 10-fold cross-validation (𝐶𝑉) score of 91%, a F1-score of 0.87, and an AUC of 0.86.442

The regression metrics were also satisfactory with 𝑅2 value of 0.70, RMSE of 1.13, and MAE of 0.84, indicating443

good predictions. When the model inputs were limited to MS and thermal features only, the classification accu-444

racy reduced to 78%, the 𝐶𝑉 score to 84%, F1-score to 0.72, and AUC to 0.78 along with noticeable declines in445

regression outcomes (𝑅2 of 0.46, RMSE of 1.54, and MAE of 1.29). A further reduction to only MS features led446

to further decreases in both classification and regression metrics, with classification accuracy dropping to 72%,447

𝐶𝑉 to 83%, F1-score to 0.68, AUC to 0.73, as well as 𝑅2 of 0.33, RMSE of 1.72, and MAE of 1.38. These re-448

sults underscore the challenges in achieving high predictive accuracy for SWP with only MS used as input feature.449

450

Similar trends were observed in AO although the effect of reduced features on model performance were451

higher. Utilizing all inputs, the RF model showed good classification accuracy at 89%, with a 𝐶𝑉 score of 89%,452

F1-score of 0.86, and AUC of 0.88. The regression metrics were less robust than in PO with 𝑅2 of 0.55, RMSE of453

3.18, and MAE of 2.44. However, restricting the inputs to MS and thermal data significantly reduced the model454

performance and resulted in a stark decrease in all metrics including accuracy to 61%, 𝐶𝑉 to 76%, F1-score to455
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0.51, AUC to 0.51, as well as 𝑅2 to 0.26 while RMSE and MAE increased to 4.11 and 3.15, respectively. While456

the classification reached an accuracy of 61% the low AUC score of 0.51 highlights the classifier’s inability in457

classification and distinguishing between classes. Using MS features as input, the RF regression and classification458

models performed poorly thus the results are not included in the analysis.459

TABLE 3: Using the Random Forest (RF) model for comparison between various inputs. The units for RMSE
and MAE are 𝑏𝑎𝑟𝑠.

Classification

Model Orchard Input Accuracy CV F1-score AUC

RF PO All 0.88 0.91 0.87 0.86

RF PO MS, Thermal 0.78 0.84 0.72 0.78

RF PO MS 0.72 0.83 0.68 0.73

RF AO All 0.89 0.89 0.86 0.88

RF AO MS, Thermal 0.61 0.76 0.51 0.51

Regression

𝑅2 RMSE MAE

0.70 1.13 0.84

0.46 1.54 1.29

0.33 1.72 1.38

0.55 3.18 2.44

0.26 4.11 3.15

Regarding the choice of regression versus classification for SWP prediction in the context of orchard irrigation460

management, classification models have some advantages over regression models. Irrigation strategies in real-461

world scenarios often adhere to a threshold-based framework (”irrigate” or ”do not irrigate”) wherein irrigation is462

performed once the SWP descends below a certain threshold. This binary decision-making process is intrinsically463

aligned with classification models, which predict discrete categories. Classifiers focus on categorizing data rather464

than determining exact values resulting in higher accuracy and more robustness against noise at the expense of less465

knowledge about the exact output values. They can provide better performance while trained on lower datasets.466

The deployment of machine learning models, particularly those trained on comprehensive datasets encompassing467

remote sensing and atmospheric information, could serve as a potential tool in discerning whether the SWP has468

breached a critical threshold. This could ultimately lead to more precise and timely irrigation decisions. The469

proposed approach embodies a practical and scalable solution to SWP prediction, enabling more sustainable and470

efficient water management practices within orchards.471

4 CONCLUSIONS472

This study offered a practical approach utilizing machine learning (ML) to evaluate orchard water status on a473

per-tree basis and enhance water management in orchards. Six ML models were utilized to classify stem water474

potential (SWP) using weather, thermal, and multispectral (MS) features, in pistachio orchard (PO) and almond475

orchard (AO). Additionally, random forest (RF) was used for classification and regression with different features.476

While most of ML classifiers used in this study provided %79 or higher performance in SWP classification, RF477

showed high performance in both PO and AO with %88 and %89 prediction accuracy, respectively. The feature478

importance report provided by the RF classifier accentuated the high influence of atmospheric features on SWP.479
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This dependency varied according to the level of water stress and type of crops. Weather features contributed480

to 48% and 77% of decisions in PO and AO, respectively. Therefore, leveraging such environmental variables481

that are both influential and easy to obtain, remain a necessity to achieve high performing predictive models.482

Thermal and MS features can provide valuable insight into water requirements of an orchard on a per-tree basis.483

Among those features, 𝑇𝑐 played a more important role in SWP prediction in both crops. However, this signifi-484

cance was closely followed by OSAVI in pistachios and NDVI in almonds. NDRE exhibited lower importance in485

both crops. However, the gap between NDRE and NDVI importance was relatively smaller in the water-stressed486

AO compared to its difference with OSAVI in the non-stressed PO. The findings from this study suggest that the487

relative importance of features can be influenced by the prevailing water levels in the corresponding orchard. RF488

regression model predicted SWPs with highest accuracy when all weather, thermal, and MS inputs were involved489

resulting in 𝑅2 = 0.70, 𝑅𝑀𝑆𝐸 = 1.13 𝑏𝑎𝑟𝑠, MAE= 0.84 𝑏𝑎𝑟𝑠 in PO, and 𝑅2 = 0.55, 𝑅𝑀𝑆𝐸 = 3.18 𝑏𝑎𝑟𝑠, and490

𝑀𝐴𝐸 = 2.44𝑏𝑎𝑟𝑠 in AO.491

492

Future studies can focus on extending the application of the predictive models to other crops. Emphasis493

should be placed on the development of a model that can be utilized by end-users. This requires the adoption of494

features that are non-destructive, readily accessible, and reliant on remote sensing for facilitated individualized495

analysis. In this study, we used point measurements of leaf temperature to estimate average 𝑇𝑐 for each tree496

under treatment. For enhanced scalability and to capture spatial temperature variations across individual trees and497

the entire orchard, thermal imaging using UAVs or UGVs is recommended. Incorporating machine learning is498

essential due to its capability in handling complex datasets and deriving meaningful insights. Given the proper499

quality and quantity of datasets, ML models are capable of capturing the intricate relationships between input500

features to predict an output. Therefore, input features can be broken down into their foundational components and501

be integrated with the ML models for training. For example, spectral bands and canopy temperature instead of VIs502

can directly be used for training the ML models. It is crucial to address the limitations posed by relying on single-503

season data which may not capture the variability across different growing conditions and locations. Expanding504

datasets across multiple seasons and regions potentially through collaborative databases or federated learning505

would enhance model generalizability leading to more reliable predictions. The power of artificial intelligence506

can be harnessed to unravel the complex relationship between variables that affect tree water status, which leads507

to better irrigation scheduling and more efficient water management in agriculture.508
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